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Abstract: The intestine represents the body’s largest interface between internal organs and external
environments except for its nutrient and fluid absorption functions. It has the ability to sense
numerous endogenous and exogenous signals from both apical and basolateral surfaces and respond
through endocrine and neuronal signaling to maintain metabolic homeostasis and energy expenditure.
The intestine also harbours the largest population of microbes that interact with the host to maintain
human health and diseases. Furthermore, the gut is known as the largest endocrine gland, secreting
over 100 peptides and other molecules that act as signaling molecules to regulate human nutrition
and physiology. Among these gut-derived hormones, glucagon-like peptide 1 (GLP-1) and -2 have
received the most attention due to their critical role in intestinal function and food absorption as
well as their application as key drug targets. In this review, we highlight the current state of the
literature that has brought into light the importance of GLP-1 and GLP-2 in orchestrating intestine–
microbiota–immune system crosstalk to maintain intestinal barrier integrity, inflammation, and
metabolic homeostasis.

Keywords: glucagon-like peptide 1 (GLP-1); glucagon-like peptide 2 (GLP-2); gut microbiota;
intestinal barrier integrity; inflammation; gut immunity; metabolic syndrome

1. Introduction

Glucagon-like peptides (GLP-1 and GLP-2) are gut-derived peptides that are secreted
in response to ingested nutrient from enteroendocrine L-cells located predominantly in
the distal small intestine and colon [1,2]. GLP-1 and GLP-2 exert their actions through
binding to distinct G-protein-coupled transmembrane receptor, GLP-1R and GLP-2R, re-
spectively [3–6]. Depending on the tissues that express these receptors, GLP-1 and GLP-2
elicit different effects. GLP-1R activation is shown to promote glucose metabolism, inhibit
gastric emptying, and supress glucagon release [2,7–10]. Through the gut-brain axis, in-
creasing levels of circulating GLP-1 or pharmacological activation of GLP-1R directly lower
food intake and regulate body weight [11]. Although GLP-2 is co-secreted in a 1:1 ratio with
GLP-1, its main functions in the intestine are to promote crypt cell proliferation, intestine
stem cell expansion, and intestinal growth [12–16].

The gut microbiota has recently received a lot of attention due to its broad and com-
prehensive influence on various organs and other aspects of host physiology. It is well
accepted that the composition of gut microbiota depends on many factors, such as regions
of the gastrointestinal tract as well as host genetics, nutritional and health status, dietary
habits, and antibiotic use. In recent years, along with the technological advances in systems
biology, host-microbiota interplay has become a new promising field for molecular and
personalized medicine, pharmacokinetics, biomarker discovery, diagnosis, and therapeu-
tic targets. The implication of gut microbiota in human health and diseases have been
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extensively studied and reviewed [17–20]. A body of research has shown that the gut
environment is crucial for maintaining host physiology and its disturbance can result in a
variety of physiological disorders such as loss of insulin sensitivity, impairment of intestinal
barrier function, low-grade inflammation, and lipid accumulation, all of which increase the
risk of metabolic diseases [11,18,21–26]. Additionally, commensal microorganisms form a
mutualistic relationship with the host, which is crucial for immune system development
and function through production of a variety of metabolites [20,25,27–29].

In this review, we highlight the recent research and key concepts on possible interac-
tions between the enteroendocrine system, gut microbiota, and host immunity, as well as
the implications of these interactions for human health.

2. Receptors and Functions of GLP-1 and -2

Both GLP-1 and -2 are co-encoded by proglucagon which is a 180-amino acid pre-
cursor with five individually processed domains; glicentin-related pancreatic polypep-
tide (GRPP), glucagon, intervening peptide—1 and 2 (IP-1/2), GLP-1 and GLP-2 [30]
and synthesized in pancreatic α cells, intestinal L-cells and neurons located in the hind-
brain and hypothalamus [31] (Figure 1A). Tissue specific posttranslational modification
of proglucagon produce different active peptides [32]. Prohormone convertase (PC)-2 in
the pancreatic α-cells cleaves proglucagon into glucagon, GRPP and a large C-terminal
peptide containing both GLPs and IP-2. In intestinal L-cells and specific hindbrain neurons,
proglucagon is converted through proconvertase 1/3 L-cell into GLP-1, GLP-2, glicentin,
GRPP, oxyntomodulin, and IP-2 [30,33–38].
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Figure 1. GLP-1 and GLP-2 signaling and the interaction with the gut inflammatory network and 
gut microbiota. (A) GLP-1 and 2 are produced by L-cells via enzyme-mediated cleavage of proglu-
cagon. These gut peptides exert diverse effects through binding to their specific receptors, GLP-1R 
and GLP-2R, respectively. (B) Intestine-specific functions of GLP-1 and -2 are essential to maintain 
intestine–microbiota–immune system interactions. Created with BioRender.com. 

Over the past few decades, the GLP-1 hormone has drawn a lot of interest for its 
extensive metabolic effects. Dipeptidyl peptidase-4 (DPP-4) inhibitors which increases 
GLP-1 and gastric inhibitory polypeptide (GIP) incretin hormone concentrations and 
GLP-1 receptor (GLP-1R) agonists are now widely used to treat type 2 diabetes and obe-
sity [39–41]. It has been reported that GLP-1 mediates several beneficial effects on metab-
olism including maintaining glucose homeostasis by inducing insulin secretion in re-
sponse to glucose stimulation [1,2], inhibiting glucagon secretion [9] and expanding pan-
creatic β cell mass [7,42]. GLP-1 also reduces gastric emptying and food intake [1,2,8,10] 
as well as inhibits intestinal motility [43]. By increasing satiety through central nervous 
system (CNS) and vagal afferent signaling, GLP-1 can facilitate weight loss. This effect 
was associated with decreasing cardiometabolic risk factors and inflammatory markers 
[8,44–46]. Along with its possible cardioprotective role, GLP-1 has been implicated in 
modulating intestinal lipid and lipoprotein metabolism which is perturbed in diabetes.  
Studies in both rodents and humans showed that activation of GLP-1R or inhibition of 
DPP-4 resulted in reduction of postprandial chylomicron (CM) secretion [47], decreased 
postprandial free fatty acid (FFA) levels and triglyceride-rich lipoproteins (TRL) secretion 
[48–51]. Moreover, exendin 9-39 mediated inhibition of GLP-1R and genetic ablation of 
GLP-1R signaling in Glp-1r KO mice increased TRL-apoB48 secretion in vivo [47]. Intrac-
erebroventricular exendin-4 administration markedly reduced the apolipoprotein B48- 
containing CM levels in hamsters [52]. Recently, Varin et al., reported that sitagliptin me-
diated gut-specific and systemic inhibition of DPP-4 improved lipid tolerance and TG pro-
duction in young mice while these effects were not reproduced in old mice [53]. 

Figure 1. GLP-1 and GLP-2 signaling and the interaction with the gut inflammatory network and gut
microbiota. (A) GLP-1 and 2 are produced by L-cells via enzyme-mediated cleavage of proglucagon.
These gut peptides exert diverse effects through binding to their specific receptors, GLP-1R and
GLP-2R, respectively. (B) Intestine-specific functions of GLP-1 and -2 are essential to maintain
intestine–microbiota–immune system interactions. Created with BioRender.com.

Over the past few decades, the GLP-1 hormone has drawn a lot of interest for its ex-
tensive metabolic effects. Dipeptidyl peptidase-4 (DPP-4) inhibitors which increases GLP-1
and gastric inhibitory polypeptide (GIP) incretin hormone concentrations and GLP-1 re-
ceptor (GLP-1R) agonists are now widely used to treat type 2 diabetes and obesity [39–41].
It has been reported that GLP-1 mediates several beneficial effects on metabolism in-
cluding maintaining glucose homeostasis by inducing insulin secretion in response to
glucose stimulation [1,2], inhibiting glucagon secretion [9] and expanding pancreatic β

cell mass [7,42]. GLP-1 also reduces gastric emptying and food intake [1,2,8,10] as well
as inhibits intestinal motility [43]. By increasing satiety through central nervous system
(CNS) and vagal afferent signaling, GLP-1 can facilitate weight loss. This effect was asso-
ciated with decreasing cardiometabolic risk factors and inflammatory markers [8,44–46].
Along with its possible cardioprotective role, GLP-1 has been implicated in modulating
intestinal lipid and lipoprotein metabolism which is perturbed in diabetes. Studies in both
rodents and humans showed that activation of GLP-1R or inhibition of DPP-4 resulted in
reduction of postprandial chylomicron (CM) secretion [47], decreased postprandial free
fatty acid (FFA) levels and triglyceride-rich lipoproteins (TRL) secretion [48–51]. Moreover,
exendin 9-39 mediated inhibition of GLP-1R and genetic ablation of GLP-1R signaling
in Glp-1r KO mice increased TRL-apoB48 secretion in vivo [47]. Intracerebroventricular
exendin-4 administration markedly reduced the apolipoprotein B48- containing CM levels
in hamsters [52]. Recently, Varin et al., reported that sitagliptin mediated gut-specific
and systemic inhibition of DPP-4 improved lipid tolerance and TG production in young
mice while these effects were not reproduced in old mice [53]. Furthermore, systemic
inhibition of DPP-4 activity reduced circulating apoB48 levels and this was accompanied
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by decreased intestinal CM secretion, conversely; gut selective DPP4 inhibition failed to
decrease plasma apoB48 levels [53]. Given that enterocytes are the site for CM synthesis
and secretion but do not express GLP-1R [3,54], the effect of GLP 1R agonist on modulation
of CM secretion and apoB48 levels is likely the result of indirect mechanisms. Recently,
Nahmias. et al., evaluated CM secretion directly using a lymph cannulated rat model to
test the impact of physiological GLP-1 levels on lymph flow [55]. The researchers showed
that GLP-1R antagonist significantly increased lymph TG concentration independently of
gastric emptying as well as increased levels of ApoB48 [55]. This is in line with a study
that discovered significant decreases in TRL-TG after six hours of intraperitoneal exendin-4
injection, but no significant changes in apoB48 in fed-state hamsters [52].

GLP-2 was initially characterized as an intestinotrophic hormone secreted by L-cells
residing within the epithelium of the small and large intestine. GLP-2 is a short peptide,
33 amino acids, produced as a result of prohormone convertase 1/3-mediated posttrans-
lational processing of proglucagon in intestine and brain. The mechanisms of action and
the extent of biological effects of GLP-2 remained undetermined until its action on gut
growth was validated using synthetic GLP-2 [56]. Since then, GLP-2 based research gained
more attention as a promising therapeutic target of inflammatory and short bowel syn-
drome [2,57–59]. The basal level of plasma GLP-2 during fasting is low, however, its
concentration rises rapidly post-prandially as soon as intestinal L-cells sense carbohydrate
and lipids in the lumen [60–62]. This quick response also implies neuronal pathway engage-
ment. GLP-2 has a half-life of 7 minutes during which it exerts its action through binding to
GLP-2R [63,64]. Depending on the GLP-2R expressing tissues (gastrointestinal tract, CNS,
mesenteric fat, lymph nodes, pancreas, liver, bladder, and spleen) [65], GLP-2 employs
different signaling pathways to exerts its biological effects such as production of cyclic
AMP [66], increase of intracellular calcium, inhibition of glycogen synthase kinase-3, and
targeted gene expression [65,67] (Figure 1A). For instance, binding of GLP-2 to its receptor
in the CNS inhibits food intake [68,69] and gastric emptying through the melanocortin
receptor-4 (MC4R) signaling pathway [70]. More recently, it was reported that exogenous
GLP-2 inhibited postprandial gallbladder emptying in healthy men [71]. Furthermore, it
was reported that GLP-2 potentiated L-type Ca2+ channel activity in primary hippocampal
neurons via the activation of cAMP-dependent protein kinase A (PKA) [72] while GLP-
2’s role in improving learning and memory in a mouse model of vascular dementia and
a juvenile-onset diabetes in rats was mediated through ERK pathway in hippocampal
neurons [73]. Interestingly, Zhang et al., demonstrated a protective role of GLP-2 analogue
in a mouse model of Parkinson’s disease by suppressing the NLRP3 inflammasome and
limiting mitochondrial damage [74]. In contrast to GLP-1, the role of GLP-2 in regulating
lipoprotein metabolism has not been studied extensively, however, the direct action of
GLP-2 is now evident. A prominent work found a stimulatory effect of GLP-2 on intestinal
apoB48-containing lipoprotein secretion (apoB48) in Syrian golden hamsters which was
mediated through CD36 [75]. In follow up studies, it was shown that acute administra-
tion of GLP-2 significantly elevated postprandial TG and intestinal apoB48-containing
lipoproteins [61,62,75] which has been shown to be mediated through nitric oxide signaling
in both mice and hamsters [62,71,75,76]. Similarly, intraperitoneal administration of GLP-2
following an intraduodenal lipid bolus resulted in elevated apoB48 levels [77]. Interestingly,
a similar direct stimulatory effect of GLP-2 on postprandial CM secretion in humans has
been reported [60]. In this review we will focus on recent findings related to the role of
GLP-2 in the context of intestine homeostasis and inflammation and their consequences on
microbiota and metabolism.

3. GLP-1 and GLP-2 as Regulators of Intestine Integrity and Inflammation
3.1. Intestinal Barrier Integrity

The primary function of the intestine is to digest and absorb nutrients and fluids,
however, it represents a crossroad where the liver (through bile acids), pancreas, brain,
and microbiota interact. While the gut senses nutrients and releases incretin hormones like
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GLP-1 and GIP [78–80], it also harbors the largest microbial population in the human body
containing more than 100 trillion microbial cells with 3.3 million gut microbial genes that
constitute the microbiome [81,82]. Structurally, the intestine functions as a multicellular
barrier (enterocytes, Paneth cells, goblet cells, and enteroendocrine cells) between the
external environment and the internal milieu. Therefore, maintaining a healthy intact
intestine is essential for energy homeostasis and inter-organ communication.

A substantial body of evidence supports the importance of the GLP-1 system as an
essential component of intestine function. GLP-1R agonism has been shown to play an
important role in the protection against intestinal damage [83,84]. After 10 and 30 days of
treatment, pharmacological administration of GLP-1R agonists significantly increased the
weight of the small bowel and colon of normal, healthy, outbred mice; however, this effect
was not associated with promoting colonic dysplasia [83]. A subsequent study found that
gain and loss of GLP-1R signaling regulates mucosal expansion in the small intestine and
colon [85]. These intestinotrophic actions were mediated by GLP-1R-dependent stimulation
of crypt fission via Fgf7-dependent mechanisms, independent of the EGF and the intestinal
epithelial IGF-1 receptors [85]. It has been revealed that GLP-1R agonists improve intestinal
epithelial integrity, reduce increased gut permeability, and activate the Brunner glands,
which release mucins into the intestinal lumen to create a barrier against pathogens and
stomach acids [86–88]. Furthermore, Grunddal et al., recently found that in vivo admin-
istration of GLP-1 mimics stimulates mucin production and results in the internalization
of GLP-1R in the glandular cells of the Brunner glands [6]. The distal intestine is a key
location for acute L-cell response and Gcg expression which can influence the levels of
GLP-1 in the blood [89].

In addition to GLP-1 and peptide YY (PYY), L-cells also produce ATP which acti-
vates the vagus nerve and may act synergistically with locally elevated peptide hormone
concentrations [90]. Recent research on human jejunal L-cells revealed dysregulation of
enteroendocrine differentiation markers associated with lower L-cell density in individuals
with obesity and type 2 diabetes, which ultimately resulted in decreased GLP-1-positive cell
density and may diminish the ability to produce GLP-1 in response to food [91]. According
to studies from Kedees et al., and Yusta et al., Paneth cells and intestinal intraepithelial
lymphocytes both express functional GLP-1Rs. Losing GLP-1R signaling worsens the
effects of dextran sulphate sodium-induced intestinal damage [3,5].

GLP-2 acts a pleotropic regulator of intestine function via direct and indirect actions.
Based on early data from animal models, GLP-2 was considered a promising therapeutic
target for inflammatory and short bowel syndromes [59,92] because of its anti-apoptotic
and proliferative activity on intestinal epithelium [56,64]. In line with these observations,
GLP-2 has been shown to enhance intestinal blood flow [93] and increase surface area
for absorption through increased crypt cell proliferation, intestine weight and length [94]
while suppressing intestinal permeability [95,96]. Eventually, a stable analogue of GLP-
2, teduglutide, has been approved to reduce parenteral support for patients with short
bowel syndrome which is a life-threatening condition resulting from surgical removal of
a significant mass of functional small intestine in patients with Crohn’s disease [2,97,98].
Recently, Chen et al., found a direct action of GLP-2 and its analogue on the expansion of
intestinal stem cells through insulin-like growth factor signaling which further confirm the
notion that GLP-2 is an intestinotrophic hormone [15].

3.2. Inflammation and Intestinal Failure

The mucosal immune system is complex, with inductive and effector sites based on their
anatomical and functional characteristics as well as effector cells and molecules [99,100]. Effec-
tor sites consist of the lamina propria, stroma of exocrine glands, and surface epithelia [100].
These sites also contain Ag-specific mucosal effector cells, such as IgA-producing plasma
cells and memory B and T cells [101], whereas inductive sites are made up of mucosa-
associated lymphoid tissue and mucosa-draining lymph nodes [100] and are responsible
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for producing a continuous supply of memory B and T cells that are later transferred to
mucosal effector sites [101].

The immune response in the gastrointestinal tract, upper respiratory, and female
reproductive system is based on immune cells migrating from mucosal inductive to effector
tissues via the lymphatic system [101]. Epithelial barrier integrity is maintained by mucosal
immune cells, particularly intraepithelial lymphocytes (IELs) [100]. These cells support
immune responses against harmful organisms and their by-products [100] by enhancing
pathogen clearance and lysing pathogen-infected cells [102]. Studies have revealed that
GLP-1R is functionally expressed by both Paneth cells and intestine IELs [3,5]. GLP-1R
activation in immune cells reduces the production of pro-inflammatory cytokines [3,103].
Exendin-4 treatment significantly reduces pro-inflammatory cytokines IL-2, IL-17a, inter-
feron γ, tumor necrosis factor-α at mRNA, and protein levels in IELs triggered by immo-
bilised anti-CD3 and soluble anti-CD28 antibodies 7 through inhibiting NF-kB nuclear
translocation and phosphorylation which lead to a significant suppression of proinflamma-
tory cytokines production [104]. Through a variety of pleiotropic actions, it was found that
T-cells in the gut perform vital roles in maintaining barrier integrity. In an elegant study,
a subset of immune cells, subset of natural IEL immune cells (integrin β7+ natural gut
intraepithelial T lymphocytes) that are scattered in the enterocyte layer of the small intestine
were discovered as essential regulators of food metabolism [105]. Mice lacking natural IELs
have hyperactive metabolisms and are resistant to obesity, hypercholesterolemia, hyper-
tension, diabetes, and atherosclerosis when fed a high-fat and sugar diet. Furthermore,
researchers found that IELs restrict the bioavailability of GLP-1 resulting in the endocrine
mediated regulation of whole body metabolism [105] (Figure 1B).

Low-grade inflammation is a pathophysiologic factor in type 2 diabetes (T2D) and may
have a significant impact on the development of diabetic complications, such as cardiovas-
cular disease (CVD) [106–108]. GLP-1 suppresses inflammation and promotes gut mucosal
integrity [10,109]. GLP-1 levels were elevated in mice experiencing experimental inflamma-
tion induced by the injection of cytokines or lipopolysaccharide (LPS) [110,111]. A mouse
study found that administering LPS increases plasma GLP-1 levels via a Toll-like receptor 4
(TLR4)-dependent mechanism found on the basolateral membranes of enteroendocrine cells
(EECs). An abrupt increase in circulating GLP-1 was caused by LPS entering EECs follow-
ing dextran sodium sulphate administration to compromise the integrity of the intestinal
barrier [109]. GLP-1 overexpression increased thermogenesis and polarised macrophages
from the M1 to the M2 phenotype in obese mice [112]. Furthermore, GLP-1R levels ele-
vated in critically ill patients and after inducing ischemia in the human gut [100,109,113].
According to several in vitro and in vivo studies, GLP-1 has anti-inflammatory proper-
ties in macrophages. GLP-1 was found to inhibit the secretion of IL-1β and TNF-α in
cultured human monocytes as well as IL-1β and IL-6 in exendin-4-treated mice [114,115].
A later investigation revealed that GLP-1 targets inflammatory macrophages to decrease
insulin resistance by blocking the NF-KB pathway and inflammatory cytokine-secreting
macrophages [116]. Neutrophils and eosinophils both express GLP-1R, and GLP-IR ana-
logue decreased markers of eosinophil activation after LPS stimulation and inhibited the
production of IL-4, IL-8, and IL-13 cytokines but not IL-5 [117]. Furthermore, GLP-1R ago-
nists prevent systemic inflammation, vascular dysfunction, and end-organ damage in mice
by activating the GLP-1R in platelets through an AMP/PKA-dependent mechanism [118].

In human studies, patients with T2D have been reported to have increased inflam-
mation and oxidative stress, which leads to insulin resistance [119,120]. Exenatide’s anti-
inflammatory properties have been well studied in T2D patients [121]. Viswanathan et al.,
revealed that exenatide successfully manages T2D in individuals with obesity who are
insulin-dependent, resulting in lowered C-reactive protein (CRP) and other metabolic pa-
rameters, including HbAlc, systolic blood pressure, and TG [122]. Furthermore, exenatide
treatment for 16 weeks in T2D patients reduced levels of inflammatory markers in the blood,
including high-sensitivity CRP and monocyte chemoattractant protein-1 (MCP-1), as well
as the level of the oxidative stress marker 8-iso-prostaglandin F2a (PGF2a), in addition to
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reducing body weight and improving glucose profile and HbA1c levels [123]. Studies have
shown that exenatide exerts anti-inflammatory effects independent of body weight loss in
T2D patients [124,125]. Exenatide administration in T2D patients was also demonstrated
to inhibit pro-inflammatory cytokines such as TNF- α, IL-1, and IL-6 in peripheral blood
mononuclear cells (PBMCs) [124,125]. Furthermore, when given over a 12-week period,
exenatide was found to suppress several inflammatory parameters such as ROS production
by mononuclear cells (MNCs), intranuclear NFB binding, and MNC expression of TNF,
JNK-1, TLR-2, TLR-4, IL-1, and SOCS-3 [124,125]. These findings could imply that GLP-1R
activation can act as a beneficial immunomodulator in T2D patients.

Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcera-
tive colitis, are multifactorial disorders characterised by immune cell infiltration and
chronic inflammation-mediated relapses of the colon and the entire gastrointestinal tract,
respectively [88,126]. Both Crohn’s disease and ulcerative colitis are complex disorders that
are associated with the alteration of the innate and adaptive immune system, luminal and
mucosa-associated microbiota, as well as epithelial function [102]. Anti-inflammatory, im-
munosuppressive, or biological agents are frequently used in the treatment of IBD [88,126].
However, some patients do not respond to the treatment [126]. Studies have shown that
GLP-1 treatment can ameliorate dextran sulfate (DSS)-induced colitis [3,109,127]. Intraperi-
toneal administration of sterically stabilized phospholipid micelles coated with GLP-1
(GLP-1-SSM) for seven days in C57BL/6J mice with DSS-induced colitis resulted in de-
creased body weight loss and partially attenuated the diarrheal phenotype This treatment
also downregulated the expression of the pro-inflammatory cytokine IL-1 β as well as
prevented the depletion of the chloride anion exchanger DRA, which are both crucial for
reducing diarrhea caused by IBD [127]. Moreover, Yusta et al., used a DSS colitis model
in GLP-1R knockout (GLP-1R KO) mice to assess the significance of GLP-1 signaling in a
localized inflammatory context. The authors revealed that lack of GLP-1R signaling wors-
ens the effect of DSS-induced intestinal damage [3]. The GLP-1R KO mice exhibited much
worse colon damage, significantly higher disease activity scores, and much more weight
loss in response to DSS-induced colitis than wild-type controls. Additionally, trefoil factor-3
and interferon-gamma gene expression in GLP-1R KO mice + DSS were dysregulated but
transforming growth factor beta-2 expression was elevated [3].

Furthermore, in severe combined immunodeficient mice (SCID) mice injected with
BALB/C CD4+ T cells, treatment with the GLP-1 agonist liraglutide alleviated colitis by
significantly improving colon weight to length ratios, reducing histopathological score, and
lowering pro-inflammatory cytokine levels such as CCL20, IL-33, and IL-22 [86]. Studies
have shown that patients with ulcerative colitis who underwent ileostomy or colectomy
have reduced postprandial GLP-1 response [128,129]. Subsequent research revealed that
GLP-1R mRNA was reduced in samples obtained from inflamed areas of the colon in IBD
patients [86]. In contrast, compared to controls, GLP-1 was increased in the serum of IBD
patients [130]. In a case report of a patient with ulcerative colitis receiving GLP-1 treatment,
daily subcutaneous liraglutide injections led to a full remission of colitis symptoms [128].

In addition to its protective and growth promoting roles in the intestine, GLP-2 exerts
anti-inflammatory effects through multiple different mechanisms. For instance, GLP-2
dampened pro-inflammatory cytokine production in LPS-treated macrophages through
inhibiting NF-κB activity and ERK phosphorylation [131] and reducing mucosal inflam-
matory responses [132] in mice, while in a model of obstructive jaundice in rats, GLP-2
reduced serum levels of TGF-β1, bilirubin, and endotoxin, which improved intestinal bar-
rier function [133]. Interestingly, data from animal models of intestinal barrier dysfunction
in mice, rats, and piglets underlines the importance and protective action of GLP-2 in
inflammation-mediated intestine injuries [58,134,135]. More recently, it was found that
patients who develop acute graft-versus-host disease (GVHD) also have dysbiosis and
lower levels of GLP-2. This association was further validated using teduglutide, which
upon administration showed a beneficial outcome by reducing de novo acute GVHD and
steroid refractory GVHD in multiple mouse models. The underlying mechanism could be
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attributed to GLP-2’s anti-apoptotic action along with its regenerative impact on Paneth
cells and intestine stem cells [136]. While parenteral nutrition remains the life-saving
standard for nutrient delivery in patients with intestinal failure, serious complications may
develop such as liver and intestinal mucosal barrier injury, inflammation, and bacterial
translocation [137,138]. To further understand the role of GLP-2 to ameliorate parenteral
nutrition-associated gut injury, using a mouse model of parenteral nutrition, Deng et al.,
showed that GLP-2 significantly suppressed the expression of pro-inflammatory cytokines
TNF-a and IL-6 in the ileum and reduced serum levels of D-lactic acids and LPS [132].

The majority of IBD research has been conducted using animal models, and there are
few clinical investigations. Considering that GLP-1 and GLP-2 are crucial for intestinal
healing after injury and may have potential anti-inflammatory and metabolic effects. There-
fore, it appears that the production and regulation of GLPs will facilitate in the treatment
of IBD.

4. GLP-1 and GLP-2 Mediate Gut Microbiota–Immune System Crosstalk
4.1. Gut Microbiota and Immune System Interaction

The interaction between the immune system and microbiota has been extensively
reviewed elsewhere [21,139–141], and for the purpose of this review, the focus will be on
the roles of GLP-1 and GLP-2 in orchestrating such crosstalk in the intestine. Microbiota and
their metabolites come in direct contact with intestine through mucosal surfaces where food
is further processed and absorbed [20]. The structural components of the intestinal lining
not only support innate defence against pathogenic bacteria and inflammatory mediators,
but they also allow commensal intestinal microbiota to coexist through a complex and
dynamic communication between gut receptors, immune cells, and nerve cells [100,142,143].
It is widely known that the microbiota closely relates to human health and the development
of diseases.

The intestinal microbiota, which consists of billions of microorganisms, lives in the
gastrointestinal tract where endogenous GLP-1 is produced [109]. The host and gut micro-
biota interaction is mediated through the detection of microbial-related molecular patterns,
which frequently comprise bacterial antigens such as unmethylated bacterial DNA, LPS,
capsular polysaccharides, muramic acid, and flagellin [144].

Some of these bacteria produce pro-inflammatory LPS, which affects hormone release
and gut immunity [109]. It has been suggested that EECs play an important role in directing
immune responses against pathogens and commensal microorganisms [145]. Interactions
between EECs and bacteria aid in the maintenance of intestinal immune homeostasis
because EECs have an innate immune signalling pathway and express GPCRs that allow
them to recognise microbe-associated products [146]. In response to exposure to molecular
patterns associated with microbes (MAMPS), mammalian EECs express TLRs and initiate
an NF-κB-mediated response [146]. Moreover, EECs can detect the presence of LPS or
flagellin in the lumen. These cells can also produce CXCL1, CXCL3, and CCL20, which
are chemoattractant molecules that can draw immune cells from the lamina propria and
activate them through NK4/IL-32 stimulation, causing them to produce TNF- α via NOD2
and aggravate the inflammatory state [147].

The gut microbiota has been shown to function as an endocrine organ, producing and
regulating numerous compounds that reach the circulation and act to influence the function
of distal organs and systems, actively taking part in amino acid generation, pathogen
displacement [148], as well as circadian rhythmicity, nutritional responses, regulating
metabolic activities and immune function [21,149,150]. The gut microbiota is crucial in the
regulation of many different aspects of metabolic disease, especially through the production
of a myriad of metabolites and their interactions with receptors on host cells, which
can activate or inhibit signalling pathways [20,27]. The microbial composition impacts
the abundance and availability of metabolites [19,151]. Additionally, the composition of
microbiota is highly flexible in response to diet and can undergo rapid and significant
change [148]. Accumulating studies suggest that high-fat and high-fructose diet can alter
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the Firmicutes /Bacteroidetes ratio, which are dominant bacterial gut phyla with a causal
link to obesity and T2D phenotypes [152,153].

The colonization of the gut microbiota begins at birth and continues to evolve, re-
sulting in a highly complex microbiota profile with thousands of functional taxonomic
units [154]. An initial study showed that the lack of commensal microorganisms in germ-
free (GF) mice causes intense intestine abnormalities in the lymphoid tissue architecture
and immune system [155]. Previously, abnormally high serum IgE levels in GF mice were
reported [154,156], and these elevated IgE levels increased mast-cell surface-bound IgE and
heightened systemic anaphylaxis [154]. Therefore, intestinal microbial diversity during
early-life colonization is essential to build an immune-regulatory network that protects
against the generation of mucosal IgE, which is connected to allergy susceptibility [154].
IgA antibodies and IELs (αβ and γδ) were both considerably decreased in GF mice and
substantially stimulated following colonization [157,158]. Short chain fatty acids (SCFA)
levels are known to be low in GF animals [159]. Additionally, GF mice lack the potent
immunomodulatory effector cells known as IL-17+CD4+ T (Th17) cells, which are abundant
in the lamina propria of the small intestine and recover after microbial colonization [21,160].
Furthermore, a study demonstrated that increased morbidity in IBD and allergic asthma
models occurs in GF mice as compared to specific pathogen-free mice (SPF) because in-
variant natural killer T (iNKT) cells accumulate in the intestinal lamina propria and lung;
this phenomenon was also associated elevated intestinal and pulmonary production of the
chemokine ligand CXCL16 [161].

Gut-associated lymphoid tissues (GALTs) are part of mucosa-associated lymphoid
tissues (MALTs), which recognize pathogens, initiate innate immune responses, and present
antigens to stimulate the adaptive immune system. It was discovered that the gut micro-
biota is crucial for the structural development of GALTs as the GALT development is
abnormal in GF mice, as evidenced by the aberrant formation of crypt patches and isolated
lymphoid follicles (ILFs) [162]. The gut microbiota influences the structural development
of GALT and Peyer’s patches through epigenetic modulators such as short chain fatty acids
(SCFAs) as well as TLR pathways that promote the production of antimicrobial peptides
such as REGIIIβ and REGIIIγ [162]. Recent research investigated the interactions between
the macrophages and the commensal microbiota. A large polysaccharide derived from
the microbiota has been shown to induce an anti-inflammatory gene signature in murine
intestinal macrophages [163].

The intestinal epithelium is protected from local bacteria by a thick coating of mucus
and tight junction, which are key components in limiting trans-epithelial permeability.
Tight junctions and related cytoskeletal proteins are upregulated in response to microbial
signals such as those delivered by the metabolite indole, which in turn helps to strengthen
the epithelial barrier [164]. Paneth cells, which are specialized secretory cells of the small
intestinal mucosa, are responsible for producing most intestinal antimicrobial peptides that
interact with the microbiota [165,166]. Paneth cells produce α-defensins that regulate mi-
crobiota composition and are essential for intestinal barrier function and homeostasis [166].
Additionally, mucosal barrier function is maintained by secretory IgA antibodies and
antimicrobial peptides (AMPs) [167,168]. It has been demonstrated that, in addition to
IgA antibodies, IgG antibodies can react to microbiota. In response to commensal and
enteropathogenic microbes, intestinal IgA+ and IgG+ plasmablasts express antigen-specific
antibodies [169].

The direct communication between microbiota and L-cells is mediated through func-
tional TLRs, which play a role in pathogen recognition as well as the initiation of inflam-
matory and immune responses [159,170]. The interaction of commensal bacterial products
with host microbial pattern recognition receptors (PRRs), such as TLRs, is critical for
epithelial integrity and pathogen defence [171]. TLRs can be activated by microbial com-
pounds, which then triggers signalling pathways that cause the production of antimicrobial
genes and inflammatory cytokines [170]. TLR5 and nucleotide-binding oligomerization
domain-containing protein 1 (NOD1) have been suggested to shape the composition of
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the gut microbiota [167,172,173]. Furthermore, NOD1 aids in the development of adaptive
lymphoid tissues as well as the maintenance of intestinal homeostasis [167,172,173].

The main metabolites produced in the colon by bacterial fermentation of dietary fibers
are SCFAs such as acetate, propionate, and butyrate [28]. Dietary fiber rich diets are linked
to reduced inflammation due to increased SCFA synthesis and activation of GPCR [24].
SCFAs activate signalling pathways via GPCRs: GPR41, GPR43, and GPR109A [24]. These
GPCRs are crucial for preventing NF-kB activation in IECs and immune cells, and SC-
FAs have also been shown to inhibit NF-kB and lead to decreased inflammatory cytokine
production [24,29]. SCFAs suppress IL-8 secretion and expression [25] and butyrate has
also been shown to induce colonic Treg [174]. Nonobese diabetic (NOD) mouse models cus-
tomised diets leading to enhanced bacterial production of acetate and butyrate, resulted in
nearly complete protection from T1D, mostly because of the immune-modulating properties
of SCFAs [29,174–177]. Butyrate can also boost host defence against pathogens by inhibit-
ing the enzyme histone deacetylase 3 (HDAC3), which promotes monocyte-to-macrophage
differentiation [176].

Furthermore, tryptophane catabolites has been shown to influence immune responses
by binding the aryl hydrocarbon receptor (AhR), which is abundant at mucosal surfaces.
When AhR is activated, it improves intestinal epithelial barrier function as well as regulates
inflammation by lowering epithelial stress and gut immunity [24]. Trimethylamine N-oxide
(TMAO), a soluble microbiome-derived metabolite, has recently been shown to promote
murine macrophage polarisation via the NLRP3 inflammasome [178] (Figure 1B).

Dysbiosis of gut microbiota has been linked to a variety of changes in the immune
system [21,162]. Microbiota dysbiosis has also been linked to IBD through its impact on
inflammation and the intestinal barrier [23]. It was reported that the composition of gut
microbiota differs in IBD patients compared to healthy subjects as the ratio of Bacteroidetes
to Firmicutes decreases while the abundance of gammaproteobacterial increases [26,179].
Furthermore, IBD is associated with decreased abundance of Bacteroides, Eubacterium,
and Lactobacillus [180]. The butyrate producer Faecalibacterium prausnitzii has been
linked to maintaining gut mucosal health. Butyrate improves IBD by being the primary
source of energy for colonocytes, improving epithelial barrier integrity, and inhibiting
inflammation [181].

4.2. GLP-1/GLP-2 and Microbiota Crosstalk: Interdependent Relationship

It has been demonstrated that the microbiota stimulates EECs, prompting them to
secrete hormones and control gastrointestinal tract motility [182]. In vitro studies on
colonic cultures [183–185] or using isolated perfused rat colon [186] showed that microbiota-
derived metabolites such as acetate, propionate, and butyrate enhanced GLP-1 secretion.
Interestingly, indole, a bacterial metabolite, showed a biphasic action on GLP-1 secre-
tion. While short-term effect of indole enhanced GLP-1 release, the prolonged expo-
sure suppressed its secretion which imply an adaptive role for GLP-1 to modulate host
metabolism [187]. Further support to this hypothesis has been reported in GF mice models.
Antibiotic-treated animals and GF mice were shown to have higher plasma GLP-1 levels
than controls [188] to adapt intestinal transit in response to energy inadequacy in colon.
Furthermore, prebiotics have recently been shown to raise GLP-1 and PYY and decrease
ghrelin release in humans [182].

In a clinical study, rectal and intravenous infusion of acetate elevated GLP-1 and
PYY levels in overweight and hyperinsulinemic women [188]. Colonic L cells express
FFA receptors 2 and 3 (FFAR2 and FFAR3) that are involved in SCFA-stimulated GLP-1
production by increasing intracellular calcium through Gq- or Gi/o and Gi signaling [187].
Studies have shown that FFAR2 & FFAR3 KO mice exhibit considerably lower basal levels
of GLP-1 or SCFA-induced GLP-1 release than wild-type control mice. However, it was
postulated that FFAR3 may be less responsible for the release of GLP-1 compared to FFAR2
because FFAR3 agonism had no effect on secretion of GLP-1 [182,189].
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GLP-1R agonists have been demonstrated in preclinical and clinical trials to mediate
alterations in the gut microbiota [190–195]. GLP-1R agonists were reported to affect the
composition of the microbiota through altering the rate and time of gastric emptying, as
well as the internal environment of the gut lumen, including local pH levels and nutrient
availability [196]. Liraglutide administration was shown in mouse and rat studies to
significantly reduce the relative abundance of microbial phenotypes associated with obesity
while enhancing phenotypes associated with leanness [190,197]. In obese and T2D/obese
rat models, liraglutide administration significantly increased the Bacteroidetes/Firmicutes
ratio as well as reduced the abundance of obesity-related phylotypes such as Romboutsia,
Ruminiclostridium, and Erysipelotrichaceae while increasing lean-related phylotypes like
Prevotella [190].

A study showed that liraglutide, but not saxagliptin, alters the gut microbiome in
mice. Liraglutide reduced obesity-related phylotypes in mice regardless of whether they
were correlated negatively or positively [190,197].

Liraglutide modifies the gut microbiota, increasing the abundance of the genera
Allobaculum, Turicibacter, Anaerostipes, Blautia, Lactobacillus, Butyricimonas, and Desulfovibrio
while decreasing the abundance of the order Clostridiales (phylum Firmicutes) and Bac-
teroidales (phylum Bacteroidetes) (209). However, no discernible changes in the abundance
of the phyla Firmicutes and Bacteroides were observed [190,197]. A subsequent study
showed that administration of liraglutide and dual GLP-1R/GLP-2R agonist GUB09-145 in
diet-induced obese mice decreased the abundance of Firmicutes (Lachnospiraceae, Clostridi-
ales) and increased the abundance of Proteobacteria (e.g., Burkholderiales bacterium YL45)
and Verrucomicrobia (e.g., Akkermansia muciniphila) as well as Firmicutes (Clostridiales,
Oscillospiraceae) [191]. The effects of liraglutide and GUB09-145 were primarily linked to
improved bacterial lipid handling and sulfur metabolism. These results suggested that
GLP-1R agonists can prevent weight gain by modulating the gut microbiota composition.

The effect of GLP-1R agonists on gut microbiota has been studied in clinical trials
in T2D patients. Increased levels of deoxycholic acid, a secondary bile acid produced
by bacterial metabolism, were observed in T2D patients treated with liraglutide but not
sitagliptin or a comparable placebo, suggesting changes in the gut flora [198]. Addi-
tionally, patients who had diabetes for a long time had a significant reduction in Akker-
mansia, whereas subjects given a GLP-1 agonist had more Akkermansia than those given
metformin [194]. A. muciniphila has been shown to improve the integrity of gut bar-
rier function in rodents [199]. Importantly, GLP-1 level was positively correlated with
Akkermansia sp. abundance in patients with obesity after gastric bypass surgery and di-
etary intervention [200,201]. A recent study found a significant difference in the Beta
diversity of the gut microbiota between GLP-1 R agonist responder and non-responder
patients with T2D [202]. Decreased levels of HbA1c in the responder group correlated with
increase abundance of Bacteroides dorei, Lachnoclostridium sp., Mitsuokella multacida, and Pre-
votella copri 202. The representative positive signatures for GLP-1R agonist hyperglycemia
responses were Bacteroides dorei and Lachnoclostridium sp., whereas the representative neg-
ative signature was Mitsuokella multacida. They also observed that Bacteroides dorei and
Roseburia inulinivorans were more abundant, indicating that GLP-1R agonist responders
have reduced inflammation because of their role in enhancing gut barrier function and
production of butyrate-derived metabolites [202]. Over last few years, scientific break-
throughs have expanded our understanding on an interesting communication circuit where
microbiota, intestine, liver, and brain are interconnected to regulate metabolism and en-
ergy expenditure [203–206]. In this context, although the data are limited, they point to
an interdependent relationship between microbiota and GLP-2 in metabolic disease. For
instance, prebiotic (oligofructose) treatment in mice enhanced GLP-2 secretion and reversed
high-fat diet-associated alterations like increased gut permeability as well as high levels of
circulating endotoxins and pro-inflammatory cytokines. Interestingly, these effects were
GLP-2 dependent [207]. Another study in diet-induced obese rats showed that probiotic
Bifidobacterium animalis elevated GLP-2 levels [95]. Moreover, in patients with ulcerative
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colitis, serum level of GLP-2 was associated with microbiota diversity and abundance [208].
The direct impact of GLP-2 on shaping microbiota in young and old rats has now been
reported to be essential for intestine integrity and energy homeostasis [209]. Importantly,
similar effects have been reported in glucose-tolerant subjects where the beneficial effects
of probiotic Lactobacillus reuteri ingestion for four weeks was mediated through an increase
in GLP-1 and GLP-2 secretion [210].

5. Conclusions

The discovery and translational implications of GLP-1 and -2 significantly impacted the
clinical outcomes, especially in treating patients with type 2 diabetes. The beneficial effects
of GLP-1 have been attributed to its roles in improving intestinal barrier functions through
stimulating crypt cell fission, downregulating proinflammatory cytokines by immune cells,
and modulating gut microbiota. However, GLP-2 and its agonists (e.g., teduglutide) employ
different signaling mechanisms to protect the intestine from injury. For instance, GLP-2
expands intestinal stem cells numerically and promotes intestinal epithelial proliferation.
Furthermore, it inhibits NLPR3 inflammasome activation, enhances the tight junction, and
limits the release of LPS into the circulation. GLP-1 and -2 act as sensors for metabolic and
inflammatory cues and play orchestrating roles in maintaining gut health and metabolism
through a complex network of reciprocal communications with microbiota and the immune
system. Therefore, based on the growing understanding of the roles of GLP-1 and -2 and
the expression of their receptors on different tissues, uncharacterized additional roles of
these hormones may be revealed in the near future.
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