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Contrast and luminance adaptation alter neuronal
coding and perception of stimulus orientation
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Sensory systems face a barrage of stimulation that continually changes along multiple
dimensions. These simultaneous changes create a formidable problem for the nervous sys-
tem, as neurons must dynamically encode each stimulus dimension, despite changes in other
dimensions. Here, we measured how neurons in visual cortex encode orientation following
changes in luminance and contrast, which are critical for visual processing, but nuisance
variables in the context of orientation coding. Using information theoretic analysis and
population decoding approaches, we find that orientation discriminability is luminance and
contrast dependent, changing over time due to firing rate adaptation. We also show that
orientation discrimination in human observers changes during adaptation, in a manner
consistent with the neuronal data. Our results suggest that adaptation does not maintain
information rates per se, but instead acts to keep sensory systems operating within the
limited dynamic range afforded by spiking activity, despite a wide range of possible inputs.
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ARTICLE

ur sensory systems receive a barrage of stimulation that

continually changes along multiple dimensions and on

multiple timescales. Even when looking around a simple
scene, the receptive field of a single neuron in the visual system is
stimulated by a dynamic sequence of spatial patterns, luminances,
contrasts and colours. Considering just contrast and orientation,
the two dimensions that profoundly affect the firing rates and
response dynamics of neurons in the early visual system!?, the
range of possible stimulus combinations vastly exceeds the lim-
ited dynamic range of any neuron’s spiking output. One way in
which individual neurons can better represent the current sti-
mulus is to continuously update their limited response dynamics
to account for the recent stimulus history. However, the
mechanisms underlying this are unclear3. Further, it is unclear
how changes along one stimulus dimension affect the neural
coding properties of other dimensions, when individual neurons
are continuously stimulated by a multidimensional feature space.

Adaptive mechanisms are prominent in all species and sensory
modalities studied®. For example, throughout the visual system,
luminance and contrast-gain control help to maintain perceptual
sensitivity under different lighting environments by changing the
temporal dynamics and gain of neuronal responses*®. These
mechanisms dynamically shift the operating point of neurons in a
manner that maximises information transmission®’ or feature
detection and processing®®.

Previous studies have focused on the effects of adaptation to a
single stimulus dimension and how they affect the neural coding
of that particular dimension. For example, we have examined
how the exposure to a single motion direction affects the
encoding of other motion directions, at the level of both single
neurons and populations!®!1. Others have examined how the
exposure to changing distributions of stimulus statistics, such as
stimulus speeds, luminances or sound intensities, affects the
encoding of those specific stimulus dimensions!2-14, In natural
vision, neurons encode rich stimuli in a multidimensional feature
space; yet it remains elusive how neurons dynamically encode
each input dimension if stimuli are also changing on other
dimensions. Put simply, how does the adaptation in one
dimension affect the coding in another? Given the frequent var-
iations in firing rates across the neuronal population due to
changes in single dimensions, such as the mean luminance or
contrast!>-17, an important question is how neurons can stably
code information about the barrage of multidimensional sensory
information in dynamic environments.

To address this question, we recorded the extracellular neu-
ronal activity in the primary visual cortex (V1) of marmoset
monkeys viewing a movie of sinusoidal gratings that changed the
orientation every 16.7 ms, with concurrent changes in mean
luminance or contrast every 5 s. This experimental design allowed
us to investigate how the adaptation to one dimension (lumi-
nance or contrast) affects the neural coding of another dimension
(orientation). Our study is the first to reveal how the orientation
coding in V1 neurons is impacted by adaptation to presumably
orthogonal stimulus dimensions. Although the encoding of
luminance and contrast are critical functions of the visual system,
here we are interested specifically in the encoding of orientation
during adaptation; therefore, we treat luminance and contrast as
nuisance variables in the statistical sense.

Using information-theoretic analysis and population-decoding
approaches, we found that the ability of single neurons and neural
populations to discriminate orientation is highly dependent on
luminance and contrast. Our reverse-correlation analysis also
showed that the temporal kernel of single-neuron orientation tun-
ing changes during adaptation. More importantly, we found that
orientation discriminability changes during adaptation periods that
follow switches in luminance and contrast conditions in a manner

that closely reflects human perceptual thresholds. Interestingly, we
found that the gain, but not the tuning bandwidth, of orientation-
tuning curves for single neurons is multiplicatively scaled
throughout the course of luminance and contrast adaptation. Our
results suggest that the adaptation does not maintain information
rates per se, but instead acts to keep sensory systems operating
within the limited dynamic range afforded by spiking activity,
despite a wide range of possible inputs.

Results

Luminance and contrast adaptation affect tuning not timing.
We recorded the extracellular neuronal activity in V1 of marmoset
monkeys under sufentanil/N,O anaesthesia, in response to a movie
of rapidly presented oriented gratings, the properties of which
continually changed on rapid and slow timescales. We designed this
switching paradigm to systematically study how adaptation to
variations in one stimulus dimension affects the coding of other
stimulus dimensions. Specifically, rapid variations in stimulus
orientation occurred every 16.7 ms, while changes in mean lumi-
nance and contrast occurred every 5s (Fig. 1a). This allowed us to
examine how the neural information about orientation depended
on steady-state luminance and contrast and on the time since
specific switches in luminance and contrast have occurred.

In order to quantify the orientation tuning in a fine temporal
detail, we used a reverse-correlation approach to estimate the
probability at which each possible orientation occurred at all
times preceding an action potential'8. Applying orientation-
reverse correlation in the context of adaptation to stimulus
luminance and contrast allowed us to examine how adaptation
impacts tuning over time. First, we compared the dynamics of
orientation selectivity measured early (0-1.6s) and late (3.4-55s)
after a luminance or contrast switch (Fig. 1a, b) and subsequently
compared the dynamics of orientation selectivity between each of
the four luminance-contrast conditions.

The strength of tuning, quantified as the maximum modulation
in the linear kernel (Fig. 1c), changed over time and was
significantly higher during the late phase of adaptation following
a contrast increment, regardless of the luminance (Fig. 1d,
p <107, signed-rank test). These changes in modulation during
adaptation are consistent with the previous observations in the
retina and lateral geniculate nucleus (LGN)!%20, Although the
strength of orientation tuning changed with adaptation, we found
no evidence for systematic changes in the width or the peak time
of the temporal profile between the early and late phases after a
contrast increment (Fig. le, f; see Supplementary Fig. 1 for other
conditions). Furthermore, even when timing differences were
significant, they were only of the order of 1-2 ms (Fig. le and
Supplementary Fig. 1).

Comparing the orientation tuning across different luminance
and contrast levels, rather than during adaptation to a fixed
luminance and contrast, showed that maximum modulation, peak
time and temporal width were consistently luminance and
contrast dependent (Supplementary Fig. 2). Notably, low-
luminance and high-contrast stimuli were associated with the
largest modulation, shortest time to peak, and narrowest temporal
widths, in agreement with previous reports?!.

These results show that the temporal properties of V1 neurons
in response to stimulus orientation are strongly affected by
luminance and contrast. Critically, while the peak time and
temporal width appear to rapidly or instantly compensate for
changes in luminance or contrast, the magnitude of the linear
kernel changes more slowly during adaptation to a single
condition. We asked how these properties affect the coding of
orientation across time, given that luminance and contrast change
on multiple timescales.

2 | (2019)10:941 | https://doi.org/10.1038/541467-019-08894-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08894-8

ARTICLE

a 167 ms
0.00 Q”QQQ@@ Q@@%
se
[}
Contrast O c
Luminance
D =
DN 0N // = 25
DOSS- 0S89\~ -7V )= &
«— £ 5
Contrast Early Late 3E
Luminance [
b c — Prefered orientation Peak time
Contrast Other orientations %
Low High Temporal width 8\(; S
o ~ O
Probablllty = 2 - a
\
o Low High pMax modulation
] =
o Early @~
£ : P
E 5
O 8
High l '(_—>l ) 5
L °oo? o
d x e . f
0.3 1 \ 0.3 - v. 0.3 - v.
[%2] H :
c
[e]
5
Q
c
2 0.15 0.15 0.15 -
i)
b=
o
Q.
o
o : :
0 ; , 0+ | 0 ; .
-0.1 0 0.1 -10 0 10 -10 0 10

A Max modgariy-iate)

A Peak time gary-jate)

A Temporal widthgary_ate)

Fig. 1 Stimulus design and linear-response characteristics of V1 neurons. a Switching stimulus paradigm showing two example conditions: a contrast
increment and mean luminance increment. Every 16.7 ms (two frames at 120 Hz), a grating with randomly selected orientation, phase, and spatial
frequency was presented. b The gratings’ mean luminance or contrast was randomly selected from four conditions and was switched every 5 s, with a total
presentation time of 60 min (maximum 720 switches). Here, we only analyse eight switches (indicated by coloured arrows), in which a single parameter
changed. The colour code and line styles are consistent throughout the study. ¢ The linear kernel quantifying the dynamics of orientation selectivity for a
single neuron during the early (left, first 1.6 s) and late (right, last 1.6 s) phases of adaptation to high-contrast, low-luminance stimuli (i.e., the switch shown
with solid dark blue arrow). Inset, temporal features were extracted from every linear kernel during adaptation. Population data of selective neurons
comparing the differences in maximum modulation (d), peak time (e), and temporal width (f) between early and late phases for one adaptation condition
(see the colour code). Small triangles indicate average; asterisks indicate significance (p <0.07, t test). n=390

Adaptation alters the coding efficiency of stimulus orientation.
Changing the statistics of a specific stimulus dimension (such as
luminance, intensity or speed) affects a neuron’s coding efficiency
of the same stimulus dimension”-1222. However, it remains
unclear if adaptation to one dimension in a multidimensional
stimulus space affects the coding of other dimensions. To deter-
mine whether and how contrast and luminance adaptation affect
the coding of orientation in V1 neurons, we calculated the mutual
information (MI) between each neuron’s spike count and sti-
mulus orientation and examined the following: (1) how MI
depended on luminance and contrast (Fig. 2a, b) and (2) how MI
changed during the course of adaptation to a single luminance
and contrast (Fig. 2c-f).

Initially, we examined MI during a late or steady-state time
window, from 3.4 to 5 after the stimulus switch. Information was
higher in high-contrast conditions (Fig. 2a), regardless of the mean
luminance (low luminance, p < 1039, high luminance, p < 10722
t test). Surprisingly, information was also higher in low-luminance
conditions (Fig. 2b; high contrast, p < 10731; low contrast, p < 10~23;
t test). Although a high luminance is considered to be a stronger
input to the retina and LGN than a low luminance, this result is
consistent with the masking effect of high-luminance transients on
neural responses and perception!7-23:24,

Given the significant information differences present between
the different steady-state luminance and contrast conditions, we
wondered how long it takes for these changes to manifest. To
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Fig. 2 The difference in mutual information between different adaptation
conditions. a Distribution of mutual information difference between high-
and low-contrast conditions during the late or steady-state period
(between-condition comparisons). Black: gratings had a high mean
luminance (Hil); grey: gratings had a low mean luminance (LoL). b As in
(a), but showing the distribution of A MI between high- and low-luminance
conditions, for gratings with a high and low contrast. Black: gratings had a
high contrast (HiC); grey: gratings had a low contrast (LoC). c-f
Distribution of mutual information difference between early and late phases
of adaptation for every luminance-contrast condition (within-condition
comparisons). The solid lines indicate upward switches (e.g., low- to high-
luminance switch in (c)); dashed lines indicate downward switches (e.g.,
high to low luminance in (e)). The inset in (¢) demonstrates the colour
code for luminance and contrast switches (e.g., dark blue indicates contrast
increments when the gratings had a low mean luminance). Small triangles
indicate the average mean of the distribution; asterisks indicate significance
(p<0.01, t test). n=390

characterise the effect of adaptation on the coding of stimulus
orientation, we estimated the information conveyed by individual
neurons about the stimulus orientation during early (0-1.6s) and
late (3.4-55) phases following a luminance or contrast switch.
Following a contrast increment, regardless of the luminance, MI
was significantly higher during the early than the late phase
(Fig. 2d; low luminance, p <0.001; high luminance, p < 0.005;
signed-rank test). Similarly, MI was initially higher following a
luminance decrement, for both contrasts (Fig. 2e; low contrast,

p <0.01; high contrast, p < 107; signed-rank test). However, the
opposite trends were observed following contrast decrements
(Fig. 2f; low luminance, p <1078 high luminance, p<10~7;
signed-rank test) and luminance increments (Fig. 2¢; high
contrast, p < 10~8; low contrast, p < 0.004; signed-rank test). Note
that we found the same qualitative trends when we used other
time windows ranging from 0.2 to 2.4 s in duration to define our
early and late periods. This suggests that luminance- and
contrast-dependent changes in information about orientation
are enacted on very short timescales.

Firing-rate adaptation after luminance and contrast switches.
Given that the mean luminance and contrast affect firing rates,
the above analysis motivated us to determine whether stimulus-
induced changes in MI could be decoupled from changes in
spiking rate. We averaged the spiking activity over dozens of
repetitions of every unique luminance-contrast switch regardless
of the changes across other stimulus dimensions (i.e., orientation,
phase, and spatial frequency). This provided us with an estimate
of the firing-rate variation that is only driven by switches in
luminance and contrast. Effectively, we are averaging each neu-
ron’s orientation-selectivity profile at each time point relative to
the luminance or contrast switch.

Luminance and contrast switches induced substantial changes
in the firing rate of neurons, usually comprising an initial rapid
increase or decrease in rate, followed by relaxation to an
intermediate plateau following an exponential decay (Fig. 3 and
Supplementary Fig. 3). The time constant of these decays
depended on luminance and contrast; for example, the increase
in firing rate following a contrast switch was significantly higher
when gratings had a low luminance (Fig. 3b, dark-blue trace)
rather than high luminance (Fig. 3b, light-blue trace; p <0.01,
signed-rank test). Time constants were also significantly longer
for contrast decrements than increments (compare Fig. 3b with
Fig. 3d; p < 0.01, signed-rank test; also see Supplementary Fig. 3).
This asymmetry in the time course of firing-rate changes is
consistent with the adaptation to variations in the statistics of
auditory!?, visual!®, and tactile?? stimuli in sensory areas. It is
also apparent that a higher mean luminance, during both contrast
increments and decrements, evoked weaker activity than a low
luminance (compare dark-blue and light-blue traces in Fig. 3b, d).

Following a mean luminance increment, firing rates displayed a
transient reduction followed by an exponential recovery lasting
several seconds (Fig. 3a, Supplementary Fig. 3). Unusually, when
the gratings had a low contrast (Fig. 3a, pink trace), there was a
biphasic response in 30% of neurons, with a small and rapid
change in mean firing rate immediately after a luminance switch.
This biphasic response is similar to the impulse response of the
visual neurons to a luminance switch!417.

Surprisingly, the firing rate rapidly increased following a switch
from high to low mean luminance, regardless of the contrast
(Fig. 3c). The time constant of increase and the subsequent
exponential decay were in a similar range to contrast increment
(Fig. 3b and Supplementary Fig. 3). We also observed a similar
asymmetry in firing-rate adaptation during luminance increments
and decrements to that following contrast switches (Fig. 3b),
consistent with previously reported data”12:1419.22,

Luminance and contrast switches reduce neural variability.
Neural responses to multiple repetitions of the same stimulus are
variable, and the neural coding efficacy depends on this varia-
bility. While recent studies have demonstrated that response
variability that is correlated between neurons can surprisingly
enhance neuronal coding!’?>, a higher variability in the
responses of individual neurons, often quantified using the Fano
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factor (FF), can only impair encoding. We thus calculated the FF
of neural responses within a sliding 50 ms time window from
500 ms before to 500 ms after luminance or contrast switches.
As with our previous analysis of firing rate, this approach
ignores changes in the other dimensions of the stimulus. Despite
the noisy measurement of FF using this method (because the

Fig. 3 Firing-rate adaptation, neural response variability, and population
coding. The average normalised population firing rate during luminance-
increment (a), luminance-decrement (c), contrast-increment (b), and
contrast-decrement (d) switches. Each PSTH was normalised relative to a
shuffled PSTH, generated by shuffling the spike times. The shuffling
process was repeated 50 times while the spike times across the entire 60-
min recorded data were randomised in each run. For visualisation, PSTHs
have been convolved with a Gaussian window (50 ms). e-h As in (a-d), but
for Fano factor. i Decoding accuracies early and late following each of the
eight luminance-contrast switches. Each data point shows the average and
standard deviation of decoding accuracy for one switching condition
(averaged over 15 runs). Solid points indicate upward switches; empty
points indicate downward switches. The black line connects data points
associated with low vs high luminance, when the contrast is high. The inset
demonstrates the colour code for each luminance and contrast switch.
Decoding algorithm: linear discriminant analysis (LDA); the number of
neurons = 50 randomly selected out of 390 neurons; width of spike-
counting window = 15 ms; and the number of random runs = 15. Error bars
are standard deviations. Support vector machine (SVM) classifier provided
very similar results. PSTH, peri-stimulus time histogram

underlying rate changes throughout our measurement window),
we observed a consistent pattern of FF variations across different
conditions (Figs. 3e-h). Overall, FF decreased immediately after
any switch in luminance and contrast, consistent with the
previous reports that changes in stimulation conditions quench
neural variability26. The FF decreased and then rapidly recovered
in all cases after a luminance or contrast change, whereas the
firing rate changed more slowly and could either decrease or
increase (Fig. 3 and Supplementary Fig. 3). Given these
observations, if population decoding is primarily affected by
trial-to-trial variability, it should always improve immediately
after a change in the stimulus.

Coding of stimulus orientation by neural populations. We
found that the information conveyed by individual neurons about
stimulus orientation is strongly affected during adaptation. It is,
however, unclear how the coding of orientation by a neural
population is affected by changes over time in firing rates and
trial-to-trial variability at the level of individual neurons, and
whether the variability between neurons can be overcome at the
population level. Moreover, neurons vary in their preferences,
temporal dynamics, and adaptation properties. Therefore, we
used a population-decoding approach to quantify orientation
discriminability, asking how the decoding accuracy (1) is affected
by different luminance and contrast conditions and (2) changes
during the course of adaptation to a single luminance and
contrast.

The results revealed a clear difference in discriminability
between the luminance-contrast conditions and during the
course of adaptation. Overall, higher contrasts led to a better
orientation discriminability while higher luminance levels led to a
poorer discriminability (Fig. 3i; e.g., compare dark- and light-blue
data points, connected with a black line, for low vs high
luminance). Moreover, the adaptation following a contrast
increment decreased the orientation discriminability of neural
populations while the adaptation following a contrast decrement
led to higher discriminability (Fig. 3i; p < 0.0001, signed-rank test;
e.g., filled blue data points associated with contrast increments fall
below the line of unity). This was the opposite for luminance
switches, as adaptation following luminance increments and
decrements increased and decreased the discriminability, respec-
tively (Fig. 3i; p <0.0001, signed-rank test; e.g., filled brown and
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n=390

pink data points associated with luminance increments fall above
the line of unity). Similar decoding results were evident when we
changed many parameters of the decoders, including different
time windows for defining the early and late phases, the number
of neurons in the decoder, the type of decoder, and the width of
the readout, or spike-counting, window (Supplementary Figs. 4
and 5).

To compare the size of the changes in orientation coding at the
single-neuron and population levels, we calculated the MI ratio
(early relative to late) for each stimulus switch and compared it to
the corresponding ratio of decoding performance (early relative
to late). Across the eightswitches, these ratios were strongly
correlated (r = 0.87, p =0.004), with a slope of 0.4. As much as
these ratios can be compared, this suggests that the adaptive
changes over time are of similar magnitudes at the single-neuron
and population levels. Further, coding of stimulus orientation by
neural populations is substantially affected by adaptation to
luminance and contrast, and this adaptive coding tracks the
direction of changes in spiking rate, not response variability.

Coding of stimulus orientation by individual neurons. Previous
studies of adaptation to stimulus statistics have shown that even
though firing rates markedly change in association with switches
in stimulus variance, the information rate of individual neurons
(measured as bits per spike) is almost unaffected”22. Our above
analysis demonstrated that decoding of orientation by the neu-
ronal population is substantially affected by luminance and
contrast adaptation. To clarify this apparent conflict, we esti-
mated the information conveyed by individual neurons during
adaptation with a finer temporal resolution. Figure 4a illustrates,
for a sample neuron, that the MI between stimulus orientation
and spiking activity is also affected by adaptation. Here, we cal-
culated the MI in six equal time windows that spanned the 5-s
adaptation period following each of the eight stimulus switches
(see also Supplementary Fig. 4). There are large, significant cor-
relations between firing rate and MI for both individual stimulus
conditions and when all the stimulus conditions are considered
collectively. These correlations are also evident across the

population of neurons, and the average correlations are sig-
nificantly greater than zero in all cases (Fig. 4b-e, p <0.01, ¢ test).
MI also changed during adaptation when we normalised infor-
mation by spike count (bits per spike) rather than simply con-
sidering information (bits).

Luminance and contrast switches modulate perception. The
changes in decoding performance and MI observed after switches
in luminance and contrast suggest that orientation discrimination
thresholds should be improved following contrast increments and
luminance decrements. To assess this, we conducted human
psychophysical experiments in which observers reported the
relative orientation of two gratings, each presented for 200 ms,
separated in time by a noise mask (Fig. 5a). On each trial, dis-
crimination judgments were performed either early (0.2-1.2's) or
late (5-6's) after a switch in luminance or contrast.

Orientation discrimination was enhanced immediately after a
contrast increment, reflected in significantly higher discrimina-
tion thresholds during the late vs early phase (Fig. 5b, for a single
subject, p <0.001, bootstrap test and Fig. 5f, for all subjects, p <
0.005, signed-rank test, n=14 observers). For 12 out of 14
observers, these increases in discrimination thresholds were
individually significant (p <0.001, bootstrap test), meaning that
the majority of subjects performed significantly better in
orientation discrimination during the early, compared to the
late, phase. Similarly, discrimination accuracy was higher
immediately after a luminance decrement, with discrimination
thresholds significantly higher in the late vs early phase (Fig. 5e,
p <0.01, signed-rank test, n = 7 observers). In this experiment, all
observers individually showed a significantly better discrimin-
ability in the early phase than in the late phase (Fig. 5e, p <0.001,
bootstrap test). On the other hand, we found no systematic
changes in discrimination thresholds during the late vs early
phase of luminance increments (Fig. 5¢, for a single subject and
Fig. 5d, for all subjects, p > 0.05, signed-rank test, n = 7 observers)
and contrast decrements (Fig. 5g, p > 0.05, signed-rank test, n =8
observers).
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Fig. 5 Psychophysical measurement of orientation discrimination. a The experimental paradigm. Each trial consisted of a short movie of rapidly presented
sinusoidal gratings with random orientations and phases (each for two monitor frames, 16.7 ms). Subjects fixated on the cross throughout the trial.
Subjects performed an orientation discrimination task after which the contrast (luminance) of the gratings changed to a higher contrast (lower luminance).
The orientation discrimination was performed either 0.2-1.2 s (early trials) or 5-6 s (late trials) after the switch. b, ¢ Psychometric data with cumulative
Gaussian fit for a single subject performing the contrast- (b) and luminance-increment (c) tasks. d-g Comparison of discrimination thresholds for early and
late phases of four different luminance- and contrast-adaptation conditions (the number of participants from (d-g): n=7, 7, 14, and 8). The small arrow in
(d) and (f) refers to the participant on the left, and the red circle shows the average threshold. Error bars show bootstrap standard deviation

These results are broadly consistent with our physiological
data, in which the neural population-decoding accuracy was
significantly higher during the early vs the late phase following a
contrast increment and luminance decrement (Fig. 3). Despite
this, an important methodological difference between the
physiological and psychophysical studies limits the straight-
forward comparison of their results. In our physiological study,
we used phenylephrine and atropine eye drops to dilate the
pupils. This inactivates the pupillary light reflex, which modulates
the amount of light reaching the retina.

To determine if differences in discrimination thresholds are
related to pupil-size modulations, we monitored the pupil size in
15 observers (Supplementary Fig. 6). The pupil size was briefly,
and only slightly, changed following contrast switches, but
showed immediate and robust dilation or constriction following
luminance switches. Contrast increments are therefore associated
with consistent changes in perceptual and neuronal discrimina-
tion performances, in the absence of associated pupillary changes.
However, while luminance decrements were also associated with
consistent changes in perceptual and neuronal discrimination,
they were only accompanied by pupillary dilation in the human
observers. This means that although the observed changes in

neural coding can only arise as a result of cascading neural
processes in the visual hierarchy (because the pupils were
permanently dilated in the marmosets), the changes in human
perceptual performance could reflect these same neural processes
or simply the effects of pupillary dilation.

Additive and multiplicative modulation of orientation tuning.
What causes the neurons to change their coding ability during
adaptation? Coding properties of neurons can be affected by
factors such as trial-to-trial variability and multiplicative and
additive modulations in neural response populations. We earlier
showed that trial-to-trial variability deceased immediately after
luminance and contrast switches for all conditions (Fig. 3e-h),
but the decoding accuracy did not always follow the same trend
(Fig. 3i, Supplementary Figs. 4 and 5). Here, we asked whether
other factors such as multiplicative and additive gain modulations
could lead to the differential stimulus coding of orientation
during adaptation. Note that multiplicative modulations change
the response amplitude of single neurons without affecting their
tuning selectivity!>27. However, such modulations of tuning
functions become important when decoding the population
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Fig. 6 Gain and offset modulations of orientation tuning. a-d Tuning
functions of a sample neuron during early and late phases of adaptation.
Each panel shows a single switching condition. Solid lines show the best-fit
von Mises function. e-h Population summary of gain and offset
modulations between early and late phases for the eight switch types.
Triangle markers indicate the mean. In all plots, only highly orientation-
selective neurons are shown (n=150)

activity, in part, because scaling up neural spiking rates dis-
proportionately scales up the trial-to-trial variability, reflecting
non-Poisson statistics?8.

We found that neuronal tuning functions varied greatly
between early and late phases of adaptation. The sample neuron
depicted in Fig. 6a-d highlights the range of effects commonly
observed during different adaptation conditions. For example, the
gain substantially increased after adaptation to a high luminance
(Fig. 6a), while adaptation to a low luminance led to a compound
effect of multiplicative and additive modulations (Fig. 6b). We

calculated multiplicative and additive modulations for the 50
neurons that were highly selective for all stimulus conditions.
Working with this reduced dataset is necessary to allow direct
within-condition comparisons. In this population, most neurons
had strong gain changes during adaptation while the additive
effect was minimal (Fig. 6e-h and Supplementary Fig. 7). For
example, after adaptation to a luminance increment, regardless of
the contrast, the gain of almost all neurons decreased, with no
significant change in the additive modulation or offset (Fig. 6e,
high contrast, p<10~17; low contrast, p <1078, ¢ test). Similar
changes were evident after a contrast decrement, regardless of
luminance (Fig. 6h, high luminance, p < 10~!1; low luminance, p
<107 14 ¢ test). Note that gain modulation is the gain change
between the early and late phases of adaptation.

We observed small gain enhancements during adaptation to
contrast increments (Fig. 6g; low luminance, p<0.05; high
luminance, p>0.05, t test) and luminance decrements (Fig. 6f;
high contrast, p < 0.05; low contrast, p > 0.05, ¢ test). We did not
find any significant additive modulation across the population
during adaptation to these conditions (except in high-contrast,
low-luminance conditions; Fig. 6f, p <0.01, ¢ test). To further
examine these effects at the level of individual neurons, we
compared four models for predicting the tuning curves of each
neuron at early and late phases. Each model comprised two von
Mises functions (one for the early and the other for the late phase
of the response) that were either identical, independent, matched
in gain, but with independent offsets, or matched in offsets but
with independent gain. For the cells that showed significant
modulation in orientation tuning between the two response
phases (i.e. model 1 was the poorest fit), we found that 17% were
best explained with a combination of additive and gain
modulations, 63% were best explained with only gain modulation,
and 20% were best explained with only additive modulations.
This suggests that it is primarily gain modulation, and to a lesser
extent additive modulation, that explains the difference in
orientation discriminability and information rate during
adaptation.

We also calculated the gain and offset modulation with a finer
temporal resolution during adaptation. To this end, we calculated
the changes in the population-tuning curve across six consecutive
non-overlapping time windows during adaptation following each
type of switch (Supplementary Fig. 7). Our analysis showed that
the gain and offset systematically change during adaptation
(Supplementary Fig. 7). In particular, we found that the
modulations during adaptation are not purely multiplicative or
adaptive; however, the multiplicative modulations are more
pronounced across single neurons.

Discussion

In this study, we asked how principles that have been developed
from studies of adaptation to a single stimulus dimension can be
used as the foundation to track neural response selectivity under a
more complex stimulation paradigm. In particular, how does
adaptation to one stimulus dimension affect the coding of
another dimension? To address this question, we investigated
how the adaptation to mean luminance and contrast reshapes the
encoding properties of V1 neurons and how this change in
encoding properties alters the information about stimulus
orientation that is available to downstream decoding neurons. We
designed a switching stimulus paradigm in which stimulus
dimensions varied on fast and slow timescales, a situation that
happens in our everyday life as we step from bright sunlight into
an indoor office, or simply change our point of gaze from glaring
sunshine to the adjacent shade. We showed that adaptation to
slowly varying stimulus features can alter the coding properties of
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individual neurons and neural populations for a different rapidly
varying stimulus dimension. In particular, we showed that fol-
lowing changes in luminance and contrast, the ability of neurons
to code stimulus orientation dynamically changes, and these
changes predict a novel form of perceptual adaptation in human
orientation-discrimination thresholds. The dynamic coding in
neural responses can be explained by the adaptive gain rescaling
of individual neurons in the population.

Rapid adaptive stimulus-dependent changes in the filtering
properties of neurons have been demonstrated in the visual®19-20,
auditory!?2?° and somatosensory pathways>22. Adaptation to
changes in stimulus luminance and contrast also affects both
linear and nonlinear filtering stages of a cascade model of
retina’3031 and LGNZ2%32, For example, adaptation to low-
contrast stimuli can lead to faster temporal dynamics of the linear
filter and a lower gain of the nonlinear filter. These studies
examined how changing the statistics of one dimension affected
the encoding of the same dimension. Our stimulus design pro-
vided us with the advantage that we could study the time frame
over which such adaptive changes occur, as we had enough
measurement time and stimulus repetitions to be able to use
reverse-correlation analysis to robustly capture the aspects of
dynamic feature selectivity of neurons.

Our analysis showed that the temporal dynamics of neurons’
linear responses, measured as peak time and temporal width, was
determined by mean luminance and contrast, but these changes
manifested extremely rapidly and remained largely unaffected
during the course of adaptation to a constant luminance or
contrast. This happened despite the fact that the firing rate of
neurons substantially varied during adaptation. Further analysis
of linear-response kernels, however, showed significant changes
in the amplitude of kernels (maximum modulation) during dif-
ferent phases of adaptation to luminance and contrast. For
example, our results revealed that an increment in contrast can
trigger a significant change in the shape of the linear kernel
during the early phase of adaptation compared to the late phase,
suggesting a gradual increase in the amplitude of the kernel
during adaptation to a high contrast. However, following a con-
trast decrement, the kernel amplitude did not significantly
change, likely because of the fact that changes in response
amplitude after a contrast decrement are small and have a very
slow timecourse of recovery. Overall, larger kernel amplitudes
indicate that, given the occurrence of a spike, the stimulus
orientation is known with a higher probability. Moreover, the
amplitude modulation of the linear kernel was largely dependent
on adaptation condition. The observed changes in the kernel
amplitude during adaptation to contrast decrement and incre-
ment are consistent with those in the other studies in the retina!®
and auditory cortex?. However, changes in other temporal
aspects of the linear filter, such as peak time and temporal width,
have also been reported in auditory?® and early visual pathways2?,
which we did not observe in our study. We think that the dif-
ference in stimulus type might underlie this discrepancy, as these
other studies have used white noise or natural stimuli, which are
very different to the movie of rapidly changing gratings that we
presented. For example, there are strong spatial and temporal
correlations in the neighbouring pixels in natural movies. In
summary, our results suggest that neurons do not employ a
simple static-coding strategy but dynamically change their
receptive-field profile to adjust to constant and rapid changes in
the statistics of input stimuli. This adds to the previous studies
showing that neural responses are poorly predicted using a static
receptive field”.

Generally, a switch in stimulus variance or mean leads to a
transient change in the firing rate of neurons followed by an
exponential 433 or power-law decay to steady state”>34. The time

constants of firing-rate adaptation in our study are in a
similar range to those in the previous studies of contrast and
luminance adaptation in the visual pathway. These time
constants are dependent on factors such as the period of the
stimulus-switching paradigm”-3* (but see ref. !2) and the
noise level of the input signall4, suggesting that neural responses
are dependent on the history of stimulus variations. In our study,
we did not explore the effect of different switching periods and
noise level on the time course of adaptation and feature selec-
tivity, but we observed that neurons did not have a single
time constant in all adaptation conditions, suggesting that
recent changes in stimulus statistics affect neural response
dynamics in V1.

Firing-rate adaptation does not follow a symmetric dynamics
during upward and downward changes in stimulus statistics. Such
an asymmetry has been observed in many sensory areas, sug-
gesting this as a general property for adaptation”:12:1419:29,33-35,
We observed a similar asymmetric dynamics in adaptation to
contrast increment and decrement, with a significantly longer
time constant of adaptation during the switch to high than low
contrasts. The trend was, however, different during the mean
luminance switch, in which adaptation to a low mean luminance
was faster than high luminance, suggesting that it takes longer for
the neurons to recover after a switch to a high mean-luminance
stimulus. This long-lasting suppression does not agree with the
previous studies in the retina. One possible reason for this dis-
crepancy may be the differences in response and anatomical
properties between retina and V1 as a dense network of different
excitatory and inhibitory connections. As one study has shown,
while the responses of LGN neurons are elevated after a lumi-
nance transient, the responses of V1 neurons are significantly
suppressed, and the selectivity of neurons to ongoing stimulus
orientation is delayed!”. Such a mechanism has been attributed to
changes in cortical inhibition!”. In this context, the responses of
our recorded neurons to luminance switch are consistent with the
literature. At the perceptual level, a sudden change in luminance
also supresses the detectability and discriminability of visual
targets in human observers2.

Previous studies of adaptation using switching-stimulus para-
digms have shown that the information content of single neurons
(bits per spike) about the contrast (variance) and luminance
(mean) of an input signal is largely unaffected around the time of
a switch in variance”?2. Here, we have shown that the MI
between spiking activity and stimulus orientation is higher when
luminance is low (or contrast is high), consistent with the
masking effect of luminance increments reported in electro-
physiological!7233¢ and perceptual studies’”. The aim of our
study was to explore the effect of adaptation to luminance and
contrast on the coding of stimulus orientation. From the per-
spective of encoding stimulus orientation, changes in
luminance and contrast are problematic, making them
nuisance variables. Despite this, neurons in most visual areas
actually carry information about luminance and contrast, and this
information can be reliably decoded. While not the focus of our
study, this is evident in our data as differences in the steady-state
firing rate after adaptation to luminance and contrast (e.g. the
mean firing rates for low and high contrasts are different and thus
decodable).

Calculating the information content of individual neurons
during the course of adaptation, however, showed that MI was
significantly affected during adaptation to a single-luminance and
-contrast condition. For example, the information conveyed by
neurons about stimulus orientation was higher during the early
than the late phase of an upward switch in contrast, suggesting
that adaptation to contrast increments reduced the amount of
information. Conversely, information about orientation increased
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during adaptation to a contrast decrement. Although these
changes in information might seem contradictory to the
findings of the studies mentioned above, our result is
comparable to some results reported from V1 and middle tem-
poral area (MT) regarding the large contribution of onset tran-
sient to sensory discrimination3®3%. Here, a switch to a new
luminance-contrast can be considered as the onset of a new
stimulation regime.

While single neuron-level mechanisms can account for some
adaptive properties described in our study, cortical neurons
operate in a highly interconnected neural circuitry. Therefore, the
adaptive properties of a single neuron can induce substantial
changes in information processing when interpreted in the con-
text of neural population activity!®!1140, Moreover, our
information-theoretic analysis mostly relies on orientation-
selective neurons while non-selective neurons can affect the
population code!!#! and, likely, perception. A simple way to
address this issue is using population decoding to investigate if
the observed effects of adaptation at the single-neuron level are
also evident at the population, or circuit, level. Our analysis
showed that the decoding accuracy is significantly luminance and
contrast dependent and strongly affected by adaptation. Adap-
tation to a high contrast (following a contrast increment) and a
low luminance (following a luminance decrement) decreases the
discriminability of stimulus orientation across neural populations,
while adaptation to a high luminance and a low contrast increases
the discriminability. These different changes in discriminability
after adaptation do not perfectly agree with studies suggesting
that adaptation always improves discriminability>43, as we
found that discriminability can largely be stimulus or task
dependent (e.g., compare the decoding accuracy between upward
and downward contrast switches).

We also found changes in discrimination thresholds between
the early and late phases in our psychophysical measurements for
two switching conditions, suggesting that the significant mod-
ulations in firing rate and neural discriminability after the switch
have a perceptual correlate in human subjects. While we cannot
rule out the role of pupil-size variations in the perceptual
luminance-adaptation effects we observed, two factors make it
likely that the neural adaptation observed following both contrast
increments and luminance decrements can account for the
changes in human psychophysical performance. First, we
observed a significant difference in perceptual thresholds between
the early and late phases following contrast increments, even
though the pupil size remained mostly unchanged. Second, fol-
lowing a luminance increment, pupil size changed substantially
over time, but we observed a relatively little change in dis-
crimination thresholds.

Collectively, we have shown that orientation discriminability is
luminance and contrast dependent, changing over time due to
firing-rate adaptation. This is accompanied by changes in the
information available about orientation from neural spiking,
attributable to adaptive gain modulation. Multiple cellular and
network mechanisms may account for an adaptive gain control in
the cortex. At the level of single neurons, adaptation largely relies
on cellular mechanisms (e.g., Nat-activated and Ca?*-activated
K+ currents)** and synaptic depression*>. Adaptive mechanisms
can also be derived from network dynamics and recurrent inhi-
bition, which can produce neuronal response dynamics that vary
over a range of timescales®#6. In a highly interconnected network
such as V1, lateral inhibition or modulatory feedback can also
account for adaptive gain control?’-0. Future studies should
identify the distinct contributions of inhibitory and excitatory
neurons to the changing feature selectivity that occurs during
adaptation in order to link single-neuron and circuit-level
mechanisms to perceptual outcomes.

Methods

Surgery and animal preparation. We recorded the extracellular activity from V1
neurons in three anaesthetised male marmoset monkeys (Callithrix jacchus).
Experiments were conducted in accordance with the Australian Code of Practice
for the Care and Use of Animals for Scientific Purposes, and all procedures were
approved by the Monash University Animal Ethics Experimentation Committee.
The details of animal preparation, surgical procedure, and electrophysiology in
marmoset monkeys followed our previously published protocols®!. Animals were
premedicated with atropine (0.33 mgkg~!) and diazepam (0.4 mgkg~!) and
anaesthesia was subsequently induced with alfaxalone (Alfaxan, 8 mgkg™),
allowing a tracheotomy, vein cannulation and craniotomy to be performed. After
the completion of all surgical procedures, the animal was administered an intra-
venous infusion of pancuronium bromide (0.1 mgkg~!h~!) combined with
sufentanil (6-8 ugkg~'h~!) and dexamethasone (0.4 mgkg~!h~1), and was
artificially ventilated with a gaseous mixture of nitrous oxide and oxygen (7:3).
Pulse oxygenation, heart rate, body temperature and the level of cortical sponta-
neous activity were continuously monitored. The administration of atropine (1%)
and phenylephrine hydrochloride (10%) eye drops resulted in mydriasis and
cycloplegia. Protection of the corneas from desiccation and focusing on the sti-
mulus monitor were achieved using hard contact lenses selected by retinoscopy.

Electrophysiology, data acquisition, and pre-processing. Most of the recordings
were performed using single-shank linear multielectrode arrays (A1x32; Neuro-
Nexus, Ann Arbor, MI, USA). Contacts on the array surface were collinear with 50
um spacing, spanning all cortical layers. The data from one animal (monkey 2)
were recorded using an Utah array, which consists of 96 electrodes arranged in a
10 x 10 grid, with each electrode separated by 400 um (Blackrock Microsystems).
Electrophysiological data were recorded using a Cerebus or Cereplex system
(Blackrock Microsystems, MD) with a sampling rate of 30 kHz. The recordings
were obtained from the region of V1 representing the central 10° of the visual field,
in the exposed surface of the occipital operculum.

To detect single neurons and multi-units, we performed offline spike detection
and sorting separately for each channel. Potential spikes were first identified based
on threshold crossings, which were manually set during recording. Each spike
waveform was normalised by its energy, and then principal component analysis
was performed on all spike waveforms recorded from a channel. Normalisation
allows the principal components to be based on a waveform shape rather than
amplitude. We automatically identified clusters by fitting a mixture of Gaussians to
the first five dimensions of principal components analysis space and checked and
combined clusters and corresponding waveforms manually. Clusters were classified
as single neurons based on (1) the inspection of the inter-spike interval histogram,
(2) the consistency of waveform over time, and (3) if their Isolation distance, which
is a measure of the separability between clusters and background activity, exceeded
15%. Any remaining threshold crossings were classified as a multi-unit activity. A
total of 150 single neurons (74, 30, and 46 from monkeys 1, 2, and 3, respectively)
and 240 multi-unit (113, 49, 78 from monkeys 1, 2, and 3, respectively) neuronal
clusters were recorded. The results obtained for single- and multi-units were not
significantly different; so, throughout the article, we refer to them as neurons and
report the collective results.

Throughout the paper, we assess trends in our full dataset of 390 neurons;
however, not all neurons were orientation selective for all stimuli, preventing
within-group comparisons. Therefore, in Fig. 6, we focus on a sample of 50
neurons, which were highly orientation selective in all luminance and contrast
conditions, allowing a within-group comparison.

Visual stimulation. Visual stimuli were generated using MATLAB with Psy-
chtoolbox°? and presented on an LCD monitor (Display + + , Cambridge Research
Systems, UK) with 120 Hz refresh rate, a display width of 700 mm, a resolution of
1920 x1080 pixels and a viewing distance of 500 or 700 mm. The monitor uses a
built-in gamma-correction mechanism and has a 10-bit colour resolution3®. Stimuli
were viewed monocularly through the contralateral eye. Orientation selectivity was
initially characterised using static gratings presented for 50 ms, followed by a grey
blank screen for 500 ms. The gratings had 12 equally spaced orientations spanning
0-180°, six spatial frequencies (0.05, 0.125, 0.25, 0.5, 1, 2 cycles per degree) and two
phases (0-180°). Spiking rates were averaged 50-150 ms after stimulus onset. We
also obtained the contrast-response function of neurons using an optimal gating
presented with different contrasts (4, 8, 16, 32, 64, and 100%).

Luminance-contrast switching paradigm. To study the dynamics of adaptation
and how orientation selectivity is affected by luminance and contrast adaptation,
we presented a movie of rapidly changing gratings with random orientations,
phases, and spatial frequencies. Stimuli were full-screen sinusoidal gratings pre-
sented for two monitor frames (16.7 ms), with 12 equally spaced orientations
(0-165°) and eight phases (0-360°). We selected one to three spatial frequencies in
a range of 0.125-0.4 cycles per degree based on the spatial frequency tuning of
recorded neurons in each penetration. Every 5, the luminance and/or contrast of
gratings were randomly selected from four luminance-contrast combinations: (1)
high contrast (65%), low mean luminance (70 cd m=2); (2) low contrast (35%),
low mean luminance (70 cd m™2); (3) high contrast (65%), high mean luminance
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(140 cd m™2); and (4) low contrast (35%), high mean luminance (140 cd m2)
(Fig. 1). This led to 12 different switch conditions, in which either or both lumi-
nance and contrast changed. The total presentation time was 60 min, yielding an
average of 56 repetitions for each unique luminance-contrast switch. As
luminance-contrast switching was random, the four no-change conditions also
occurred with equal probability, but these are not analysed here. The contrast and
luminance levels were selected so that most neurons were both responsive and
orientation selective.

Linear-response estimation (reverse-correlation analysis). We characterised
the functional properties of neural responses to variations in stimulus orientation
using the orientation reverse-correlation method!8. We computed reverse corre-
lograms for each stimulus orientation by correlating the occurrence of each
orientation with the spike train. Firstly, an array of counters for each of the 12
orientations and 512 time delays (7=-6 to + 250 ms with 0.5 ms resolution) was
constructed, R(6,t), with all initial values set to zero. For each spike time, we looked
7 earlier in time and incremented the counter corresponding to the presented
stimulus orientation (6), regardless of grating phase. At the end of this procedure,
the sum of the counters at each time delay was equal to the number of spikes
collected. The resulting counts were normalised at each time delay, giving the
relative probability that a spike was preceded by each possible orientation,p(0, 7).

We subsequently calculated several response characteristics for each neuron,
including peak time (when the orientation selectivity was maximised), the
maximum modulation (the difference between the highest and lowest probability at
peak time), and the preferred orientation (fp.¢), which evokes the highest
probability (pmay). The preferred orientation (6,rf) was found by fitting the
difference between two von Mises functions to the tuning curve at the peak time,
Eq. (1). Taking the difference between two von Mises functions with different
parameters allowed a better fit to asymmetric tuning functions.

p(G) — txlek‘ cos(ﬂfep,c“) _ a2€k2 cos(Bfﬂmn) +ﬁ (1)

where 6, is the preferred orientation, k; is the width parameter, a; is the scaling
factor and f is a constant offset. We also extracted the temporal width, which is the
time window over which the probability of the preferred orientation, p(6yf, t),
exceeded half the maximum.

For most analyses, we calculated reverse correlograms in early (0-1.6 s) and late
(3.4-5's) time windows following each luminance-contrast switch. In total, this
gives us 24 reverse correlograms (12 switches; 2 time windows). Our estimation of
linear responses during these time windows was robust as we had over 350
repetitions of each unique stimulus orientation. For some analyses (Supplementary
Fig. 1), we applied the reverse correlation method to the whole 5s duration after
the switch.

Inclusion criteria. We analysed those neurons that showed a significant orienta-
tion selectivity. Neurons were deemed to be orientation selective if they satisfied the
three following criteria: (1) maximum probability (probability at peak time) in the
reverse-correlation analysis exceeded 3 x sd of the baseline probability; (2) the von
Mises function fit (Eq. 1) was significantly better than a flat line (F test, p < 0.05);
and (3) the bandwidth of von Mises function fit was 20-95°. Across all the
recordings (511 isolated neurons), 453 neurons were visually responsive, and, of
these, 390 neurons (86%) were orientation selective when tested with at least one of
the luminance-contrast combinations. A neuron was selected as visually responsive
if its spiking activity significantly increased above baseline after stimulus pre-
sentation based on the standard forward-correlation stimuli.

Firing rate and trial-to-trial variability. We calculated peri-stimulus time histo-
grams (PSTHs) for every neuron from 5 s before to 5s after each
luminance-contrast switch. For simplicity, we disregard switches when both
luminance and contrast simultaneously changed. PSTHs were calculated using 50
ms time bins and we ignored the variations in other stimulus dimensions (i.e.,
orientation, phase, and spatial frequency). Each PSTH was normalised relative to a
shuffled PSTH, generated by shuffling the spike times. The shuffling process was
repeated 50 times while the spike times across the entire 1 h dataset were rando-
mised in each run. The switching PSTHs were normalised relative to the averaged
shuffled PSTH. For the sake of visualisation, the resulted PSTHs were then con-
volved with a Gaussian window with 50 ms width.

To assess trial-to-trial variability, we calculated the FF, which is the ratio of
variance to mean spike count across the trials. FF was calculated in a sliding
window of 50 ms with a time step of 10 ms.

Information theoretic analysis. We quantified the amount of information con-

veyed by neurons about stimulus orientation using information-theoretic analysis.
Therefore, the MI between the spiking activity and stimulus orientation was cal-

culated using Egs. (2) and (3):

P(R|9>>

Ml o) = ; p(6) ; p(R|6)log, <—p( ®) @)

Where:

P(R) = p(6)p(RI) 3)
VR

Where, R is the spike count in a time interval 7 after grating onset of width 8¢, p(6)
is the probability of presenting orientation 6, which is close to uniform in our case
(1/12), p(R) is the probability of observing response R evoked across all stimuli,
p(R|6) is the conditional probability of observing response R given grating with an
orientation 6 was presented. We also applied a bootstrap-based bias-correction
method to have an unbiased estimation of information®>.

The above calculation was performed three times: (1) during the early-
adaptation phase, which is the time window between 0 and 1.6 s after the switch
(Fig. 1); (2) during the late-adaptation phase, which is the time window between
3.4 and 5s after the switch (Fig. 1); and (3) during the course of adaptation in six
non-overlapping time windows of 833 ms (Supplementary Fig. 4).

Population-decoding analysis. To estimate what information can be extracted
about the stimulus orientation from a given neural population, we applied simple
linear decoders to our dataset. Such simple decoders are biologically plausible as
they perform classifications by computing the weighted sum of spike counts. The
weights can be considered as the synaptic strength and the outputs of classifiers,
which are based on a decision boundary, are analogous to neuron’s spiking
threshold. The main difference between the decoders is the way in which optimal
weights and the decision boundary are learned. Here, we employed two simple and
widely used decoders, including linear discriminant analysis (LDA) and support
vector machines (SVM with linear kernel). The advantage of the support vector
machine classifier is that it learns the structure of the neuronal response dis-
tributions without any particular pre-assumptions about the response distributions.
These linear classifiers exhibit good performance, generalisation, and minimal
overfitting for a wide range of neural data and applications>+%°,

Response matrix: before applying the decoder, we constructed a response
matrix, R, which is an § x N x T matrix, in which § is the number of unique
stimulus orientations, N is the number of neurons, and T is the number of trials for
each stimulus. Each element of the matrix is the number of spike events elicited by
each stimulus in each neuron over a given time window (e.g., 15 ms). Finally, the
spike counts across neural populations (N) were normalised (z score). This
normalisation was done to compensate for spike-count variations in response to a
stimulus across neural populations. The normalisation did not have any effect on
the pattern of decoding accuracy and a small effect on absolute accuracy (~1%
increment). The response matrix, R, was built across multiple time windows
starting from 0 to 200 ms after stimulus onset (2 ms temporal resolution). The
response matrix, R, was calculated across different time windows during adaptation
(after luminance-contrast switch; Supplementary Fig. 4). In some analyses
(Supplementary Figs. 4 and 5), we varied different dimensions of the response
matrix R and studied the effect of these changes on decoding accuracy.

Decoding analysis: in our analysis, we used 70% of the response matrix R to
train the classifiers and 30% of the remaining to test. We separately trained and
tested the decoder at early and late time periods after a stimulus switch and
additionally performed separate training and testing for each type of stimulus
switch. All the reported accuracies are the results of 15 cross-validated runs. The
trials, T, and neurons from three animals, N, were randomly selected at every time
delay, removing the effect of spike-count correlations. Here, all results are based on
resampled subpopulations of 50 neurons. To statistically test whether a given mean
decoding accuracy was significantly higher than chance, we repeated the same
decoding procedure but shuffled the trial labels across trials and time.

Multiplicative and additive modulations. To examine the changes in tuning
throughout the 5 s adaptation period, we first calculated PSTHs in a time window
of 0-200 ms following the appearance of each orientation. Then, tuning functions
were created by averaging the spike rate in a 20 ms time window centred on the
time of the peak response to the preferred orientation. These tuning functions were
calculated separately for gratings presented early (0-1.6 s) and late (3.4-5s) after
each luminance-contrast switch, giving a total of 16 tuning curves (Fig. 6; eight
switches, two time periods). For each neuron and switch type, we characterised its
multiplicative and additive modulations by performing linear regression on the
average responses to each orientation, during the early phase of adaptation com-
pared to the late phase. The slope of the linear fit indicates how tuning scales
multiplicatively (gain modulation of tuning function), whereas the intercept of the
fit describes the additive shift (offset). Thus, the responses of the neurons with a
purely multiplicative modulation can be fit with a line that passes through the
origin, while responses of neurons with a purely additive modulation can be fit by a
line with a slope of one and a non-zero intercept.

We examined the structure of multiplicative and additive modulations of tuning
curves of every neuron during early and late phases of different adaptation
conditions using four models: (1) a model with a single Von Mises function,
applied to both early and late phases; (2) a model with two independent Von Mises
functions, one for the early and one for the late phase; (3) a model with two Von
Mises functions, with the same gain for tuning curves at early and late phases but
with different offsets; and (4) a model with two Von Mises functions, with the same
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offset for tuning curves at early and late phases but different gains. To compare the
performance of different models, we calculated the mean square error between the
fit and experimental tuning curves. As the mean square error does not take into
account the number of parameters in each model, we also calculated the Akaike’s
Information Criterion to show which model is the best predictor considering the
number of parameters in each model.

Human psychophysical experiments. In order to investigate the perceptual
correlate of orientation discrimination in cortical responses during adaptation to
luminance and contrast, we performed psychophysical measurements in human
observers. The stimulus design was very similar to the switching-stimulus para-
digm in our monkey electrophysiology experiment, but here the subjects performed
an orientation-discrimination task following adaptation to a period of continuously
changing gratings.

On each trial, the observers fixated a black cross at the centre of the screen while
a movie of rapidly changing gratings with random orientations and phases was
presented. Stimuli were sinusoidal gratings with circular apertures of diameter 7°,
centred on the fixation cross, and were presented for two monitor frames (16.7 ms),
with 12 equally spaced orientations and eight phases (Fig. 5a). After 6 s of
presentation, the contrast (luminance) of gratings was switched to a higher (lower)
level. Either 0.2-1.2 s (early trials) or 5-6 s (late trials) after the switch to the new
contrast (luminance), a test grating was shown, followed by dynamic filtered
oriented noise®®, and a second test grating, each presented for 200 ms (Fig. 5a). Test
gratings and the dynamic noise mask had the same luminance and contrast.
Finally, observers indicated with a keyboard press whether the second test grating
was oriented clockwise or counter clockwise relative to the first test grating. The
stimulus timings used for the psychophysical tests differed slightly from those in
the physiological study. To increase any possible adaptation effects, we used slightly
longer adaptation periods, coupled with a larger relative delay between the early
and late periods. To minimise any distracting or masking effect associated with the
period immediately after a luminance or contrast switch, we also delayed the start
time of when the test gratings could appear to be 0.2's after the switch.

In the contrast-switch task, the contrast switched between 10 and 100%. In the
luminance-switch task, the grating (and background) luminance switched between
0.1 and 0.9 (normalised luminance) while having 10% contrast throughout the trial.
We used the method of constant stimuli with 14 levels of orientation difference,
AOri (seven clockwise), with logarithmic intervals. The sampling resolution varied
depending on subject’s threshold during practice trials. Auditory feedback at the
end of each trial indicated correct and incorrect responses. As a control, we
measured the subjects’ orientation discrimination threshold at low (10%) and high
(100%) contrast as well as low and high luminance levels. These trials consisted of
two test gratings, which were temporally separated by a filtered oriented noise, but
with no preceding adaptation gratings. In addition, in some trials, the
discrimination task was shown 2-3 s into the trial. We did not analyse these trials
and only included them for observers’ vigilance.

Stimuli were generated using MATLAB with Psychtoolbox®? and were
presented on an LCD monitor (ViewPixx 3D; VPixx Technology Inc., Saint-Bruno,
QC, Canada) with 120 Hz refresh rate, a diagonal display size of 22.5", the
maximum luminance of 106 cd m~2, a resolution of 1920 x 1080 pixels, and a
viewing distance 60 cm. We gamma corrected the monitor and used a 10-bit colour
resolution. The experiments were performed in a dark room while subjects were
comfortably seated on a chair and their head was rested on a chinrest. Experiments
were completed in two sessions lasting 60-90 min, with each trial condition
presented at least 15 times.

We calculated the ratio of clockwise responses at every AOri level for each trial
condition separately and fit a cumulative Gaussian function to data using
maximum likelihood methods. The discrimination thresholds (measured as just
noticeable difference) were then compared at different conditions. Non-parametric
statistical tests were performed, based on boot-strapped resampling of each
participant’s data 1000 times with replacement.

In total, we recorded the behavioural data from 31 subjects (16 females, aged
20-34 years, with normal or corrected-to-normal vision). The data of two subjects
were excluded because their psychometric curves were flat at 50%, indicating that
they were guessing or did not understand the task. Note that some subjects
participated in more than one of the four luminance and contrast tasks. Subjects
were students from the Faculty of Medicine, Nursing and Health Sciences, Monash
University. All subjects voluntarily participated in the experiments and gave their
written consent prior to participation. All human psychophysical experiments were
conducted in accordance with the National Statement on Ethical Conduct in
Human Research and all procedures were approved by the Monash University
Human Research Ethics Committee.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The datasets for the current study are available from the corresponding author on
request. MATLAB code used for the analysis is available from the corresponding author
on request.
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