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Acute kidney injury (AKI) is a renal disease with a high incidence and mortality. Currently,
there are no targeted therapeutics for preventing and treating AKI. Macrophages,
important players in mammalian immune response, are involved in the multiple
pathological processes of AKI. They are dynamically activated and exhibit a diverse
spectrum of functional phenotypes in the kidney after AKI. Targeting the mechanisms of
macrophage activation significantly improves the outcomes of AKI in preclinical studies. In
this review, we summarize the role of macrophages and the underlying mechanisms of
macrophage activation during kidney injury, repair, regeneration, and fibrosis and provide
strategies for macrophage-targeted therapies.
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INTRODUCTION

Acute kidney injury (AKI) has been defined as a clinical syndrome of kidney damage and acute loss
of kidney function that induces acid-base and electrolyte disturbances, accumulation of nitrogenous
waste products, and dysregulation of extracellular volume (1). Following mild AKI, the surviving
tubular cells can undergo dedifferentiation, migration, and proliferation that result in morphological
and functional recovery of the renal epithelium, but, under severe AKI, the kidney cannot be
completely repaired, leading to permanent kidney damage and fibrosis. Depletion of macrophages
can improve renal function and attenuate pathological changes following AKI in LysM-Cre mice
(2, 3). However, the role of macrophages hyperactivation in AKI and AKI progression offibrosis has
not been well studied.

Although kidney tissue retains a certain number of resident macrophages under physiological
conditions, circulating monocytes/macrophages are recruited to the renal interstitium when the
kidney is injured (4). The macrophages are active and exhibit pro-inflammatory, regenerative, and
resolving activities during the injury and repair processes. Macrophages have high plasticity and can
change their phenotype in response to renal injury (5). Based on their activation states and
functions, macrophages are divided into two types: classically activated macrophages (M1-type) and
alternatively activated macrophages (M2-type) (6, 7). M1 macrophages are characterized by their
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ability to guide acute inflammatory responses, and can secrete
multiple chemokines and pro-inflammatory cytokines, present
antigens, and participate in positive immune responses (8–10).
In contrast, M2 macrophages can help to resolve inflammation
through high endocytic clearance capacities and the production
of trophic factors that promote angiogenesis and mediate wound
healing (11). However, M2 macrophages can also produce some
profibrotic growth factors, such as epidermal growth factor
(EGF) and transforming growth factor-b1 (TGF-b1) to induce
the activation of interstitial fibroblasts and produce the
intracellular matrix under severe or repeated renal injury.
Damaged tubular cells release chemokines that promote M2
macrophage infiltration via selectin, integrin, trans-endothelial
migration into the kidney and constantly produce growth
factors/cytokine (12). Thus, M1 and M2 macrophages display
different functions in the kidneys following AKI.

In this article, we review the role of macrophages and the
underlying mechanisms of macrophage activation during kidney
injury, repair, regeneration, and fibrosis and provide
macrophage-targeted therapeutic strategies.
MACROPHAGES IN KIDNEY INJURY,
REPAIR, REGENERATION, AND FIBROSIS

Macrophages Induce a Pro-Inflammatory
Response Following AKI
Monocytes derived from bone marrow myeloid progenitors are
acknowledged to be the main source of infiltrating macrophages in
kidney disease (13). In experimental models and human biopsies,
interstitial and glomerular macrophage infiltration can be detected
in almost all types of AKI and chronic kidney disease (CKD) (14).
The present understanding of macrophage functions in AKI
derives mainly from studying various types of murine injury
models, including nephrotoxin, ischemia reperfusion (IR), and
rhabdomyolysis (15). Macrophages identify the primary damage
signals through pattern recognition receptors (PRRs), a receptor of
pathogen-associated molecular patterns (PAMPs), and recognize
damage-associated molecular pattern (DAMPs) (16). NOD-like
receptors (NLRs) and Toll-like receptors (TLRs) are the two main
types of DAMPs. In AKI, there is TLR receptor-driven
immunopathology, and resolution of inflammation for rapid
regeneration of injured renal cells (17). A study conducted by
Yin et al. (18) shows that inhibiting NLRP3 inflammasome
activation in macrophages can significantly alleviated AKI.
Activation of DAMPs/PAMPs through PRRs stimulates
macrophage phagocytosis, antigen presentation, phagolysosome
maturation, and the production of the pro-inflammatory cytokine
TNF-a, reactive oxygen species (ROS), and IL-1b (19, 20).
Overexpression of cytokine factors may induce severe kidney
damage by boosting the inflammatory action (21) and
promoting renal cell apoptosis and accelerating kidney injury
(22). Necrotic muscle cells in rhabdomyolysis-induced AKI
release heme-activated platelets that could raise the production
of macrophage extracellular traps (METs) by enhancing histone
citrullination and intracellular ROS generation (23). These
Frontiers in Immunology | www.frontiersin.org 2
findings emphasize the importance of understanding
macrophage functions in human AKI pathophysiology.

Macrophages in Renal Repair
and Regeneration
It has been reported that the initial pro-inflammatory monocyte
transition to macrophages stimulates tubular repair and
regeneration from AKI (24). Currently, the functional changes
of macrophages from pro-inflammatory to repair are still
uncertain, however, this may be related to the anti-
inflammatory effect of phagocytes and the changes in the
microenvironment during kidney injury that cause
transcriptional changes in resident macrophages (25). It has
been demonstrated that macrophages contribute to the process
of endogenous repair by secreting IL-22 and colony-stimulating
factor (CSF)-1 cytokines (26). The recombinant IL-22 cytokine
has the strongest pro-regenerator effects, as indicated by the
observation that it promotes re-epithelialization after TEC injury
(27). The TEC-specific CSF-1r/CSF-1 pathway also acts as a
contributor to the repair processes (28). One study indicates that
renal CSF-1 plays a vital role in polarizing renal macrophages to
a M2 phenotype and mediating in situ proliferation and
differentiation of renal epithelial cells during the recovery
phase after kidney injury (29). Another study shows that
granulocyte macrophage CSF (GM-CSF) mediates macrophage
activation during the renal repair phase whereas the inhibition of
GM-CSF attenuates the reparative macrophages and suppresses
tubular proliferation after IR injury (30).

These are examples of how macrophages play a direct role in
renal repair and regeneration. However, how macrophages
promote renal repair and regeneration by interacting with
other cell types is still incompletely understood.

Macrophages in Renal Fibrosis
Macrophages have received great attention for their role in the
progression of AKI to CKD in recent years. Although it has been
reported that following AKI, the failure of macrophages to switch
from pro-inflammatory M1 to the reparative M2 phenotype can
stimulate progressive renal inflammation and fibrosis (31),
sustained M2 macrophage infiltration of the kidney can
produce profibrotic growth factors/cytokines, such as TGF-b1,
resulting in excessive deposition of extracellular matrix (ECM)
and the progression of renal fibrosis (12). Compelling evidence
has confirmed that the degree of pro-inflammatory macrophage
infiltration is significantly related to the severity of renal injury in
CKD (32, 33). M1 macrophages are considered necessary for
maintaining the pro-inflammatory condition, causing
progressive renal injury and renal fibrotic development (34).
Thus, both M1 and M2 types of macrophages are involved in the
progression of renal fibrosis (35).

Renal fibrosis occurs when the ECM gradually replaces the
normal renal tissue (36). It has been reported that eliminating
macrophages can decrease renal fibrosis in most instances,
supporting the profibrotic functions of macrophages in kidney
diseases (37). Elevated levels of inflammatory cytokines, which
can be secreted by macrophages, such as IL-6, IL-1b, monocyte
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chemoattractant protein-1 (MCP-1), TNF-a, and macrophage
inflammatory protein-1b (MIP-1b), have been detected in
fibrotic kidneys (38–40). These pro-inflammatory cytokines
can attract other inflammatory cells from the blood to
permeate the vascular, mesangial, and interstitial areas. In
response to inflammation, the intrinsic cells secrete growth
factors and nephrotoxic cytokines to drive fibroblasts to
become myofibroblasts and proliferation in the kidney (41).
Myofibroblasts will continue to produce more ECM
components. Consequently, the imbalance of ECM synthesis
and degradation promotes the deposition of ECM components
in the kidney, thereby induing glomerular sclerosis and renal
fibrosis (42). Studies have confirmed that renal fibrosis is the
common pathological process during the progression of AKI to
CKD (43).
THE PATHWAYS OF MACROPHAGE
PRO-INFLAMMATION

Macrophages play roles in retaining an organism’s integrity by
either repairing tissue under sterile inflammatory conditions or
participating in pathogen elimination (44). Abnormally
functioning of macrophages can induce various diseases (45).
When activated, macrophages can engulf and kill pathogenic
microorganisms and release pro-inflammatory cytokines to
stimulate inflammatory responses and accelerate kidney
fibrosis (46). The major signaling pathways of macrophage
pro-inflammation in AKI include Notch, NF-kB, PI3K-AKT,
JAK-STAT, and necroptosis pathway.

Notch Signaling Pathway
The Notch signaling pathway plays a crucial role in embryonic
development that is related to the regulation of cell
differentiation, proliferation, and apoptosis through cell
interactions (47). The Notch pathway has also been reported to
influence inflammation and macrophage functions by regulating
macrophage polarization through controlling gene expression
(48). The Notch signaling pathway can be activated in kidney
injury, and stimulate the expression of IL-1b, IL-18, TNF-a and
ECM proteins such as collagen IV (Col IV) and fibronectin (FN)
(49). Moreover, Notch signaling can control hypoxia‐induced
epithelial-mesenchymal transformation (EMT) in the fibrotic
kidney. Hypoxia activates the “epithelial” Notch pathway
directly by up‐regulating the Notch intracellular domain (NIC)
and its ligand expression levels, which results in the increased
expression of collagen, fibronectin, and Snail and decreased
expression of E‐cadherin (50). Downregulation of the Notch
signaling pathway can facilitate the progression of monocyte
differentiation into macrophages in the presence of GM-CSF and
stimulate M1 and inhibit M2 polarization in macrophages (51).

NF-kB Pathway
The NF-kB pathway acts as a vital signaling pathway in response
to a multitude of environmental and intracellular stimuli and
Frontiers in Immunology | www.frontiersin.org 3
guides coordinated responses at the cellular level (52). NF-kB is
an inducible transcription factor that regulates inflammation and
an array of immune responses (53). It can be activated through
either canonical or non-canonical pathways (54). The canonical
NF-kB pathway activation is a rapid and transient response to a
wide range of stimuli, such as NF-kB1 p50, p65 and c-REL,
which are also referred to canonical NF-kB family members (55),
while the non-canonical NF-kB pathway involves the activation
of the p100/RelB heterodimer leading to the generation of p52/
RelB and the prolonged activation of NF-kB target genes in
response to a more limited set of stimuli, like TNF-a, IKKa,
IKKb, TRLs, NLRs (56–58). M1 macrophages accelerate
inflammation or kidney damage via NF-kB and a combination
of transcription factors (12). Moreover, NF-kB inhibition has
been demonstrated to decrease inflammatory responses and
fibrosis in multiple kidney disease models (59).

JAK-STAT Pathway
The JAK-STAT (Janus kinase/signal transducer and activator of
transcription) signaling pathway is closely related to the
phenotypic activity of macrophages (60). It mediates cytokine
liberation and leukocyte recruitment in the progression of AKI
(61). The enhanced and prolonged activation of JAK/STAT
signaling pathway stimulates M1 to secrete some cytokines/
chemokines such as IL-1b, TNF-a, IL-6, IL-12 and IFN-g,
which exacerbate kidney injury (62). A study conducted by
Zhang et al. (63) confirmed that activation of the JAK/STAT
signaling pathway promotes kidney injury. Thus, the JAK/STAT
pathway may be involved in the process of macrophage
mediated inflammation.

PI3K-AKT/mTOR Pathway
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(AKT)/mammalian target of the rapamycin (mTOR) pathway
is activated in most real diseases (64, 65). This signaling
pathway plays an important role in macrophage adhesion,
migration, invasion, metabolism, proliferation, and survival
(66–68). In the process of AKI, the PI3K/AKT/mTOR
signaling pathway mediates multiple receptor signal
transforms, including PAMP receptors, insulin receptors,
adipokine receptors, and cytokine receptors (69), which may
affect renal repair or damage. Activation of the PI3K/AKT/
mTOR signaling pathway can induce macrophage activation to
affect metabolic processes via high mobility group box-1
protein (HMGB1), TLR4, TNF-a, IL-6 and IkBa stimulators,
thereby regulating macrophage activation and metabolism (70,
71), and can inhibit the autophagy process in AKI to alleviate
kidney injury (72). It has been reported that targeting the PI3K/
AKT/mTOR signaling pathway can limit AKI by limiting the
activity of pro-inflammatory cytokines (73, 74). Moreover,
studies have demonstrated that the PI3K/AKT/mTOR
signaling pathway components have an isoform-specific and
distinct status in inflammatory diseases and macrophage
biology by controlling miRNAs, inflammatory cytokines, and
functions, including autophagy, phagocytosis, and cell
metabolism in AKI (72).
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Necroptosis Pathway
The necroptosis signaling pathway promotes inflammation by
activating the NLRP3 inflammasome and starting the caspase-1
process of macrophages to release mature IL-1b (75, 76). RIPK3
and MLKL can both induce cell death, causing inflammation by
secreting intracellular molecules (77, 78). RIPK3-caspase is
crucial in the procession of macrophage differentiation (79),
while how necroptosis mediated NLRP3 inflammasome
activation, and mechanisms underly AKI to CKD progression
remain unclear. As in tubular cells, TWEAK (TNF-like weak
inducer of apoptosis) increased RIPK3 expression in
macrophages however there is nothing known about RIPK1
(80). Macrophages conditional knockout mice also are
involved in decreasing expression of MCP-1, IL-6, IL-1b like in
renal tubular cells. Moreover, RIPK3 in macrophages promotes
NF-kB–dependent release of proinflammatory cytokines and
activates the NF-kB signaling pathway, in turn, promoting
macrophage-tubular crosstalk that recruits inflammatory
responses from tubular cells (80). Evidence has shown that
necroptosis plays a crucial part in the early progression of
multiple types of AKI (81, 82). A study by Chen et al. (83)
found that RIPK3 or MLKL gene deletion improves macrophage
infiltration, and NLRP3 inflammasome activation with a
decrease in IL-1b maturation and caspase-1 activation. This
eventually reduces interstitial fibrogenesis that occurs after
renal IR injury. That explains why the necroptosis signaling
pathway is contained in renal fibrosis-induced macrophages.

Mitochondrial Injury in the Regulation
of Macrophages
In addition to the above signaling pathways, mitochondrial
injury has been confirmed to stimulate classical macrophage
activation (84). Mitochondrial biosynthesis promotes the
initiation and maintenance of macrophage activation as they
associate with an increase in aerobic glycolysis and potential
pathways that can generate adenosine triphosphate (ATP),
which play a key position in the bioenergetic metabolism of all
cellular compartments (85). A decrease in ATP production, an
increase in ROS and HIF-1a production, the release of
cytochrome c, and disruption of mitochondrial cristae are also
observed, supporting a role for mitochondria in AKI (86, 87).
Changes in mitochondrial dynamics also contribute to the
decrease in mitochondrial energetics following AKI (88).
PATHWAY OF MACROPHAGE
REGULATED RENAL FIBROSIS

TGF-b Pathway
TGF-b is a major pro-fibrotic factor widely expressed in various
types of renal cells in the body and plays a key role in the
occurrence and development of renal fibrosis (89). The
infiltration of M2 macrophages in injured kidneys is
considered an important source of TGF-b (90). Kim et al. (91)
observed that TGF-b secretion from M2 macrophages was
significantly higher than that from M1 macrophages in AKI,
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suggesting the critical role of M2 macrophage-producing TGF-b
in renal fibrosis. Chung et al. (92) also revealed that TGF-b
released from M2 macrophages can enhance the EMT process.
Therefore, the excessive or prolonged production of TGF-b from
M2 macrophages may promote the deposition of collagen and
other ECM components causing fibrosis in the kidney (93). The
activation of the TGF-b pathway can active Smad3, NLRP3, and
Caspase-1 stimulators which ultimately exacerbated the
progression of AKI, and lead to renal fibrosis (94) (Table 1).
MACROPHAGE TARGETED THERAPY

i) Inhibition of macrophage infiltration. C-C motif chemokine 2
(CCL2) is an important monocyte chemoattractant that plays a
crucial part in immune regulation (95). CCL2 mediates fibrosis
by stimulating monocyte/macrophage infiltration (96).
Pharmacological inhibition and genetic blockade of CCL2 or
its receptor CCR2 are protective factors in renal inflammation
and fibrotic models (97).

Interferon regulatory factor 4 (IRF4) is a transcription factor
from the IRF factor family that exerts regulatory functions in the
immune system (98). Sasaki et al. (99) reported that deletion of
interferon regulatory factor 4 (IRF4) can prevent kidney fibrosis
after ischemic injury by decreased macrophage recruitment and
activation in mouse model. Similarly, Chen et al. (100) confirmed
that IRF4 deficiency can reduce kidney inflammation and
fibros i s a f ter acute k idney in jury by suppress ing
macrophage infiltration.

ii) Inhibition of macrophages polarization. It has been shown
that small molecule inhibitors of c-Jun amino-terminal kinase
(JNK) play protective roles in kidney injury in different forms of
kidney disease by inhibiting renal inflammation, apoptosis, and
fibrosis (101). JNK inhibitors (CC-401) can suppress M1
polarization and maintain effectiveness in renal IRI induced
fibrotic models (102). An experiment regarding the JNK
signaling pathway in renal I/R injury showed that CC-401
suppressed JNK signaling in kidney obstruction and obviously
decreased renal fibrosis induced by collagen IV deposition and
TABLE 1 | The stimulators in the signaling pathways of macrophage pro-
inflammation and macrophage regulated renal fibrosis.

Signaling pathway Stimulator Reference

Notch IL-1b, IL-18, TNF-a
Col IV, FN

(49)

NF-kB
JAK-STAT

NF-kB1 p50, p65, c-REL
TNF-a, IKKa, IKKb, TRLs, NLRs
IL-1b, TNF-a, IL-6, IL-12, IFN-g

(55)
(56–58)
(62, 63)

PI3K-AKT-mTOR
Necroptosis

HMGB1, TLR4, TNF-a, IkBa
TLRs, IL-1b
NLRP3
MCP-1, IL-6, TWEAK

(70, 71)
(77)

(80, 81)
(80)

Mitochondiral injury ATP
mtROS, HIF-1a, Cytochrome C

(85)
(85, 86)

TGF-b pathway Smad3, NLRP3, Capsase-1 Collagen (94)
(93)
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interstitial myofibroblast accumulation (103). These functions
were attributed to the inhibition of profibrotic molecule TGF-b1
and connective tissue growth factor gene transcription.

The JAK-STAT signaling pathway is a multipole transduction
system that inspects cellular responses to incoming signaling
ligands (104). Blockade of the JAK/STAT pathway in a murine
model demonstrated decreased renal interstitial fibrosis by
inhibiting macrophage-induced inflammation (105).
Meanwhile, Chuang et al. (106) indicated that inhibiting JAK
improved renal function pathologic lesions and reduced
macrophages accumulation in AKI.

Inhibition of necroptosis signaling pathway may also limit the
progression of AKI to CKD (83). The NLRP3 inflammasome in
macrophages is activated by various non-microbial danger
signals released by necrotic cells and is considered an
important pathway that sustains the inflammation-fibrosis
cycle in CKD (107). NLRP3 inhibition using 1,3-butanediol
treatment induces a shift of infiltrating renal macrophages
from pro-inflammatory and pro-fibrotic to an anti-
inflammatory phenotype and prevents renal fibrosis (108). A
small-molecule NLRP3 inflammasome inhibitor, MCC950, can
effectively reduce renal inflammation and fibrosis. Also, it may
protect mouse renal function from different kinds of kidney
damage. It is well established that hypertension is associated with
the increased expression of adhesion molecules and pro-
inflammatory cytokines and with the accumulation of
inflammatory T cells and macrophages in the kidneys (109).
Ismael et al. (110) found that MCC950 could restrain NLRP3
inflammasome activation of bone marrow-derived macrophages,
monocyte-derived macrophages, and peripheral blood
mononuclear cells in humans. Renal interstitial collagen
deposition and the profibrotic cytokine TGF-b were blocked by
treating with MCC950.
CONCLUSIONS

Macrophages participate in the progression of AKI to CKD being
involved in renal repair and regeneration. The multifunctional
roles of macrophages depend on the microenvironment,
including other cells of the immune system, cytokines, growth
factors, and the macrophage-to-myofibroblast transition.
Macrophages play an important role in diverse pathological
processes such as renal inflammation and fibrosis. Accordingly,
targeting the signaling mechanisms involved in macrophage
recruitment and activation may alleviate renal functional
Frontiers in Immunology | www.frontiersin.org 5
deterioration in macrophage-dependent kidney diseases. In
previous studies, the study of macrophages usually focused on
their typing and polarization, especially macrophages recruited
due to inflammation. Recent studies show that resident
macrophages in the kidney are also critically involved in the
process of kidney injury, repair, and fibrosis (111). The
proliferation and activation of resident macrophages are closely
related to renal injury and repair. In addition, epigenetic
regulation has been reported to affect recruitment of
macrophages and the release of inflammatory factors (112,
113). To date, only a few articles have described epigenetic
mechanisms regulating macrophages in kidney diseases (112,
113). Therefore, elucidating epigenetic regulation in macrophage
functions, phenotype changes and activation of local
macrophages in the kidney following diverse injuries will be
interesting future research directions.
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