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In the summer of 1955 at Dartmouth University, a small community
of progressive-thinking scientists including John McCarthy, who is
credited with coining the term “artificial intelligence (AI)”, Marvin
Minsky, Nathan Rochester and Claude Shannon, submitted a research
proposal seeking to explore,

“...every aspect of learning or any other feature of intelligence that can in
principle be so precisely described that a machine can be made to si-
mulate it. An attempt will be made to find how to make machines use
language, form abstractions and concepts, solve kinds of problems now
reserved for humans and improve themselves.” (McCarthy, Minsky,
Rochester & Shannon, 1955).

Now over 60 years later, with many momentous accolades achieved
in parallel with exponential advances in computing, applications of
machine learning have infiltrated, improved and continue to augment
many aspects of our daily lives. Today machine learning is a mainstay
in business, finance, manufacturing, retail, science, technology, mobile
computing, social media affecting our behaviours as consumers and
creators of data, each interaction deepening our digital footprint.
Medicine and disciplines related to health have become the new fron-
tier for machine learning and big data. In particular, fields such as so-
cial epidemiology seem well suited to tap into the vast amounts of so-
cial data (Gruebner et al. 2017) including credit scores and social
networks that could potentially shed some new insights to under-
standing health behaviours and how social determinants of health may
operate. While successful examples of mainstream applications of ma-
chine learning offer much excitement for adaptation in the social sci-
ences, we are at a critical moment in history where we can learn from
successful machine learning applications, limitations and the potential
dangers of mal-adapting these techniques.

Machine learning is “a set of methods that can automatically detect
patterns in data, and then use the uncovered patterns to predict future
data, or to perform other kinds of decision-making under
uncertainty”(Murphy, 2013). And while methods from machine
learning are closely related to the type of statistics traditionally used in
social health research, they differ in probabilistic inference and mod-
eling. The paper by Seligman, Tuljapurkar and Rehkopf (2018) sought
to compare four machine learning algorithms with a traditional re-
gression to determine if 1) machine learning algorithms lead to better

predictions and 2) do they enhance our understanding of how social
determinants may result in differences in health outcomes. The authors
conclude that traditional regression historically used in social health
research faired well when compared to several machine learning
methods; neural networks faired best due to their robust ability to allow
for interactions and nonlinearity among input variables. However, the
interpretation of neural networks is complicated, and the authors base
their conclusions almost exclusively on the r square value obtained in
cross-validation, a process in itself laden with inherent limitations.
While the authors successfully compare results between the different
methodologies, it is unclear how these methods enhance our under-
standing of health outcomes, particularly when the fundamental goal of
machine learning is to generalize beyond the algorithm training set.
Arguably, this may not necessarily be the fault with this study per se but
rather a consequence of the infancy of these techniques in the social
epidemiologic space.

As quantitative social scientists process and often collate multiple
sources of data, there are many alluring features from various techni-
ques in machine learning that offer new methodologic ideas in how to
handle and merge structured and unstructured datasets. A distinct ad-
vantage of machine learning methods includes the robust handling of
large numbers of variables combined in interactive linear and non-
linear ways to detect patterns in the data for prediction. While there is a
vast array of learning algorithms available, all machine learning algo-
rithms consist of combinations of three key components: 1) re-
presentation of the input of data, where a classifier can learn in the
hypothesis space, 2) evaluation of the classifiers, and lastly, 3) opti-
mization, a search among classifiers to find the best performing one
(Domingos, 2012). In supervised learning, the goal is prediction and
includes techniques such as regression and classification or pattern
recognition whereas in unsupervised learning, the goal is to find pat-
terns in the data which is sometimes called knowledge discovery
(Murphy, 2013). Reinforcement learning, while not as commonly used,
is useful for learning how to act or behave when given occasional re-
ward or punishment signals (Murphy, 2013). Table 1 outlines some of
the strengths and limitations associated with this comparative study of
machine learning methods used to evaluate health outcomes from the
Health and Retirement Study dataset (Seligman et al., 2018). While
each type of machine learning offers distinct advantages and
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Table 1

An overview of the strengths and limitations of the machine learning approaches outlined by Seligman et al. (2018).

Generalized prediction

Strengths Limitations

Essential Feature

Technique

@ Does not handle well non-linear relationships in @ Selecting the best model is more challenging

@ Excellent for prediction among linear

@ Attempts to fit a straight hyperplane to data

Regression

Subramanian

than optimizing its parameters once model is

fixed
@ Assumes that any changes in the attributes and

data
@ Learning algorithms make a set of assumptions

relationships;
@ Simple to interpret and understand model

about the data and therefore there is an inductive

bias embedded within each algorithm

because attributes have an additive effect on

the model
@ Can be regularized to deal with overfitting

@ Useful in OLS when many variables are

output both occur with some regularity and

smoothness for generalization
@ Goal is to reduce and select among redundant

@ The weighted penalty, lambda, is estimated and

@ Additional variables that do not substantially

LASSO penalized

predictors in generalized linear model to

improve prediction
@ Larger forests typically have better prediction

tested by a variety of methods each with pros and

cons
@ Highly prone to overfitting (model can keep

highly correlated (as variance increases in

improve prediction are penalized

regression

OLS, beta becomes increasingly inaccurate)

@ Learning is non-parametric

@ Repeatedly split dataset into random sets of

Random forests

(being mindful of overfitting and correlated

trees)

branching until the data is memorized)
@ Black box predictions are difficult to interpret

@ Variables do not need to be transformed

@ Handles outliers well

decision trees with if-then rules at branches and

interpolation at leaves

@ Handles missing values well

@ Ensemble methods that include random

forests often perform well

@ Learning is nonlinear

@ Generalization is difficult without large

@ Difficult to set up; many parameters require

@ Based on neuron/synapse activation structure of

Neural networks

samples of data

decisions on architecture and hyperparameters of

network
@ Easy to overfit

@ Handles outliers well

human brain using synaptic weights that

@ Can learn complex patterns from highly

represent ‘hidden layers’ between inputs and

outputs

dimensional data
@ Hidden layers alleviates features engineering

@ Often best performing algorithm

@ Often very difficult to interpret

@ Requires large sample sizes

@ Computationally very intense to train
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disadvantages, in a classic paper entitled, “No free lunch theorems for
optimization” (Wolpert & Macready, 1997) the term “no free lunch” has
popularly been used to describe that no one type of algorithm is best for
every prediction problem. In this influential paper, the authors geo-
metrically demonstrate what it means for an algorithm to be well-suited
for an optimization problem and the danger of comparing algorithms by
their performance on a small sample of problems (Wolpert & Macready,
1997). In addition to their valuable suggestions, we would like to re-
commend some additional thoughts when undertaking a machine
learning approach to analyzing social data as it relates to health:

1. Understand both the underlying mathematical “skeleton” of
the optimization theory and how the goals of the analysis should
align, a priori

Machine learning techniques have exponentially increased in po-
pularity arguably due to their promise to predict. But it is important to
distinguish between prediction and causation; simply put, these are not
interchangeable concepts, the underpinnings of prediction are prob-
abilistic. The work of Pearl (2009) seeks to marry the counterfactual
into probabilistic approaches of causation, however, its application to
machine learning is still considered to be in its infancy. Equally chal-
lenging has been the implementation of causal inference in the social
epidemiology space (Kaufman & Cooper, 1999) (Glymour & Rudolph,
2016) particularly the consistency assumption (Rehkopf, Glymour &
Osypuk, 2016). Further, while understanding the baseline assumptions
of the research question and how it aligns with the mathematical ske-
leton of the analysis is imperative in any quantitative analysis, the
ability to explain the study results hinges on this. For example, results
from regression are relatively simple to explain, whereas machine
learning methods such as random forests and neural networks, which
are strong in prediction, are complicated to explain and are (literally)
black boxes. One must ponder, is probabilistic prediction alone enough
and how important is the explanation of the study results? More im-
portantly, there is no substitute for the substantive understanding of the
problem with the mechanism, and the corresponding mathematical
structure of the analysis, in order to understand what the results will
reveal.

2. Understand the data source and composition of the study
population; any potential biases may result in overfitting, and can
be unintentionally propagated in machine learning algorithms

Social scientists like data scientists often rely on publically available
or longitudinal observational datasets rarely collected for the intended
analysis. Within the machine learning community, while the problem of
overfitting, an error in generalization, is well-known, it is not always
immediately apparent. In an overview paper of machine learning,
Domingos (2012) decomposes the problem of overfitting into bias and
variance, describing bias as the learner’s tendency to learn the same
thing incorrectly consistently, and variance as the tendency to learn
random things irrespective of the real signal. While there is a multitude
of techniques to test and combat these challenges, is imperative to al-
ways be mindful that machine learning algorithms can only be trained
on the data fed. If the goal of the machine learning algorithm is pre-
diction, the algorithm will intrinsically contain an inductive bias. While
this in itself is not necessarily a negative bias, if however there are any
biases in the dataset, they will inherently be propagated. For example, if
sex abuse in the population is equally present in men and women, but
women are more likely to report it, the algorithm will predict that
women are more likely to be sexually abused when in fact this may not
be true. And perhaps of even greater concern and a notable problem
within the machine learning community is that it is virtually impossible
to detect or correct for such biases in machine learning algorithms.
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3. Be aware of limitations in the construction of generalizability
and cross-validation techniques of model performance evaluation

While there are many different versions of cross-validation techni-
ques to evaluate the performance of a machine learning algorithm, al-
most all contain a training set, a validation, and a test set, split into
varying percentages. For example, if 75% of the algorithm is trained on
the training set, model selection is then conducted on the validation set
and then tested on the remaining percentage constituting the test set. If
there is an inherent bias in the dataset, such as the study sample
composition consists of volunteers or a particular gender/ race/ so-
cioeconomic group is underrepresented, the validation and test sets will
be unable to detect these biases despite using reserved data with ac-
ceptable cross-validation metrics. In this scenario, despite cross-vali-
dation metrics suggesting results with good generalizability, in reality,
this remains in question. In fact, Wolpert and Macready (1997) de-
monstrate that the alignment of the underlying probability distribution
over the optimization problem determines the performance of the al-
gorithm. There are recent calls to the machine learning community to
increase the transparency and publish the code used in machine
learning algorithms as the random numbers generated in the training
set are highly sensitive and contingent to the data in the initial training
(Hutson, 2018). And perhaps most importantly, while rarely practiced
in machine learning, the best test of validation is to test the algorithms
in a completely different dataset altogether to understand the speed-
accuracy — complexity trade-offs. After all, one of the hallmarks of
science is replicability.
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