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For epileptic patients requiring resective surgery, a modality called

stereo-electroencephalography (SEEG) may be used to monitor the patient’s brain

signals to help identify epileptogenic regions that generate and propagate seizures.

SEEG involves the insertion of multiple depth electrodes into the patient’s brain, each

with 10 or more recording contacts along its length. However, a significant fraction (≈

30% or more) of the contacts typically reside in white matter or other areas of the brain

which can not be epileptogenic themselves. Thus, an important step in the analysis

of SEEG recordings is distinguishing between electrode contacts which reside in gray

matter vs. those that do not. MRI images overlaid with CT scans are currently used for

this task, but they take significant amounts of time to manually annotate, and even then

it may be difficult to determine the status of some contacts. In this paper we present

a fast, automated method for classifying contacts in gray vs. white matter based only

on the recorded signal and relative contact depth. We observe that bipolar referenced

contacts in white matter have less power in all frequencies below 150 Hz than contacts

in gray matter, which we use in a Bayesian classifier to attain an average area under

the receiver operating characteristic curve of 0.85 ± 0.079 (SD) across 29 patients.

Because our method gives a probability for each contact rather than a hard labeling, and

uses a feature of the recorded signal that has direct clinical relevance, it can be useful

to supplement decision-making on difficult to classify contacts or as a rapid, first-pass

filter when choosing subsets of contacts from which to save recordings.

Keywords: stereo-electroencephalography, SEEG, white matter, classification, power spectrum, bipolar reference

1. INTRODUCTION

Over 15 million epilepsy patients worldwide and 1 million in the US suffer from drug-resistant
epilepsy (1–4). Approximately 50% of such patients have focal drug-resistant epilepsy, where a
specific region or set of regions in the brain is the source of the abnormal electrical activity resulting
in seizures. This region, termed the epileptogenic zone (EZ), is the area of cortex that is necessary
and sufficient for initiating seizures and whose removal or disconnection is necessary for complete
abolition of seizures (5–8). When successful, surgical resection treatments stop seizures or allow
them to be controlled with medications. Outcomes depend critically on the clinician’s ability to
accurately identify the EZ.
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In cases where standardmethods such as EEG are inconclusive
in determining the EZ, a more invasive modality called stereo-
electroencephalography (SEEG) may be used. With SEEG,
multiple depth electrodes are inserted into a patient’s brain,
each with 10 or more contacts along its length. This allows
relatively high resolution mapping of the electrical activity in
both shallow and deep structures of the brain. One drawback
however is that a significant fraction of the contacts will reside
in white matter or other areas of the brain which can not
be epileptogenic themselves (although they can contribute to
propagation of seizures). Thus, accurate localization of the EZ
begins with determining which electrode contacts provide useful
information about brain activity. Generally these are contacts
which reside in gray matter or close to it. Especially in cases
where patients have a large number of electrodes implanted, it
is highly convenient for the SEEG reader to have such contacts
readily identified. If a contact in gray matter is ignored because
it is incorrectly believed to be in white matter, a part of the EZ
may be missed. On the other hand, if a contact in white matter
is assumed to be in gray matter, it may confound localization.
Further, in studies that use network-based analysis to assist in
identification of the epileptogenic zone, it is important to have
a complete labeling of all contacts with information about which
are likely to be in gray vs. white matter (9–12).

Another aspect of presurgical planning is functional mapping
of the patient’s brain to determine the borders of highly important
areas such as those used for speech or movement which should be
avoided as much as possible during surgery. Functional mapping
involves sub-threshold stimulation of both white matter and
gray matter regions of the patient’s brain and observing the
electrical and behavioral response. Stimulation parameters in
white matter must be tuned differently than those for gray matter,
and the results of the stimulation are interpreted differently as
well. An incorrect label of a contact as being white matter will
result in the wrong stimulation settings and potentially errors in
functional mapping.

Many epilepsy treatment centers, including those not invested
in research and data analysis such as the aforementioned network
analysis methods, have resource and time constraints in both the
presurgical planning and functional mapping stages which do
not allow gray/white matter labeling of all recording contacts.
Instead, labels are identified for only a fraction of contacts around
the likely EZ or perhaps even for no contacts at all. The latter
approach, while taking little time, relies heavily on physician
experience and is potentially prone to errors in localization.
For those contacts which are labeled however, whether this
is a full or partial labeling, the standard approach uses co-
registration of MRIs with CT scans, which are overlaid onto
brain atlases to anatomically identify regions including white
matter (13). Contacts are then classified based onmajority-voting
or distance measures using white matter voxel masks derived
from segmentations of the T1 MRI (e.g., FreeSurfer) (14, 15).
However, MRI-based methods, including those that combine
other modalities like diffusion tensor imaging, take significant
amounts of time to analyze and annotate, hence the tendency
toward partial labeling in many centers, and accuracy depends
highly on the quality of images (13, 16, 17). While software

exists to assist with and automate parts of the segmentation and
gray/white matter classification process, to our knowledge all
such software is based on MRI and CT images (15). A method
which requires minimal time and uses non-imaging data would
give clinicians an additional source of information that may be
helpful, especially at centers where labeling is currently not done
at all or in cases of contacts whose position is uncertain.

In this paper we present a fast, automated Bayesian method
for estimating the probability that an electrode contact is in
white matter based only on the spectral content of the recorded
signal and the relative contact depth. We tested our method
using SEEG recordings from 29 drug resistant epilepsy patients
who underwent invasive monitoring for treatment purposes. We
found that our classifier achieved an average area under the
receiver operating characteristic curve of 0.845 ± 0.079 (SD)
across patients. Our method is accurate enough that it can be
used to supplement MRI-based approaches to further improve
accuracy and reduce the time needed to find an informative
subset of recording contacts. In particular, for treatment centers
where electrode contact labeling is not done due to time or
resource limitations, or is done for only a small subset of contacts,
our method can be thought of as identifying contacts which have
strong, lower correlation signals relative to their neighbors—
typically gray matter contacts—without requiring any additional
work or scans on the part of the clinician and very little additional
time. As one step within a larger automation pipeline for aiding
identification of the EZ, we believe that such a method may prove
useful in increasing speed and localization accuracy regardless of
whether the center uses a full, partial, or no labeling.

2. MATERIALS AND METHODS

2.1. Data Collection
EEG data from 29 epilepsy patients who underwent intracranial
EEG monitoring, which included depth electrodes with
stereotactic EEG (SEEG) were selected from the Cleveland
Clinic. Patients exhibiting the following criteria were excluded:
patients with no seizures recorded, pregnant patients, patients
less than 5 years of age, and patients with an EEG sampling rate
less than 1000 Hz. For each patient, we aggregated interictal data
where the patient was not seizing. Figure 1 shows an example
SEEG implantation with common reference voltage data from
white and gray matter contacts.

Data were recorded using a Nihon Kohden (Tokyo, Japan)
acquisition system with a typical sampling rate of 1,000–2,000
Hz. Signals were referenced to a separate, common electrode
placed subcutaneously on the scalp. The clinicians then clipped
snapshots of SEEG data and passed it through a secure transfer
for analysis in the form of the European Data Format (EDF)
(18). We discarded electrodes from further analysis if they were
deemed excessively noisy by clinicians, or were not relevant (for
example: reference, or EKG, or not attached to the brain). We
stored data in the BIDS-iEEG format and performed processing
using Python 3.6, MNE-Python, and MNE-BIDS, as well as
MATLAB (19–23). Figures were generated using MATLAB and
Matplotlib (24). An implementation of our classifier is available
at https://github.com/Patrick-Greene/WM-classifier.
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FIGURE 1 | Example of SEEG electrode placement and raw voltage data for sample subject EFRI13 over a 20 s snapshot. Blue traces denote gray matter and red

traces denote white matter. Each trace has a scale of 400 uV and has a monopolar reference.

Decisions regarding the need for invasive monitoring and the
placement of electrode arrays were made independently of this
work and part of routine clinical care. All data were acquired
with approval of the local Institutional Review Board (IRB) at
each clinical institution. The acquisition of data for research
purposes was completed with no impact on the clinical objectives
of the patient stay. Digitized data were stored in an IRB-
approved database compliant with Health Insurance Portability
and Accountability Act (HIPAA) regulations.

2.2. Feature Extraction
For each electrode contact, the raw, common reference SEEG
data were bipolar referenced by subtracting off the signal from
the adjacent contact closer to the tip of the shank (i.e., the next
deeper or more mesial electrode). The contact at the end of
the shank had the previous contact subtracted. White matter
contacts were those identified by the treating physician as being
in white matter using the standard MRI and CT coregistration
procedure described previously. Ambiguous electrodes were
labeled according to which class the clinician felt was most
correct (i.e., if an electrode appeared to be more in gray matter
than white matter, it would be labeled as gray matter), and
this was the “ground truth” used in our training set and for
computing test set error rates. For the purposes of this study, we
simplified the analysis by removing all contacts which were not
in either white or gray matter, for example contacts in ventricles
or outside the cortical surface, during preprocessing.

We chose two features for each electrode contact which
preliminary exploration and conversations with clinicians
identified as potentially useful in classification. Feature one was
the average vertical shift in the contact’s power spectrum (in log
scale) relative to the average power spectrum over all contacts
within that patient. This was computed as the average difference

across all frequencies from 1 to 150 Hz between each contact’s
power spectral density and the average power spectral density.
This feature takes into account the fact that white matter contacts
tend to have both smaller and more correlated signals because
they are further from the neural source of the signal, the gray
matter. Figure 2 shows examples of the average power spectrum
for white and gray matter contacts under both common and
bipolar referencing schemes. The lower overall power in white
matter contacts can clearly be seen, particularly in the bipolar
referenced data. We subtract off the average power spectral
density across contacts within each patient in order to account
for across-patient differences in mean power.

Between 1 and 150 Hz the difference between the gray
and white matter power spectra in log scale can be closely
approximated by a simple downward shift, allowing us to reduce
the relevant information in the spectrum to a single dimension—
the size of the shift relative to the average spectrum. For
significantly higher frequencies (250+ Hz), both spectra have
almost equally low power and thus do not contribute much
to classification while also violating the simple shift described
above, requiring a higher dimensional feature space. For smaller
frequency ranges, the estimate of the shift amount is slightly
less accurate because it is averaged over fewer frequencies. We
thus use roughly the largest frequency range in which the simple
shift approximation still holds. The exact cutoff at 150 Hz is
not important though; one can vary the upper frequency limit
by 50 Hz in either direction with minimal change in accuracy.
The power spectral density was estimated using Welch’s method
in 10 equally spaced 10 s windows, then averaged across the
windows. The spectrum in a 4Hz band around 60 and 120Hzwas
omitted due to line noise. The use of multiple windows helped to
average out temporary changes in the spectrum due tomovement
or other artifacts. The number and length of windows was
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FIGURE 2 | Power spectral density (PSD) plots for two example patients over a snapshot of 10 s with monopolar and bipolar referencing. EFRI13 (A), and EFRI16 (B)

are shown with PSD segregated based on contacts in white matter (red traces) or gray matter (blue traces). Shaded regions denote one standard deviation. Spikes at

multiples of 60 Hz are due to line frequency noise.

chosen to balance running time and accuracy of the estimated
spectrum. Longer or more windows did not significantly change
the estimated feature values.

The second feature for each contact was the contact’s distance
from the most peripheral electrode shank, where the distance
between contacts was normalized to 1. We will refer to this
as the contact depth or distance along the shank. The most
peripheral contact was defined as the first contact that was not
outside the brain. For example, if the first 3 contacts on a
shank were outside the brain, contact 4 would have a depth
value of 0, contact 5 would have a value of 1, and so forth.
The normalization was simply for convenience because all our
patients had the same distance between contacts; if applying
the method on a heterogeneous set of electrodes, one would
use the actual distance along the shank instead. This feature
takes into account the spatial distribution of white matter along
the electrode.

2.3. Bayesian Classification
Our overall goals is, for each contact on an electrode in the test
set, to classify it as either being in white or gray matter. We
approach this classification problem from a Bayesian perspective,
which allows us to give class probabilities for each contact that
explicitly take into account its feature values, the overall structure
of the brain, and uncertainty in our parameter estimates.

With the features described above, we use a kernel density
estimator to estimate the continuous feature distributions for
both white and gray matter on the training data D. The value
of the density at any point is given by a distance-weighted
average of feature values at nearby training points, where the
weighting function is a gaussian Kα centered at the evaluation
point and parameterized by the vector of kernel widths αwm =

(αwm,1,αwm,2) or αgm = (αgm,1,αgm,2) for the white and gray
matter distributions, respectively. For a new contact in the test
set, we use these distributions to evaluate the probability of
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FIGURE 3 | Graphical model for a patient in the test set. There are S electrode

shanks to be classified, each with Ns electrode contacts. The contact label is

given by zi , and the observed features are given by xi . α and β are parameters

whose distribution is estimated using the training set D, which is not shown

here.

observing the contact’s feature values, given that it is either
in white matter or gray matter (the likelihood of the contact’s
data). This likelihood is calculated for each contact on an
electrode shank and, under the assumption that each contact’s
data is independent conditioned on the class assignment (gray
or white matter), the likelihood of the electrode shank as a
whole is computed bymultiplying together the individual contact
probabilities. This independence assumption, along with several
others used in the derivation of our classifier, is shown graphically
in Figure 3.

We now wish to take into account the large-scale distribution
of white and graymatter in the brain. Given the physical structure
of the brain, we would find it unlikely for an electrode to have
contacts that alternate between white matter and gray matter
in rapid succession. More typical would be to have several
gray matter contacts in a row, followed by several white matter
contacts in a row, perhaps followed by another chunk of gray
matter contacts. This tendency for neighboring contacts to have
the same classification is captured by our prior distribution on
labelings, which consists of an exponentially increasing function
of a sum of pairwise products between neighboring contact
classes. Since the classes are denoted −1 for gray matter and
1 for white matter, neighboring contacts that have the same
class assignment increase the prior probability, while contacts
that have different assignments decrease the probability, resulting
in a tendency toward fewer gray/white matter transitions on
each electrode. This prior is a one-dimensional version of an
Ising-type prior used for example in image de-noising, where
neighboring pixels in an image are assumed more likely to have
the same color (25). The degree to which gray/white matter
transitions are penalized is determined by a parameter β . For

a fixed choice of parameters α and β , the product of this prior
distribution with the likelihood gives, after normalization, the
posterior probability of a particular labeling of all the contacts on
an electrode shank.

We now turn to the problem of determining our unknown
parameters. We allow the user to explicitly choose the kernel
width α2 = (αwm,2,αgm,2) in the second feature dimension
corresponding to the contact depth. This is because the
appropriate kernel width depends on the physical distance
between contacts relative to the size of white matter or gray
matter structures in the brain. Larger kernel widths mean that
the spatial distribution of white or gray matter varies slowly from
contact to contact, while smaller widths allow for more rapid
variation. For example, if it is known that contacts are spaced
several cm apart, the spatial distribution of white or gray matter
varies relatively rapidly with respect to this distance, and hence
a smaller kernel width would be called for. In our patients, the
contacts are 5 mm apart, so we expect the spatial distribution
of white or gray matter to be fairly similar between neighboring
contacts. We thus use a larger kernel width equal to the spacing
between contacts.

Our data set contains only regularly-spaced electrodes,
however, electrodes with irregular spacing can also be
accommodated by our method. Rather than using normalized
units for the contact positions along the shank (feature two),
one would use the actual positions in mm. The estimated
white and gray matter densities would automatically scale.
The limits of the integral used to compute the likelihood (see
Supplementary Equation 5) should be modified accordingly,
going from halfway between the previous and next contact
positions. The α2 kernel width can be chosen according to the
smallest set of spacings on the electrode. Cross validation on the
training set could also be used to choose α2 if a more hands-off
approach is desired.

Similarly to the classification problem itself, for the remaining
parameters α1 and β we estimate their posterior distribution in a
Bayesian way by calculating the likelihood of the data given the
parameters and multiplying it by a prior distribution. In this case
we use a diffuse exponential distribution because we do not have
any prior knowledge about parameter values.

Finally, we integrate the posterior probability distribution
for each electrode shank’s labeling with respect to the posterior
distribution of the parameters to form the posterior predictive
distribution. This takes into account uncertainty in our
parameter estimates by forming a weighted average of the class
probabilities for various possible parameter values, with weights
determined by how probable the parameter values are given the
training data. In practice, we estimate this integral by using a
truncated gaussian approximation to the posterior parameter
distribution (truncated because the parameters must be positive),
and average the posterior class probability with respect to
samples drawn from this distribution. In the results shown, we
average across 100 samples. To compute the probability that
any individual contact is in white matter, we sum the posterior
predictive over all possible labelings of the other contacts. A
detailed mathematical exposition of our method can be found in
the Supplementary Material.
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2.4. Training and Testing
We primarily used leave-one-out cross validation to train and test
our method, although we also report results for four-fold cross
validation. For a given test patient, the remaining 28 patients
were used as training data to estimate the feature distributions
for both the white and gray matter classes. We measure overall
accuracy by calculating a receiver operating characteristic (ROC)
curve and measuring the area under the curve (AUC). A point
on the ROC curve is found by picking a probability threshold
between 0 and 1, then classifying all contacts on all electrode
shanks by whether their estimated probability of being in white
matter falls above or below the probability threshold. Contacts
with estimated probability above the threshold are classified as
being in white matter, and those below the threshold are classified
as being in gray matter. The resulting true positive rate—the
number of correctly identified white matter contacts divided by
the total number of true white matter contacts, and the false
positive rate—the number of contacts identified as white matter
which were actually in gray matter, divided by the total number
of true gray matter contacts, is then calculated. Plotting the true
positive rate vs. the false positive rate for various values of the
threshold probability produces the ROC curve. Higher threshold
probabilities result in fewer false positives but also fewer true
positives, and vice versa for lower thresholds, so that ROC curves
increase from (0, 0) to (1, 1) as the threshold is lowered. The area
under an ROC curve is a summary measure of how efficiently
the classifier trades off false positives for true positives, with a
maximum value of 1.

3. RESULTS

The normalized histograms of the white and gray matter training
data are shown together in Figure 4A. We then use kernel density
estimators as described previously to give smoothed estimates of
each of these distributions. Overlaid contour plots of the density
estimates are shown in Figure 4B. In estimating the posterior
parameter distributions, we found the average mean of the α1

kernel width posterior distributions to be 0.135 for gray matter
and 0.156 for white matter (averaged across patients), and the
average standard deviations of these posterior distributions to
be 0.012 and 0.015, respectively (averaged across patients). The
larger kernel width for the white matter distribution is expected
given that there are fewer contacts in white matter than gray
matter, resulting in fewer data points to estimate the feature
distribution. For β , the average mean of its posterior distribution
was 7.738 across patients, with an average standard deviation of
its distribution of 0.249. The small standard deviations of the
posterior distributions relative to their means indicates that the
parameters are well-estimated with a 28 patient training set.

Figure 5 shows example outputs for six patients: the two
patients with highest overall accuracy, two patients at the
median level of accuracy, and the two least accurate patients.
For the high accuracy patients, we see that nearly all gray
and white matter contacts are correctly identified with high
confidence - probability near 1 for true white matter contacts
and probability near 0 for true gray matter contacts. For the
median accuracy patients we see some mislabelings, particularly

near the transitions between white and gray matter. In patient
LA24 a section of white matter spanning three contacts is missed
completely, and in patient LA08 sections of gray matter on two
electrodes are indicated as likely to be in white matter. Labelings
are also done with lower confidence, shown by the lighter reds
and blues, particularly in LA24, which denote probabilities closer
to 0.5. However, the estimated probabilities still do a good job of
tracking the white matter distribution overall. In the patient with
the second worst AUC, EFRI17, most of the white matter contacts
are missed and a spurious white matter region is found on one
of the electrodes. Within this spurious region, the U’5, U’4, and
U’3 contacts were labeled by clinicians as being in Heschl’s gyrus,
which is used for acoustic processing and has a high density
of white matter tracts through its center (26). To the classifier’s
credit, most of the missed contacts are indicated with higher
white matter probability than surrounding contacts, albeit still
below 0.5. In LA01, the patient with the lowest AUC, we see that
this poor accuracy is due almost completely to a low true positive
rate. There are only five white matter contacts in this patient, and
our classifier fails to find any of them. Nearly all the gray matter
contacts are correctly identified however. The two worst patients
are somewhat outliers in that the third worst patient has an AUC
of 0.74, nearly 10 percentage points better. Only 5 patients had an
AUC under 0.8, meaning that the median patients with 0.86 AUC
are well representative of most patients.

Figure 6 shows the ROC curves for all 29 patients using two
different approaches to setting the prior smoothing parameter β .
When we integrate over the posterior distribution of β given the
training set as described in the section 2, we obtain the set of ROC
curves in Figure 6A. ThemeanAUC in this case was 0.845±0.079
(SD). If instead we choose a particular value of β for each patient
by explicitly maximizing the AUC over the training set, we obtain
the set of curves in Figure 6B. Although choosing the AUC-
maximizing β predictably results in a slightly higher average AUC
(0.859±0.097), the difference is quite small and choosing β in this
way is much slower, as it requires running the classifier on the
entire training set for multiple values of β . The AUC-maximizing
β is approximately 3 on average, while the mean of the posterior
distribution of β in our usual approach is 7.7 on average as stated
above. While this higher value reduces overall AUC slightly, it
also decreases the variance across patients. This can most clearly
be seen in the least accurate patient LA01, where the mislabeled
white matter contacts are less confidently mislabeled.

The dotted line in Figure 6with slope 1 represents the average
performance for a random classifier that, given a threshold τ ∈

[0, 1], labels a contact as white matter with probability τ . For
reference, the deterministic classifier that guesses gray matter
for all contacts is the same as the random classifier with a
threshold of 0, and would be at the point (0, 0) on the graph.
This demonstrates why we use ROC curves rather than a simple
percentage correct out of the total number of contacts. We might
think that if only about 30% of contacts are in white matter, a
“dumb” classifier that labels everything as gray matter should
have 70% accuracy. In fact it does, but yet it fails as a useful
classifier because it has no ability to detect true positives, and its
position at (0, 0) on the ROC graph reflects this.

In four-fold cross validation, the training sets are reduced by
25% compared to leave-one-out, resulting in a slightly decreased
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FIGURE 4 | Two dimensional white and gray matter distributions of features: power spectrum difference from average (relative power) and contact depth. These

distributions (specifically the training subsets of them) form our white and gray matter likelihoods. All contacts from all patients are shown here, with the feature

distribution of white matter contacts shown in red and the distribution for gray matter contacts shown in blue. (A) Histogram. (B) Overlaid contour plots of estimated

kernel densities.

average AUC of 0.790 ± 0.115 (SD) when integrating over
the posterior distribution of β . The low dimensionality of our
method and integration over parameters helps to minimize the
drop in performance, although we can see that having more
training data is generally beneficial.

Given the fact that the electrical signals produced by gray
matter regions propagate some distance into neighboring white
matter rather than stopping abruptly at the boundary, we would
expect white matter contacts to have signals that are more similar
to gray matter the closer they are to the boundary. Our classifier
should therefore be less confident (i.e., assign probabilities closer
to 0.5) for contacts near a gray/white matter boundary, and more
confident for contacts that are deeper in white matter. A similar
argument applies to graymatter contacts, as those close to a white
matter region receive less signal from the white matter direction,
and thus should have lower signal power overall. One place where
we know gray/white matter boundaries occur is where there are
transitions in the electrode labeling from gray to white or vice
versa. Figure 7 shows how our classifier’s output probabilities
change as a function of distance from these transition points.
As expected, contacts near the transition between a gray matter
and white matter region tend to be more uncertain, as shown
by the median value closer to 0.5, and less accurately assigned,
as shown by the larger spread in probabilities, while contacts
deeper within white or gray matter are more confidently and
accurately assigned.

4. DISCUSSION

4.1. Feature Selection
In preliminary testing, we investigated several potential features,
including the difference in white and gray matter power spectra
in the common (also called monopolar) reference signal. The

common reference signal is taken relative to one common
reference used by all contacts (not to be confused with common
average referencing). It is often used by clinicians in conjunction
with the bipolar reference signal when examining epilepsy
patients and thus seems like an obvious feature candidate. While
we found that white and gray matter had somewhat different
power spectral densities in the common reference signal, this
difference was often much less pronounced than in the bipolar
signal and varied more depending on the frequency. This can be
seen in Figure 2. We believe this is because the bipolar reference
signal takes advantage of the fact that signals in white matter are
both smaller and more correlated due to their increased distance
from neural sources.

Specifically, if we view the signal on each contact as a

combination of a shared source detected across neighboring

contacts with some amplitude decay from one contact to the next

and an independent local source detected on only the nearest
contact, then contacts in white matter will tend to be farther from
both their shared and local sources (since the sources must be
located in gray matter). If the signal from these sources decays
inversely with distance, then the local contributions in white
matter contacts will tend to be smaller, and the shared portion
of the signal will be closer in magnitude across neighboring
electrodes because the rate of decay in signal strength is slower
further from the source. Subtracting the signals on neighboring
electrodes therefore tends to reduce the signal strength on white
matter contacts relatively more than on gray matter contacts,
resulting in a larger contrast between the two.We refer the reader
to the Supplementary Material for amore in-depth exposition of
this argument. Although we expect this to be the typical situation,
there can be scenarios where the bipolar signal on white matter
contacts remains large due to the geometry of the sources. For
example, two contacts within a narrow channel of white matter
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FIGURE 5 | Examples of estimated white matter probabilities for several patients. For each patient, the left column is the probabilities estimated by our classifier, while

the right column is the reference labeling done by clinicians using MRI+CT. Each row represents one electrode shank, with individual contacts labeled below. In the

reference labeling, red indicates that the contact was labeled as white matter, blue indicates gray matter. In the estimated probabilities, red indicates higher probability

of a contact being in white matter according to our classifier. First row: Two of the best patients (EFRI18, LA11), each with > 0.9 AUC. Second row: Two median

patients (LA24, LA08), each with 0.86 AUC. Third row: The two worst patients (EFRI17, LA01), representing 0.65 and 0.62 AUC, respectively.

may have sizable local contributions from separate patches of
adjacent gray matter, resulting in a bipolar signal that remains
relatively large.

In practice we found that out of 29 patients analyzed, 19 had
better AUC when using bipolar referencing, while the remaining
10 patients had better AUC under common referencing. For
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FIGURE 6 | Receiver operating characteristic (ROC) curves for all patients. For a given threshold value pthresh, a contact is classified as white matter if the probability

computed by the classifier is above that threshold. Each curve shows how the fraction of false positives (gray matter contacts incorrectly classified as white matter)

and true positives (white matter contacts correctly identified) varies with the threshold level. The red dots indicate the point on the curve obtained when pthresh = 0.5.

The area under the curve (AUC) is the integral of the ROC curve and measures overall performance. (A) ROC curves when prior smoothing parameter β is

automatically integrated over with respect to its estimated posterior distribution (see section 2). Mean AUC = 0.845± 0.079 (SD). Patients shown in Figure 5 are

labeled. The mean ROC curve is shown in bold. (B) ROC curves when β is chosen to maximize AUC over the training set. Mean AUC = 0.859± 0.097 (SD).

those patients who did better under common referencing, the
difference was often slight. As a result, we did not find an
improvement in average AUC when using both common and
bipolar referenced features, as opposed to using only bipolar
referenced features.

Our second feature, the contact depth, was less important
than the first feature, increasing AUC by about 3 percentage
points over using the first feature alone. However, it still
contributed positively to overall accuracy by encoding the coarse
spatial distribution of white and gray matter along an electrode.
When an electrode is inserted, it must first pass through the
cortex before entering white matter, resulting in the outermost
electrodes almost always being in gray matter. The next set of
electrodes toward the middle are then more likely to be in white
matter, although there can be substantial variation depending on
the brain region and angle of insertion due to the anatomy of gyri
and sulci. The contacts at the end of an electrode are often used
to record from deeper brain areas, and thus are more likely to be
in gray matter again. These general tendencies are reflected in the
distribution shown in Figure 4.

4.2. Uncertainty Quantification
One significant aspect of our classifier is that, rather than
giving a single labeling for each electrode, as would be the
case in a maximum likelihood classifier or support vector
machine, it gives a marginal probability for each contact, and

this probability is computed with respect to a flexible and
explicit distribution (the kernel density estimate), unlike for
example logistic regression where probabilities can be computed
but the underlying distribution is implicit and restricted to
the exponential family. Furthermore the probabilities take
into account uncertainty in the parameter estimates through
the posterior predictive calculation, which none of the above
methods do and which can be important for small training sets.

For clinical use, we consider giving accurate uncertainty

estimates nearly as important as giving the right answer.

Any classification method will result in errors, but when the
uncertainty in a labeling is given accurately, it allows the clinician
to ignore a large fraction of those. Defining the “confidence”
that our classifier has in a labeling by 2|p − 0.5|, where p
is the estimated probability of white matter, we find that on
mislabelings (defined as p > 0.5 for a gray matter contact or
p < 0.5 for a white matter contact), our classifier had an average
confidence level of 54.7, vs. 76.6% for correct labelings. Giving
useful probabilities means accurately estimating the underlying
data distributions, which becomes increasingly difficult as the
number of features increases. This is related to overfitting and can
occur even when test set accuracy is very good. Neural networks
for example, will typically use hundreds of features and obtain
good accuracy, but at the cost of output layer “probabilities” that
may not correspond to real error rates or can vary wildly with
small perturbations of the input.
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FIGURE 7 | Estimated probability of white matter for electrode contacts as a function of distance from the nearest white matter/gray matter transition. The transition

point is defined to be at x = 0, and the first contact on the white matter side is at x = 0.5, the second contact is at x = 1.5, and so forth in unit increments. Positive

distances indicate that the contact is deeper into a white matter region, while negative distances indicate the same for gray matter regions. The center circle of each

box plot is the median, the thick line indicates the first and third quartiles, and the thin line represents an additional 1.5 times the interquartile range. Points outside this

are plotted individually as circles.

4.3. Interpretability
Interpretability of features is another aspect we feel is relevant
for clinical usefulness. Because of our decision to use features
that are explicitly related to the end goal of selecting a subset
of informative channels for seizure localization, our classifier’s
mistakes tend to be clinically acceptable. A white matter contact
that has an above-average signal power has a higher chance of
being mislabeled as gray matter, but the fact that it is capturing
a strong signal means that clinicians may want to keep this
channel anyway as it is likely to be picking up signal from
an adjacent gray matter region. It is also possible that there
are errors in the clinician-labeled ground truth classifications,
and that in some cases it may be the clinician labeling which
is wrong rather than our classifier. Several patients had files
which indicated uncertainty about some of the labeled white
matter contacts, showing that even with MRI and CT, it can
be difficult to determine whether some contacts are in white or
gray matter, and that a signal-based classifier may be useful as an
independent reference.

4.4. Computational Efficiency
Our classifier takes less than 5min to run per patient, much faster
than the typical hand-labeling process using MRI and CT which
can take several hours. In theory, the evaluation of the likelihood
in the posterior predictive requires a sum over a number of terms

that grows quadratically with the size of the number of contacts
in the data set, due to the use of a gaussian kernel estimator to
evaluate the distribution rather than a parametric model. For
large datasets, one can reduce this somewhat by using a kernel
with finite support rather than a gaussian. As the number of
data points increases, the estimated kernel width will become
narrower, reducing the growth in the number of points within
the support of the kernel. For very large datasets we recommend
simply using a subset as the training data; since our model
is low-dimensional, it is not necessary to use vast amounts of
data to estimate the feature distributions, and using a random
training subset of a few dozen patients will likely yield nearly
identical results.

The run time of our classifier can also be adjusted by changing
the number of samples drawn from the posterior distribution
of the parameters when computing the posterior predictive.
With our truncated gaussian approximation, drawing samples
is fast but evaluating the posterior probability of a labeling is
slow due to having to recalculate the normalizing constant for
each sample. In our case, we have sufficient training data that
our posterior parameter distributions are tightly peaked, and
thus relatively few samples are needed. The required number
of samples depends on the desired amount of variance in the
posterior predictive estimate. If one has less than 20 or so
patients, more extensive sampling will likely be needed, with
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total computation time increasing linearly with the number
of samples.

4.5. Future Work
One limitation of our current approach is the way in which
we compute the distribution of our second feature, the location
of white or gray matter along the electrode. For simplicity we
pool the data from all electrodes, giving us a coarse average
distribution which ignores the differences between electrodes
inserted in different brain regions or at different angles. An
improvement on this would be to estimate separate distributions
as functions of the brain region and other implantation variables,
which would allow more detailed structure to be captured and
improve the usefulness of this feature. Further testing would be
needed to explore the trade-off between accuracy and the amount
of extra data needed to estimate the distributions.

Additional refinements to our method are possible, for
example the sample-based estimation of the posterior predictive
could be parallelized to further increase speed. Another avenue
for improvement would be the use of common reference data in
addition to bipolar reference data. As described above, although
the majority of contacts are better distinguished using bipolar
data, there are undoubtedly a fraction of contacts which can be
more accurately classified using the common reference. Simply
adding the common reference power as a third feature does not
improve accuracy by a useful amount however. What is needed is
an additional feature that determines whether a contact is more
likely to benefit from using the bipolar or common reference. The
previous discussion (also see Supplementary Material) suggests
some possibilities which we leave for future work, such as
estimating the fraction of common vs. local variance.
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