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Abstract

The evolution of RNA-seq technologies has yielded datasets of scientific value that are

often generated as condition associated biological replicates within expression studies.

With expanding data archives opportunity arises to augment replicate numbers when condi-

tions of interest overlap. Despite correction procedures for estimating transcript abundance,

a source of ambiguity is transcript level intra-condition count variation; as indicated by dis-

jointed results between analysis tools. We present TVscript, a tool that removes reference-

based transcripts associated with intra-condition count variation above specified thresholds

and we explore the effects of such variation on differential expression analysis. Initially

iterative differential expression analysis involving simulated counts, where levels of intra-

condition variation and sets of over represented transcripts are explicitly specified, was per-

formed. Then counts derived from inter- and intra-study data representing brain samples of

dogs, wolves and foxes (wolves vs. dogs and aggressive vs. tame foxes) were used. For

simulations, the sensitivity in detecting differentially expressed transcripts increased after

removing hyper-variable transcripts, although at levels of intra-condition variation above 5%

detection became unreliable. For real data, prior to applying TVscript,�20% of the tran-

scripts identified as being differentially expressed were associated with high levels of intra-

condition variation, an over representation relative to the reference set. As transcripts har-

bouring such variation were removed pre-analysis, a discordance from 26 to 40% in the lists

of differentially expressed transcripts is observed when compared to those obtained using

the non-filtered reference. The removal of transcripts possessing intra-condition variation

values within (and above) the 97th and 95th percentiles, for wolves vs. dogs and aggressive

vs. tame foxes, maximized the sensitivity in detecting differentially expressed transcripts as

a result of alterations within gene-wise dispersion estimates. Through analysis of our real

data the support for seven genes with potential for being involved with selection for tame-

ness is provided. TVscript is available at: https://sourceforge.net/projects/tvscript/.
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Introduction

Developments in RNA-seq technology have revolutionized transcriptomic studies by allowing

for a rapid hi-resolution view of transcript expression [1]. In a typical RNA-seq experiment,

transcript expression profiles are estimated for each sample using a metric based upon the

number of sequenced reads associated with each transcript within a reference set [2–8]. Condi-

tion dependent expression profiles can then be used in order to identify which transcripts are

differentially expressed [9, 10]. A challenge arises due to sources of variation within expression

profiles that are independent of, or partially overlapping with, the condition of interest [2, 11–

13]. The inclusion of biological replicates reduces the effect of such noise [14, 15], and it has

been demonstrated that sufficient replicate numbers outweigh sequencing depth in terms of

increasing the accuracy within differential expression experiments [14, 16]. In studies not

involving highly controlled isolated environments, RNA-seq data from the rapidly growing

repertoire of published works can be incorporated [17–19], if data from a matching condition

to that being studied is available. This effectively increases the number replicates although vari-

ability can be amplified [20, 21].

Differential expression tools compute a statistical significance for each transcript, based

upon the abundance estimates within a condition, that reflect the possibility of that transcript

being differentially expressed [9, 10, 22]. To reduce the effect of intra-condition variation

across biological replicates on the estimation of abundance several methods have been pro-

posed including ALDEx2 [23], EDASeq [24] and PEER [25]. In addition to these, and more

generally applied, are the abundance estimation techniques implemented within established

differential expression tools such as DESeq2 [9] and EdgeR [10]. However, when methods are

compared, relative to the final sets of transcripts identified as being differentially expressed,

variable results are observed [15, 23, 26–29]. This is an indication that the problem of intra-

condition variation relative to the detection of differentially expressed transcripts using RNA-

seq data has not been completely resolved. Furthermore, there is no consensus on the best

approach to use [30].

Here we explore the effects that individual transcripts associated with high levels of intra-

condition count variation have on the end results of differential expression analysis using the

tool DESeq2 [9]; a tool that is well established and that has consistently demonstrated reliabil-

ity in identifying differentially expressed transcripts [27, 30, 31]. Our aim is to investigate the

possibility of whether or not the removal of transcripts, harbouring the highest levels of intra-

condition variation, from the reference set used during differential expression analysis can

produce sets of differentially expressed transcripts that display an increased level of confidence.

The latter being achieved through either: (a) the direct removal of transcripts previously iden-

tified as being differentially expressed, but whose expression patterns are ambiguous, or (b)

the indirect addition, or removal, of transcripts to, or from, those previously identified as

being differentially expressed as a consequence of alterations in p-adj values. The latter being

associated with shifts in the distribution of intra-condition variation, following the removal of

transcripts harbouring the highest levels of such variation. A by-product of this is the explicit

quantification of the level of intra-condition abundance variation present within the final lists

of differentially expressed transcripts.

To aid this exploration we present TVscript, a tool for the identification of transcripts

above user-specified levels of intra-condition normalized count variation, the latter being

strongly associated with transcript abundance estimation [4–8]. As input TVscript requires

one file per condition-associated replicate that contains the per transcript read counts obtained

following the mapping of reads from the replicate to a common reference set. As output

TVscript produces a set of corresponding count files that are absent of transcripts harbouring
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normalized intra-condition count variation higher than that associated with a user specified

percentile. These updated count files can be subsequently used within the differential expres-

sion tool of choice, in our case DESeq2 [9]. Through multiple iterations of differential expres-

sion analysis following filtering at varying thresholds and comparisons back to differential

expression analysis performed on non-filtered inputs, the effects of transcripts associated with

high intra-condition variation, in relation to quantity and consistency of differentially

expressed transcripts identified, can be explored.

Using TVscript we first explore the effects of intra-condition per-transcript read count vari-

ation through iterative differential expression analysis experiments involving highly controlled

simulated count datasets derived from the available dog reference transcriptome [32], and

where the exact level of background intra-condition count variation could be specified as well

as a subset-set of transcripts to be over represented across replicates (of second conditions

used within each iteration). Next, we explored the effects of intra-condition per-transcript

read count variation within two distinct case-studies, involving count data obtained following

the mapping of intra and inter-study RNA-seq datasets. Within these case-studies differential

expression patterns arising from data derived from brain samples of dogs and wolves (inter-

study scenario involving frontal cortex, cerebral cortex, prefrontal cortex and frontal lobe)

[32–35], as well as tame and aggressive foxes (intra-study scenario involving prefrontal cortex)

[36], generated in the scope of domestication experiments are compared at varying thresholds

of intra-condition normalized read count variation exclusion.

In addition to exploring the general effects of transcripts harbouring high levels of intra-

condition count variation on the outcome of differential expression analysis, we also had an

interest in understanding whether or not there were genes commonly up or down regulated

within the brain of both forms of domestic canids (dogs and tame foxes), but simultaneously

not so within their “wild/aggressive” counter parts (wolves and wild foxes). Such genes are

candidates for being associated with tameness. Domestic dogs present marked behaviour dif-

ferences from wolves, their wild ancestors, due to the evolution of unique social cognitive

capabilities [35, 37, 38]. Tame red foxes resulted from deliberated selection against fear and

aggression over several generations of cross-breeding [39] and they present several behavioural

and pheno-typical traits that resemble those found in dogs [36, 40, 41].

TVscript is open source and code, a quick start guide and test data, are available (under the

GNU General Public License) through the SourceForge project page https://sourceforge.net/

projects/tvscript/.

Materials & methods

RNA-seq datasets

To explore the effects of intra-condition count variation on the detection of differentially

expressed transcripts using real data we used both intra and inter-study datasets. At an intra-

study level, we combined publicly available RNA-seq data from brain tissue (prefrontal cortex)

of 12 tame and 12 aggressive red foxes (S1 Table) generated within the same study [36]. For

the inter-study case, we combined multiple publicly available RNA-seq datasets from several

dogs and six wolves [32–35], also derived from brain tissue (frontal cortex, cerebral cortex,

prefrontal cortex and frontal lobe) (S1 Table). In relation to the latter, dogs 1 to 6 and wolves 1

to 6 were derived from Albert et al., (2012), dog 6 from Roy et al., 2013, dog 7 (two replicates)

from Fushan et al., 2015 and dogs 8 and 9 (three replicates each) from Hoeppner et al., (2014)

as described within the table. All the samples were downloaded from the National Center for

Biotechnology Information (NCBI) and the European Bioinformatics Institute (EMBL-EBI),

covering a wide range of ages, both sexes as well as multiple replicates and sequencing
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strategies (S1 Table). We selected these specific case studies because, firstly we were interested

in evaluating the effects of intra-condition count variation both at intra and inter-study levels

and the domestic dog, being a model organism, has an available high-quality reference tran-

scriptome as well as several high-quality RNA-seq datasets generated across different studies;

while secondly, we sought to perform a brief exploratory inter-study scan to investigate if the

domestication of both dogs and foxes has resulted in the co-expression of a set of common

brain genes, relative to their “wild/aggressive” type, since behavioural modifications are con-

sidered to have been the first target in domestication [42].

Reads from all samples were mapped to the dog reference transcriptome [32], which con-

tained 26,107 annotated transcripts (Ensembl CanFam3.1, release 92) [43], using Bowtie

v.2.3.4.1 [44]. We did not use a splice-site aware mapper, such as Tophat2 [45] or HISAT2

[46], since introns were not expected to be present within the reference transcriptome. Reads

were not mapped to the dog genome as our aim was to explore the effects of intra-condition

variation on a predefined set of reference transcripts, and not infer novel transcripts from

these previously published datasets. We did not use the fox reference transcriptome (available

on Ensembl) for the mapping the fox datasets within our overall analysis as we were interested

in directly comparing differentially expressed transcripts from the same underlying reference

set identified using the fox, dog and wolf datasets. We did however map all of the fox datasets

to the fox reference transcriptome in order to confirm that the proportion of reads mapped

was similar to that when using the dog reference transcriptome. The pileup.sh script from the

BBmap package [47] was used to obtain per transcript abundance estimates (measured by the

number of mapped reads to the corresponding transcript) in each sample. Read counts from

technical replicates of “Dog_8” and “Dog_9” were averaged and merged into one file (S1

Table), while read counts from the two biological replicates of “Dog_7” were treated separately.

Finally, to confirm that the final read count numbers were reliable relative to the dog reference

transcriptome, all read datasets from foxes, dogs and wolves were re-mapped using the

pseudo-mapper kallisto v0.46.1 that implements a rapid and accurate kmer search based strat-

egy for estimating transcript abundance counts [48]. For each dataset an r2 correlation value

was calculated describing the linear correlation between the per-transcripts counts obtained

following Bowtie2 mapping and the corresponding abundance counts obtained using kallisto.

Software

TVscript requires as input: (1) multiple files containing per transcript read counts (one per

sample), (2) a file containing the lengths of the transcripts that the reads were mapped to, (3) a

percentile threshold value for intra-condition variation and (4) a configuration file that indi-

cates the locations all files as well as the condition allocations of the count files in (1). An exam-

ple configuration file along with further details is available from the SourceForge project page.

The steps that TVscript implements to identify transcripts associated with high levels of dis-

jointed read counts are (see Fig 1 for a workflow): i) each input dataset, containing count val-

ues from a particular sample, is allocated to either condition A or B, as indicated within the

configuration file; ii) counts are normalized by dividing them by the length of the correspond-

ing reference transcript and by the sum of all counts for that sample; (iii) for each reference

transcript (t), the absolute pairwise differences between normalized read counts across all sam-

ples within condition A are calculated; (iv) the corresponding variances are calculated; (v)

steps (iii) and (iv) are repeated for condition B; (vi) variance scores from each condition are

placed in ascending order and associated with corresponding percentiles; (vii) reference tran-

scripts are removed (or filtered) if their variance score is above that associated with the user

specified percentile threshold; (viii) raw read counts associated with the remaining transcripts
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are outputted into separate files that correspond to each input dataset. As to avoid overwriting

the original count files, the names of updated count files are specified within the configuration

file. These updated count files can be used as input for differential expression analysis software

such as DESeq2. Note: in relation to step (vi) the final list of variance scores obtained are a

representation of those derived from both conditions, and during step (vii) it is the variance

score that is associated with the user-defined percentile that is used. The latter means that for

Fig 1. Diagramatic overview of how reference based transcripts are removed by TVscript. Steps (i) to (viii) indicate actions taken. Reference transcripts

(green circles) are showen for diagramtic purposes in order to highlight how read counts (grey circles) across replicates are treated for each transcript

independently. Read counts are grouped into individual files (gray rectangles) in accordance to replicate. These files are grouped into one of two conditions

(blue and brown boxes). Remaining keys are indicated at the bottom.

https://doi.org/10.1371/journal.pone.0274591.g001
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separate comparisons (e.g. wolves vs. dogs and aggressive vs. tame foxes) at a given filtering

threshold the number of filtered transcripts may not be identical (despite the same reference

set being used); as the underlying variance score distribution calculated for each can be

different.

TVscript is implemented in Java programming language and runs on all operating systems

with installed Java Runtime Environment v.8.0 or higher. It is open source and available under

the GNU General Public License v3.0. Source code, usage instructions and sample data can be

found on the SourceForge project page: https://sourceforge.net/projects/tvscript/. Although

TVscript is implemented in Java the steps involved can be readily implemented within any lan-

guage (e.g. R or python), using the detailed description provided above as well as the Java

source code that is fully available. There are no dependent packages where code is unavailable.

At the time of development we choose Java mainly due to its platform independence, which

can be an advantage within setting up analysis pipelines involving many different tools. That

said we are aware that many differential expression analysis tools are R based and future

demand may warrant a supported R version.

Controlled intra-condition variation within simulated data

We tested TVscript through a series of iterative differential expression analysis experiments

involving highly controlled simulated count data. During each iteration the counts associated

with each transcript, within each replicate dataset created, represented simulated transcript

expression from the dog reference transcriptome and were obtained using CSReadGen [49].

Using the latter, the level of random background count variation away from that required for a

normalized even coverage across all transcripts could be specified, as well as a subset of tran-

scripts to be over represented within replicates of a condition. Background count variation

refers to varying count levels associated with individual transcripts that are not maintained

across replicates of a condition, thus effectively reflecting intra-condition noise, whilst specify-

ing a subset of transcripts to be over represented across replicates of a condition reflects identi-

fiable over expressed transcripts. A similar experiment to those described here, but in relation

to the effects of chimerism on the results of differential expression, has been described in Lin-

heiro and Archer (2021) [50].

As a preliminary, and to demonstrate the general reliability of DESeq2 in the absence of

random intra-condition count variation, count data was simulated for 22,580 transcripts rang-

ing in length from 300 to 5000 bp from within the dog reference transcriptome. For a single

iteration ten replicates of count dataset, each representing three million read pairs (�20X cov-

erage), were generated in accordance with two conditions, A and B (five in each), where within

condition B one hundred transcripts were selected for count over representation by a factor of

two across replicates. For all other transcripts, counts were generated to represent an even dis-

tribution of reads (length 150 bp, insert size 300 bp). These count files were used as input to

perform differential expression analysis between condition A and B in DESeq2 v.1.32.0, con-

sidering transcripts with p-adj< 0.05 (corrected by the Benjamini and Hochberg method) to

be differentially expressed. The number of transcripts that were detected as being over-

expressed was recorded. This was repeated one hundred times in two different ways: (i) the

transcripts initially flagged for count over representation were kept constant throughout and

(ii) during each iteration a new set of random transcripts for over representation was selected.

A brief overview of the R-script we used for differential expression analysis within individual

iterations is available on the Zenodo repository [51].

Next, a similar experiment was performed but where the level of random count variation

introduced into the count datasets generated ranged from 1% to 10% in steps of one.
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Introduced variation was not coupled between replicates, thus reflected intra-condition varia-

tion. At each level of variation one hundred iterations of the following steps were performed.

(i) Ten replicates were generated and allocated into two conditions A and B (five in each),

where within B one hundred selected transcripts had counts over represented. (ii) At the per-

cent level of variation associated with the iteration, that percent of transcripts from each of the

ten replicates were randomly selected for count over representation. (iii) DESeq2 was used in a

similar manner to before on the count files within conditions A and B to obtain a list of over

expressed transcripts. (iv) TVscript was run using a 95th percentile variance threshold to gen-

erate ten corresponding modified count files also separated into two conditions (A’ and B’).

(v) DESeq2 was again used on these to obtain a list of over-expressed transcripts. (vi) The lists

of over-expressed transcripts obtained in (iv) and (v) were cross compared. Once again this

was repeated in two different ways: (i) the one hundred transcripts initially flagged for over

representation were kept constant throughout all levels of variation and for each of the associ-

ated iterations and (ii) during each level of variation and for each iteration a new set of one

hundred transcripts were randomly selected.

Exploring the removal of transcripts associated with high intra-condition

variation within real data

For each case study (wolves vs. dogs and aggressive vs. tame fox) we ran TVscript using the

count datasets described under the section “RNA-seq datasets” and by applying variance filter-

ing thresholds corresponding to variance values associated with the 70th up to the 90th percen-

tiles (in steps of five), and to the 91st up to the 99th (in steps of one). Steps of one were used in

the latter as to allow for transcripts associated with the highest levels of intra-condition varia-

tion to be explored in more detail. For each threshold value, only transcripts with variance

below that value were maintained. During each run, we recorded the number and IDs of all

transcripts that were removed so that they could be cross-compared. Following each run, we

used the updated count files produced to perform differential expression analysis using

DESeq2 v.1.22.2. Transcripts with p-adj< 0.05 (corrected by the Benjamini and Hochberg

method) were considered to be differentially expressed. DESeq2 identifies differentially

expressed transcripts by estimating gene-wise dispersions and applying shrinking methods to

model counts and thus effectively normalize for individual outliers [31]. Distributions of gene-

wise dispersions following normalization are conveniently accessible and provide a good met-

ric to visualize the effects of removing transcripts associated differing filter levels. Differential

expression analysis using the original non-filtered datasets was also performed. For the aggres-

sive vs. tame fox case study batch effects were not considered as all data came from the same

study, tissue and sequencing run, additionally no further information about sample prepara-

tion was available. For the wolves vs. dogs case study we tested for effects based on tissue, pri-

marily for quality control of the final transcripts we drew biological-related conclusions about,

and compared results obtained to those in the absence of batch information. In our analysis

we used differential expression results based solely on the latter, as firstly, effects associated

with tissue at an inter-study level are unpredictable as there are many factors involved, such as

precision of dissection, time of dissection, time to dissect, state of individual tissue samples as

well as individual who prepared sample, and other than publication or information mentioned

for the fox case study, no further information on batches was obtainable. Secondly, although

DESeq2 provides an internalized method for accommodating batch effects that we applied

(~batch + condition), the results obtained at an intra-study level, with well defined batches,

between alternative methods of testing are variable [52]. Lastly, we were primarily exploring

the effects of removing hyper variable transcripts on the mechanics of detecting differentially
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expressed transcripts and our simulations and case studies were a means to an end in achieving

this. As long as input counts for a given filtering threshold within a given case study or a itera-

tion were consistent with those of the initial input data, the effects of removing hyper variable

transcripts could be observed, independent of other factors affecting the data prior to analysis.

To visualize the overall effects of covariates broadly affecting the relationships between datasets

within each case study, we performed a principal component analysis (PCA) using the plotPCA
function from DESeq2 with non-filtered normalized count data.

To evaluate TVscript we used three metrics that when combined quantify the overall impact

of intra-condition variation on downstream differential expression analysis. The metrics were:

i) number of ambiguous positives within transcripts identified as being differentially expressed

in the non-filtered datasets; ii) distributions of dispersion estimates and outliers in differential

expression analysis for non-filtered and all filtered datasets; and iii) discordance in the list of

differentially expressed transcripts between non-filtered and filtered datasets (selected percen-

tiles: 97th, 95th, 90th).

(i) Ambiguous positives. We identified transcripts appearing as being differentially

expressed when using the non-filtered datasets as input to DESeq2 that were associated with

the top 10 levels of intra-condition variation (above the 90th percentile threshold value). These

we designated as ambiguous positives. Small numbers of these, relative to the overall number

of identified differentially expressed transcripts would indicate that TVScript is having little

direct effect on lists of identified differentially expressed genes.

(ii) Distributions of dispersion estimates. For the non-filtered and all filtered input data-

sets (70th up to the 90th percentiles in steps of five and to the 91st up to the 99th in steps of one)

we calculated correlation coefficients (r2) using a linear regression analysis in R [53], between

dispersion estimates and the mean of normalized counts, both the latter calculated by DESeq2

during differential expression analysis. Dispersion is inversely related to the mean, as lower

mean counts are affected by variation to a higher degree. If a stronger correlation is seen for

the filtered input datasets, then this would suggest that the distribution used to model differen-

tial expression could be more reliable in relation to identifying differentially expressed tran-

scripts. In addition to this, we retrieved the number of outliers detected by DESeq2, expecting

a decrease after each filtering step. Outliers are recognized by the DESeq2 as the points with

extremely high dispersion values that cannot by shrunk towards the fit curve. This was per-

formed independently for both case studies.

(iii) Discordance lists of differentially expressed transcripts between applied filter lev-

els. We calculated the proportion of discordance between lists of differentially expressed

transcripts produced when using non-filtered and filtered datasets at the 97th, 95th and 90th

percentile threshold values. Two types of observed discordances relative to the non-filtered list

were considered: (a) transcripts that were lost directly due to filtering or indirectly due to p-

adj values no longer being significant, and (b) transcripts that were added due to alterations in

p-adj values. Quantifying the nature of these discordances provides insight into the general

consistency of genes identified as being differentially expressed across varying filter thresholds.

To visualize the overlap between the non-filtered and filtered lists we used the VennDiagram
v.1.6.20 package in R.

Gene annotation and gene family analysis

For each case study, differentially expressed transcripts obtained using the non-filtered and

filtered datasets were matched to the correspondent gene ID. This was done with the R pack-

age BioMart [54] using the Ensembl Gene database (version 94). To begin to identify gene

families that displayed similar regulation in both dogs and tame foxes, i.e. relative to the “wild/
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aggressive” type, we grouped up and down regulated genes into gene families. Genes within

these families were then classified according to whether they were unique to dogs or tame

foxes or shared between the two. Within each case study, a gene family was only considered if

all the associated genes agreed in relation to their direction of expression (up or down

regulation).

Results

Mapping success of RNA-seq data

Mapping of the 44 datasets corresponding to dogs and wolves against the dog reference tran-

scriptome revealed an average success of 60% and 58% respectively, in terms of the number of

mapped reads (S1 Fig). Similar values between wolves and dogs were expected, given their

recent divergence of ~23,000 years ago [55]. Comparable proportions of reads failing to map

(~40%) have been previously reported for dog brain samples [33] and are most likely associ-

ated with i) novel genes; ii) regions that are not translated despite being transcribed; iii) con-

tamination with genomic DNA; and iv) uncharacterized chimeras and other artefacts within

reference sets resulting from library preparation during sequencing [56] and various assembly

errors [57]. When a different mapping approach was used for each RNA-seq dataset (i.e. kal-

listo) transcript abundance counts remained consistent with those obtained following Bowtie2

mapping, as indicated by high r2 correlation values (S2 Fig). R2 values ranged between 0.8546

and 0.9944. All per-transcript mapped read counts, obtained following each mapping

approach, have been made available on the Zenodo repository [58]. For the fox datasets, an

average of 50% of reads mapped to the dog reference transcriptome using Bowtie2 (S1 Fig);

confirmed by the kallisto estimated abundance counts (S2 Fig). This lower percentage of

mapped reads, relative to the dog and wolf datasets, could be expected due to an increased

genetic divergence from dogs (~10 mya) [59] together with the other aforementioned factors.

However, when these fox datasets were mapped to the Ensembl available fox reference tran-

scriptome using both Bowtie2 an improvement in the overall mapped read counts was not

observed (S3 Fig).

Controlled intra-condition variation within simulated data

When not faced with increasing levels of random intra-condition count variation DESeq2 per-

formed exceptionally well. For 86 of the one hundred iterations performed DESeq2 recovered

all transcripts that were selected for count over representation (S4a Fig). Of the other 14 itera-

tions the lowest number recovered was 72. Similarly, for the one hundred iterations where the

random transcripts selected for count over representation were re-selected during each, in 87

cases all over represented transcripts were identified as being over expressed, whilst in the

remaining 13 the minimum number identified was 72 (S4b Fig). However, as levels of intro-

duced intra-condition variation increased, the number of transcripts identified by DESeq2 fell,

both before and after filtering the input counts with TVscript (Fig 2). At all levels of intra-con-

dition variation, the post-filtered data had an increase in the number of differentially expressed

transcripts identified. It should be emphasized that the reduction in the number of transcripts

identified as being over expressed is not a negative reflection on the performance of DESeq2,

but instead it is a consequence of purposefully increasing the level of randomness within the

count data. The same pattern is true when the one hundred selected transcripts for count over

representation are re-selected within each iteration (S5 Fig).

For iterations associated with each increment in random intra-condition variation, the

number of transcripts commonly identified as being over expressed both prior-to and post fil-

tering are presented in S2 Table (over represented transcripts kept constant across iterations)
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and S3 Table (over represented transcripts re-selected for each iteration). The proportion that

these numbers make up relative to the maximum number of transcripts identified as being dif-

ferentially expressed, pre- and post filtering, are presented in S4 and S5 Tables (constant) (re-

selected). In all cases, below a 5% level of random variation these numbers are high (constant

—1 to 4% averages: 0.96, 0.98, 0.94 and 0.81; re-selected—1 to 4% averages: 0.96, 0.97, 0.93 and

0.82), indicating that on top of additional transcripts identified post-filtering with TVscript,

transcripts identified pre-filtering are still found. Consequently, this suggests that additional

transcripts identified as being over expressed post-filtering are not at the expense of previously

detected transcripts pre-filtering. Above the 5% level of intra-condition variation the ability to

successfully identify the one hundred transcripts selected for over representation within condi-

tion B diminishes within iterations (Fig 2; S5 Fig). This could be indicative of a tentative esti-

mate on the limit of at what level of random intra-condition count variation becomes

inhibitory within differential expression analysis studies.

Fig 2. Over expressed transcripts pre- and post-filtering using simulated data. The number of transcripts identified by DESeq2 as being over expressed

both prior to (light gray) and post (dark gray) filtering of count datasets within each of the one hundred iterations performed at each level of introduced

random intra-condition count variation. Each iteration involved initially simulating ten count datasets divided into conditions A and B following which

DESeq2 was run to attempt to identify the one hundred transcripts selected for over representation as described in the methods. Following this the ten

simulated datasets were filtered using TVscript with a 95th percentile threshold to generate corresponding filtered datasets (divided into corresponding

conditions A’ and B’) on which DESeq2 was re-run.

https://doi.org/10.1371/journal.pone.0274591.g002
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Exploring the removal of transcripts associated with high intra-condition

variation within real data

No significant difference existed between the overall distributions of the per-transcript intra-

condition variation values for wolf and dog samples (Wilcoxon-test, p-value < 0.198, Fig 3a).

The PCA based on the entire set of normalized non-filtered counts, revealed that the wolf sam-

ples were more aggregated than dog samples (Fig 3c). For aggressive and tame fox samples, we

observed a significant difference (Wilcoxon-test, p-value< 2.2e-16, Fig 3b) between the distri-

butions of the per-transcript intra-condition variation values, most likely resulting from an

increased intra-condition variability within tame fox samples. In particular, we found five sam-

ples that were differentiated from the remaining seven in the PCA (Fig 3d), with 80% variance

being explained by this clustering in PC1.

Prior to differential expression analysis, for each case study (wolves vs. dogs and aggressive

vs. tame foxes), TVscript was used to remove transcripts in accordance with a series of intra-

condition variance thresholds (Fig 4a and 4b; S6 Table). Initially, for wolves and dogs 184 tran-

scripts (out of the 26,107) associated with high intra-condition variation (99th percentile and

Fig 3. Characterization of intra-condition variation. Percentile range of intra-condition variation scores (x-axis) observed prior to filtering, across both

case studies, a) wolves (orange) and dogs (red); b) tame (dark blue) and aggressive (light blue) foxes. PCA plots based on normalized non-filtered count

data of the individual datasets comparing c) wolf and dog, and d) tame and aggressive fox. In the latter only individual samples that were positioned within

a distant cluster are labelled with the sample ID.

https://doi.org/10.1371/journal.pone.0274591.g003
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above) were removed, while for the aggressive and tame fox samples, 235 transcripts were

removed. The number of transcripts removed was higher for the fox samples than for those of

wolf and dog, reflecting the higher intra-condition variability present. Combined across the

top ten levels of intra-condition variation, 12% (n = 3134) and 14.89% (n = 3888) of the refer-

ence transcripts were removed in wolf/dog datasets and aggressive/tame fox datasets respec-

tively (S6 Table).

Differential expression analysis

Using non-filtered datasets as input to DESeq2, 430 differentially expressed transcripts were

identified between wolves and dogs (Fig 5a; S7 Table). Of those, 259 were up regulated, while

171 were down regulated in dogs. Between aggressive and tame foxes, 651 differentially

expressed transcripts were identified (Fig 5a; S8 Table), of which, 532 and 119 were up and

down regulated, respectively, in tame foxes. Post filtering, within the first ten steps of size one

from the 99th down to the 90th percentiles, the number of differentially expressed transcripts

identified peaks at the 97th (n = 430; up = 255, down = 175) and the 95th percentiles (n = 730;

up = 607, down = 123) in dogs and tame foxes (Fig 5a), respectively. This indicates that for

these data the removal of the 3% (n = 854) and 5% (n = 1940) of transcripts associated with the

highest levels of intra-condition variation maximized the detection of differentially expressed

transcripts.

Evaluation metrics

(i) Ambiguous positives. Of the transcripts that appeared as being differentially

expressed, when using non-filtered datasets as input to DESeq2, 17.44 (n = 75) and 21.51%

(n = 140) were associated with high intra-condition variation (above the 90th percentile thresh-

old) within the wolves vs. dogs and aggressive vs. tame foxes respectively (Fig 5b). This was

higher than the relative proportion of such transcripts with the reference set in general, where

12.08% and 14.89% of transcripts possessed intra-condition variation above the 90th percentile

for the wolf/dog and the aggressive/tame fox respectively (Fig 4a and 4b; S6 Table). These were

transcripts that we considered as ambiguous positives and the average across both case studies

Fig 4. Removal of transcripts above specified levels of intra-condition variation. Percentile range of combined intra-condition variation scores (x-axis)

present in each case study, a) wolves and dogs; b) tame and aggressive foxes. The number of transcripts removed in the top five percentiles (from the 95th to

the 99th) are presented in each panel.

https://doi.org/10.1371/journal.pone.0274591.g004
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Fig 5. Effects of removing transcripts above specified levels of intra-condition variation on differential expression analysis. a) Number of differentially

expressed transcripts (DETs) identified using non-filtered (NF) and filtered datasets, based on the top 10 percentiles (99th to the 90th), for both case studies.

Up and down regulated transcripts are represented by red and blue dots respectively. Gray arrows identify the selected thresholds for which the results of

subsequent corresponding differential expression analysis were used for the identification of candidate transcript associated with tameness within each case

study. b) Number of transcripts identified as differentially expressed within the non-filtered datasets that were associated the highest levels of intra-

condition variation (99th to 90th) within both case studies, wolves and dogs (orange dots), and tame and aggressive foxes (blue dots).

https://doi.org/10.1371/journal.pone.0274591.g005
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was 19.45%. The number was higher within the fox datasets where elevated variability among

samples was observed, suggesting that differences within intra-condition read counts could

have influenced the final outcome of identified differentially expressed transcripts.

(ii) Distributions of dispersion estimates. Within both case studies the regression analy-

sis indicates that removing transcripts associated with high levels of intra-condition variation

improved correlation coefficients in relation to those from the non-filtered datasets (Fig 6a

and 6b; S9 Table). Associated with the elevated levels of variation observed within the fox data-

sets, there was a better fit within the wolves vs. dogs comparison (r2 > 0.7) than that of the

aggressive vs. tame fox one (r2 > 0.5). For the latter, there was visible elevation in the number

of dispersed points around the line of best fit. With the removal of transcripts associated with

Fig 6. Distribution of dispersion estimates. Plots of final dispersion estimates for both case studies, a) wolves and dogs; b) tame and aggressive foxes,

calculated using DESeq2 for the non-filtered (NF; orange) and 10% filtered datasets (90th; blue). Each black dot represents a single transcript, and red dots

represent outliers. The number of outliers and correlation index (r2) are displayed in the top right corner of each panel. Both x and y-axis are transformed

into a logarithm scale. The line in each graph corresponds to the regression analysis between the mean of normalized counts and dispersion estimates.

https://doi.org/10.1371/journal.pone.0274591.g006
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the highest levels of intra-condition variation a reduction in the number of outliers within

both case studies was also observed (Fig 6a and 6b; S9 Table).

(iii) Discordance lists of differentially expressed transcripts between applied filter lev-

els. Within the wolves vs. dogs case study, from the 430 differentially expressed transcripts

identified when using non-filtered data as input to DESeq2, 346 were maintained when using

input data filtered at the 97th, 95th, and 90th percentile threshold values (Fig 7 and S7 Table). 26

transcripts were added as differentially expressed following filtering. For this case study, the

overall discordance between the differentially expressed transcripts identified using filtered

and non-filter input data was 25.58% (Fig 7—inset table). For the second case study, aggressive

vs. tame foxes, 504 out of the 651 differentially expressed transcripts identified using the non-

filtered inputs were maintained when using filtered input data at the 97th, 95th, and 90th per-

centile threshold values, with up to 114 being added following filtering (Fig 7 and S8 Table).

This time the overall level of discordance was 40.09% (Fig 7—inset table). Importantly, in both

case studies the added transcripts were consistently maintained across the three filter levels.

This reflects the general tendency observed within iterative testing using simulated data where

the differentially expressed transcripts identified using lower filter levels are maintained at

higher levels of filtering in addition to any newly identified transcripts (S4 and S5 Tables).

Candidate genes and gene families

By performing annotation using the filtered datasets where the number of differentially

expressed transcripts was maximized (3% and 5%, in dogs and tame foxes, respectively), we

found 21 gene families in common among the up-regulated genes in dogs and tame foxes.

These 21 gene families contained 50 genes (Table 1), of which 19 were exclusive to dogs while

24 were exclusive to tame foxes. The remaining seven genes (RGR, CHRNA5, SQLE, ARH-

GAP25, ITGA7, MYO7A and TRIB2), were found to be commonly up regulated in both dogs

and tame foxes. When batch effects based on tissue were considered RGR, CHRNA5, MYO7A

and TRIB2 were maintained as being commonly up regulated (S6 Fig). Note: although in rela-

tion to the latter SQLE, ARHGAP25 and ITGA7 were lost, batch effects based on tissue across

multiple studies where little other batch information is obtainable could be considered as a

very conservative exclusion.

In addition, we also found three gene families, containing four genes, simultaneously down

regulated in both groups (Table 2). Two of these genes (STMND1 and OASL) were shared

Fig 7. Differentially expressed transcripts overlapping between non-filtered and filtered datasets. Venn diagrams representing the number of

overlapping differential expressed transcripts found following differential expression analysis using non-filtered datasets and filtered datasets (97th, 95th and

90th percentiles), within each case studies. The inset table provides information about the number of differential expressed transcripts lost/added following

each filter step in relation to the non-filtered dataset as well as the the percentage of total discordance.

https://doi.org/10.1371/journal.pone.0274591.g007
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Table 1. Shared genes and gene families (Up regulation). List of the gene families, and shared genes, that were commonly up regulated in dogs and tame foxes. The

number, and name, of the genes within each gene family are provided, with the corresponding log2fold-change values in brackets for each species. Within each family, sin-

gle genes were charecterized as shared between dogs and tame foxes (bold), or as exclusively to each of the two groups. When more than one transcript for a specific gene

was present, all the log2FC values are reported.

Gene Family Group N of genes Gene name and log2FC value

Retinal G protein-coupled receptor Shared 1 RGR (2.10 in dogs, 0.78 in tame foxes)

Cholinergic receptor nicotinic alpha Shared 1 CHRNA5 (1.1 in dogs, 0.4 in tame foxes)

Squalene epoxidase Shared 1 SQLE (0.54 in dogs, 0.31 in tame foxes)

Rho GTPase activating protein Shared 1 ARHGAP25 (0.86 in dogs, 0.72 in tame foxes)

Tame fox 2 ARHGAP4 (0.64); ARHGAP30 (0.57)

Integrin alpha subunits Dog 3 ITGA6 (1.25, 1.24); ITGA8 (1.14, 0.90); ITGAX (0.97)

Tame fox 1 ITGAL (0.73)

Shared 1 ITGA7 (0.76 in dogs, 0.46 and 0.49 in tame foxes)

Myosin Dog 1 MYO3A (1.12)

Tame fox 3 MYOZ1 (1.53); MYO1F (0.93); MYO1C (0.47)

Shared 1 MYO7A (0.82 in dogs; 0.41 in tame foxes)

Tribbles pseudokinase Tame fox 2 TRIB1 (0.94); TRIB3 (0.78)

Shared 1 TRIB2 (0.61 in dogs; 0.2 in tame foxes)

EF hand calcium binding Dog 1 EFCAB1 (2.59)

Tame fox 1 EFCAB2 (0.46)

Transcription factor Dog 1 TCF23 (2.04)

Tame fox 1 TCF19 (0.63)

Adhesion G protein-coupled receptors Dog 1 ADGRG6 (1.45)

Tame fox 1 ADGRG1 (0.57)

Patatin Like Phospholipase Domain Dog 1 PNPLA4 (1.41)

Tame fox 1 PNPLA7 (0.59)

SRY-box Dog 1 SOX6 (1.26)

Tame fox 2 SOX17(0.84); SOX10 (0.66)

Hyaluronan and proteoglycan link protein Dog 1 HAPLN1 (1.15)

Tame fox 1 HAPLN3 (0.70)

Serine/threonine kinase Dog 2 STK17A (1.15, 1.14); STK32A (1.10)

Tame fox 1 STK40 (0.57)

Potassium channels Dog 1 KCTD16 (0.98)

Tame fox 1 KCTD15 (0.72)

Podocalyxin like Dog 1 PODXL (0.95, 0.84)

Tame fox 1 PODXL2 (0.70, 0.69, 0.67)

ATP binding cassette subfamily B Dog 1 ABCB1 (0.93)

Tame fox 1 ABCB9 (0.52)

Zinc finger DHHC-type Dog 1 ZDHHC15 (0.75)

Tame fox 1 ZDHHC1 (0.70)

Sushi domain Dog 1 SUSD1 (0.68)

Tame fox 2 SUSD3 (0.79); SUSD6 (0.47)

TBC1 domain family Dog 1 TBC1D5 (0.54)

Tame fox 1 TBC1D7 (0.27)

Mitogen-activated protein kinase kinase kinases Dog 1 MAP3K5 (0.51)

Tame fox 1 MAP3K11 (0.76)

https://doi.org/10.1371/journal.pone.0274591.t001
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between dogs and tame foxes, while the other two were unique to each group. When batch

effects based on tissue were taken into account, STMND1 and OASL were maintained as

being commonly down regulated (S6 Fig). The same analysis performed using the non-filtered

datasets revealed similar results (S10 Table), although the RGR gene family which included a

shared gene between dogs and tame foxes, was lost. This gene was not differentially expressed

in the non-filtered fox dataset, representing an example of genes added as differentially

expressed after filtering.

Discussion

Studies involving RNA-seq data often rely on the identification of one, few or many differen-

tially expressed transcripts in order to draw conclusions about biological pathways or about

general transcriptome function and evolution. The explicit quantification of intra-condition

count variation associated with such transcripts is important for maintaining the context of

ambiguity that may exist following differential expression analysis. This is especially true given

the growing ability to base highly informative studies around archived transcriptomics datasets

at an inter-study level. Here, we developed a method that quantifies intra-condition variation

for each individual transcript within the reference set and that can be used to explore the

effects of identifying and removing reference-based transcripts harbouring such variation

above specified thresholds. By initially applying the method to extensive highly controlled sim-

ulated datasets harbouring pre-defined levels of intra-condition count variation we demon-

strate the high effectiveness of DESeq2 in identifying differentially expressed transcripts, but

also that it can be advantageous to reduce intra-condition variation within the count datasets

in relation to identifying additional differentially expressed transcripts that could have been

overlooked without such filtering (Fig 2 and S5 Fig, S4 and S5 Tables). By using highly con-

trolled simulated datasets for initial testing, we also provide a tentative estimate on the limit of

random intra-condition count variation above which the ability to reliably detect differentially

expressed transcripts is diminished (Fig 2 and S5 Fig).

Our real data case study showed that, on average, nearly 20% of the transcripts identified as

being differentially expressed prior to filtering contained levels of intra-condition variation

equal to or above the 90th percentile value of the total distribution. This was higher than the

relative proportion of such transcripts within the reference set and indicates that transcripts

associated with higher intra-condition variation have a tendency to being identified as differ-

entially expressed. When transcripts possess large amounts of such variation, some ambiguity

in their identification as being differentially expressed is inevitable, since reliable expression

patterns for at least one of the two conditions being compared have not been fully established;

even if statistical correction is applied. This likely partially explains the level of discordance

between various differential expression tools available [15, 23, 26–29], for which no consensus

Table 2. Shared genes and gene families (Down regulation). List of the gene families, and shared genes, that were commonly down regulated in dogs and tame foxes.

The number, and name, of the genes within each gene family are provided, with the corresponding log2fold-change values in brackets for each species. Within each family,

single genes were characterized as shared between dogs and tame foxes, or as exclusively to each of the two groups. When more than one transcript for a specific gene was

present, all the log2FC values are reported.

Gene Family Group Number of UE Gene name and log2FC value

Stathmin domain Shared 1 STMND1 (-1.18 in dogs, -0.53 in tame foxes)

Oligoadenylate synthetase like Shared 1 OASL (-0.41 in dogs, -0.52 in tame foxes)

Heat shock protein family B Dog 1 HSPB8 (-0.70)

Tame fox 1 HSPB11 (-0.32)

https://doi.org/10.1371/journal.pone.0274591.t002
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on the best approach to apply exists [30]. However, more importantly, when such transcripts

are used for drawing biological conclusion, the context of this uncertainty must be

maintained.

We then explored the effects of removing transcripts associated with intra-condition varia-

tion, at varying threshold levels, on the gene-wise dispersion estimates, used by DESeq2.

Within both case studies, as such transcripts were increasingly removed from input datasets

prior to differential expression analysis, the correlation between the mean of normalized

counts and dispersion estimates increased, and the number of outliers identified decreased

(Fig 6a and 6b; S9 Table; S7 Fig). This, along with discordances between the lists of differen-

tially expressed transcripts identified prior to and post filtering, suggests that transcripts were

not simply removed because of physical exclusion from the input data, but that they were also

removed, and added, as a result of the effects of removing intra-condition variation from the

general gene-wise dispersions applied. The high rates of discordance we found, reaching 40%

within the aggressive vs. tame fox case study (Fig 7 and S8 Table), reveal how dependent the

identification of differentially expressed transcripts is on the accuracy of gene-wise dispersion

estimates used; these in turn being affected by transcripts associated with high intra-condition

count variation.

High intra-condition count variation at an inter, and to a lesser extent intra, study level can

arise from a range of sources including i) biological differences between samples such as age,

sex, diet, and health; ii) in silica error involving assembly tools producing poorly understood

chimeras within the reference transcriptome [50, 60, 61]; iii) ambiguities in read mapping to

such references [62]; iv) normalization of count data derived from such mapped reads [63];

and v) including in vitro error during library preparation protocols [64, 65]. Although we used

DESeq2 within our study, the results of our exploration on the effects of intra-condition varia-

tion in the detection of differentially expressed transcripts likely applies to other software used

for differential expression analysis that rely on per transcript count information across repli-

cates for the estimation of transcript abundance and dispersion, for example, edgeR [10],

BBSeq [66], DSS [67], baySeq [68] and ShrinkBayes [69].

Following the removal of the 3% and 5% of transcripts associated with the highest levels

of variation between wolves and dogs, and aggressive and tame foxes, respectively, we

observed an increase in the number of differentially expressed transcripts. This pattern is

similar to what we observed within our extensive iterative differential expression analysis

experiments on simulated data where the levels of intra-condition variation, as well as sets of

count over represented transcripts, were explicitly controlled. Thus, this result suggests that

for our case studies the removal of variation at these levels optimized the detection of differ-

entially expressed transcripts whilst maintaining consistency. Using these 3% and 5% cut-

offs, amongst the 50 over expressed genes identified, across the 21 shared gene families,

seven genes were shared between dogs and tame foxes (Table 1). Of these seven genes, three

main functions related to brain development, neurotransmission, and immune response

were identified. These functions have been repeatedly associated with behavior selection

during domestication by different approaches, such as QTL analysis [40, 70, 71], whole-

genome sequencing [72–74], and RNA data both using microarrays and RNA-seq [36, 37,

75–77].

Up until recently, almost no gene overlap had been observed between gene expression pro-

files involving pairs of domesticated and wild animals [35]. However, a recently published

paper performing population genomic and brain transcriptional comparisons in seven bird

and mammal domesticated species has revealed a strong convergent pattern in genes impli-

cated in neurotransmission and neuroplasticity [42]. These functions are compatible with

those found in our analysis. The shared gene ITGA7 belongs to a gene family that is known to
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play an essential role in the control of neuronal connectivity [78] and the inflammatory

response [79]. Other genes from this family, for example, ITGA8, have been previously

observed to be over expressed in tame foxes [76], and here we also observed its over expression

in dogs providing further evidence of the family’s role in tameness. Similar functions are asso-

ciated with the shared genes CHRNA5 [80, 81] and TRIB2 [82] from the cholinergic and trib-

bles family, respectively. Additionally, we found a shared gene involved in sensing local

environmental stimuli, the MYO7A, whose mutation results in loss of hearing and vision [83].

Amongst the three gene families identified as under expressed (Table 2), we found the shared

gene STMND1, which deficiency in the amygdala of mice was connected to a deficiency in

innate and learned fear [84], a behavior that speculatively could also have an important role in

domestication. Although we are aware that this overlap analysis between genes that show the

same direction of expression in both dogs and tame foxes is not a formal test for gene conver-

gence, we identified genes involved in several functions previously validated in the scope of

domestication.

In this work, we have presented TVscript, a new tool that identifies and removes transcripts

associated with high levels of intra-condition variation from RNA-seq count data prior to dif-

ferential expression analysis. By applying TVscript to simulated data, as well as to real data

derived from brain samples of dogs, wolves, tame and aggressive foxes, we demonstrate that as

hyper variable transcripts are removed the ability to detect differentially expressed transcripts

increases in a robust and repeatable manner. Furthermore, we show that above a certain level

of random intra-condition count variation, the identification of differentially expressed tran-

scripts is no longer viable. We propose that studies using RNA-seq data at an inter, or intra,

study level should determine whether or not transcripts identified as being differentially

expressed, using pre-filtered reference sets, are still identified once filtering based on intra-

condition count variation as been performed; regardless of the differential expression software

used (or the method of obtaining initial counts). Discussion of such transcripts can then be

presented relative to the context of such filtering, thus taking a step forward in reducing the

ambiguity surrounding intra-condition count variation. Such context is likely going to be data-

set specific, as indicated between differences between our case studies, as the extent of intra-

condition count variation will differ between datasets and will rarely be known as a prior to

analysis. The latter is further highlighted by the consistent patterns observed during the itera-

tive simulations that we performed where levels of intra-condition variation were pre-speci-

fied. Finally, by comparing the genes that were differentially expressed in the brain of dogs and

tame foxes, we provided further tentative support for candidate genes involved with several

functions long known for being involved with domestication. These genes, and functions, have

potential for being involved with selection for tameness, which appears to have played a crucial

role in canine domestication. We use the word tentative to describe our support, as the pri-

mary aim of this study was to investigate the effects of intra-condition count variation on the

detection of differentially expressed transcripts, and the identification of genes involved within

an evolutionary process, such as domestication, should be supported by datasets specifically

generated for that purpose, and confirmed relative to the different reference transcriptomes

involved. The quality of such transcriptomes in turn, in relation to chimeras, missing tran-

scripts and partial redundancies, must also be carefully explored.

Supporting information

S1 Fig. Alignment rates obtained using Bowtie2. Mapping success rates (%) resulting from

the alignment of the 44 samples used in this study to the complete dog transcriptome. For each

sample, the percentage of aligned reads is presented by the blue bars, while the percentage of

PLOS ONE Exploring the effects of transcript level intra-condition count variation using TVscript

PLOS ONE | https://doi.org/10.1371/journal.pone.0274591 September 22, 2022 19 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274591.s001
https://doi.org/10.1371/journal.pone.0274591


reads failing to map is represented in red (the number of raw reads is available in S1 Table).

(TIF)

S2 Fig. Correlation between per-transcript counts obtained following Bowtie2 mapping

and count estimates obtained using kallisto. R2 values describing the linear correlation

between each count dataset produced from the mapped datasets presented in S1 Fig and corre-

sponding count extimates produced when pseudo-mapping the same RNA-Seq data to the

complete dog transcriptome using kallisto.

(TIF)

S3 Fig. Re-mapping fox data to the fox reference transcriptome. Read mapping rates

achieved when mapping the fox RNA-Seq datasets to the fox reference transcriptome.

(TIF)

S4 Fig. Transcripts identified by DESeq2 as being over expressed in the absence of ran-

domly introduced intra-condition variation. Across one hundred iterations the dots repre-

sent the number of transcripts identified as being over expressed between condition A and B.

Each condition contained five replicates. (A) The one hundred transcripts selected for read

over representation within replicates of condition B were maintained as constant and (B) the

one hundred transcripts selected for read over representation within replicates of condition B

were re-selected during each iteration. During each iteration the ten count datasets that were

simulated each reflected even transcript coverage of 3 million read pairs with the exception of

the one hundred transcripts selected for over representation in condition B whose count values

were increase by a factor of two.

(TIF)

S5 Fig. Over expressed transcripts pre- and post-filtering (transcripts selected for count

over representation were re-selected during each iteration). The number of transcripts iden-

tified by DESeq2 as being over expressed both prior to (light gray) and post (dark gray) filter-

ing within each of the one hundred iterations performed at each level of introduced random

intra-condition count variation. Each iteration involved initially simulating ten count datasets

divided into conditions A and B following which DESeq2 was run to attempt to identify the

one hundred transcripts selected for over representation as described in the methods. Follow-

ing this the ten simulated datasets were filtered using TVScript with a 95th percentile threshold

in order to generate corresponding filtered datasets (divided into corresponding conditions A’

and B’) on which DESeq2 was re-run.

(TIF)

S6 Fig. Confirmation of shared genes within differential expression analysis taking tissue

effects into account. The upper dark grey circle contains the nine genes identified as being

either commonly over, or under, expressed simultaniously within dogs and tame foxes using

filter levels the 95th and 97th percentiles whilst only accounting for condition (wolves vs. dogs

and aggressive vs. tame fox). Six of these genes (RGR, CHRNA5, MYO7A, TRIB2, STMND1

and OASL) are present when DESeq2 is run whilst also accounting for differences in tissue

(light grey left oval). SQLE, ARHGAP25 and ITGA7 are observed only within the differentially

expressed transcript list that is based solely on condition (dark grey right oval).

(TIF)

S7 Fig. Distribution of dispersion estimates. Plots of dispersion estimates in relation to the

mean of normalized counts for both case studies, wolves and dogs (left panels), and tame and

aggressive foxes (right panels). Estimates were calculated using DESeq2 for the non-filtered

(NF) and all filtered datasets (99th, 95th and 90th are shown as an example). Gray dots represent
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the gene-wise maximum likelihood estimates (MLE), the red curve shows the fit to the MLEs,

and blue dots identify the final maximum a posteriori (MAP) estimates of dispersion. Red dots

represent the outliers detected by DESeq2. Both x and y-axis are transformed into a logarithm

scale.

(TIF)

S1 Table. Dataset description. Full details of all datasets, including the location of the relative

tissue, age, and sex of each individual, replicate information and sequencing details (FC–fron-

tal cortex; CC–cerebral cortex; PFC–prefrontal cortex; FL–frontal lobe; NS–not specified; F–

female; M–male; AD–adult; ya–years old; PE–paired-end; SE–single end).

(DOCX)

S2 Table. Common over expressed transcripts pre- and post-filtering (when transcripts

selected for count over representation are kept constant). The number of transcripts from

the dog reference set that are commonly identified by DESeq2 as being over expressed within

condition B both prior to and post filtering for each of the one hundred iterations performed

at each level of introduced random intra-condition count variation. Each iteration involved

simulating ten count datasets divided into conditions A and B following which DESeq2 was

run to attempt to identify the one hundred transcripts selected for over representation as

described in the methods section. Filtering involved running TVScript with a 95th percentile

threshold on the non-filtered datasets to generate corresponding filtered datasets (divided into

corresponding conditions A’ and B’) following which DESeq2 was re-run and the results com-

pared back to those obtained for the non filtered data.

(DOCX)

S3 Table. Common over expressed transcripts pre- and post-filtering (when transcripts

selected for count over representation are re-selected during each iteration). Same as S2

Table but where the one hundred transcripts selected for over representation within condition

B are re-selected during each iteration.

(DOCX)

S4 Table. Ratio between the common number of over expressed transcripts pre- and post-

filtering and the maximum number detected when transcripts selected for count over

representation are kept constant. Numbers in S2 Table were divided by the maximum num-

ber of over expressed transcripts detected within each correspomding iteration i.e. the maxi-

mum number detected using corresponding non-filtered and filtered datasets.

(DOCX)

S5 Table. Ratio between the common number of over expressed transcripts pre- and post-

filtering and the maximum number detected when transcripts selected for count over

representation are re-selected during each iteration. Numbers in S3 Table were divided by

the maximum number of over expressed transcripts detected within each correspomding itera-

tion i.e. the maximum number detected using corresponding non-filtered and filtered data-

sets.

(DOCX)

S6 Table. Removal of intra-condition variation. Number of transcripts kept and removed

from the reference in each case study, wolves and dogs, and aggressive and tame foxes, across

the filtered levels used (from the 99th to the 70th percentile). The first ten percentiles were

explored in greater detail in steps of one, while the remaining were performed in steps of 5.

(DOCX)
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S7 Table. Differentially expressed transcripts in wolf vs. dog. Complete list of differentially

expressed transcripts in dogs when compared to wolves, identified using non-filtered datasets,

and those that got removed (red) within the highest 10% of intra-condition variation, as well

as those added (green) as differentially expressed across selected filtered datasets (97th, 95th,

and 90th percentiles). The correspondent annotated gene ID, log2FC values and p-values are

provided.

(DOCX)

S8 Table. Differentially expressed transcripts in aggressive vs. tame fox. Complete list of

differentially expressed transcripts in tame foxes when compared to aggressive foxes, identified

using non-filtered datasets, and those that got removed (red) within the highest 10% of intra-

condition variation, as also those added (green) as differentially expressed across selected fil-

tered datasets (97th, 95th, and 90th percentiles). The correspondent annotated gene ID, log2FC

values and p-values are provided.

(DOCX)

S9 Table. Correlation and outliers. Correlation values (r2) and the root mean square error

(RMSE) from the regression analysis between the final dispersion estimates and the mean of

normalized counts for both case studies, wolves and dogs, and aggressive and tame foxes. The

number of outliers identified by DESeq2 are also presented. Values are shown for the non-fil-

tered (NF) and all the filtered datasets used in differential expression analysis.

(DOCX)

S10 Table. Shared genes and gene families between non-filtered datasets. List of the gene

families, and shared genes, that were commonly regulated in dogs and tame foxes, using the

non-filtered datasets. The number, and name, of the genes within each gene family are pro-

vided, with the corresponding log2fold-change values in brackets for each species. Within

each family, single genes were charecterized as shared between dogs and tame foxes, or as

exclusive to each of the two groups. When more than one transcript for a specific gene was

present, all the log2FC values are reported.

(DOCX)
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