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The phase diagram and stability of 
trapped D-dimensional spin-orbit 
coupled Bose-Einstein condensate
Zi-Fa Yu & Ju-Kui Xue

By variational analysis and direct numerical simulation, we study the phase transition and stability of 
a trapped D-dimensional Bose-Einstein condensate with spin-orbit coupling. The complete phase and 
stability diagrams of the system are presented in full parameter space, while the collapse dynamics 
induced by the mean-filed attraction and the mechanism for stabilizing the collapse by spin-orbit 
coupling are illustrated explicitly. Particularly, a full and deep understanding of the dependence of 
phase transition and stability mechanism on geometric dimensionality and external trap potential is 
revealed. It is shown that the spin-orbit coupling can modify the dispersion relations, which can balance 
the mean-filed attractive interaction and result in a spin polarized or overlapped state to stabilize 
the collapse, then changes the collapsing threshold dependent on the geometric dimensionality 
and external trap potential. Moreover, from 2D to 3D system, the mean-field attraction for inducing 
the collapse is reduced and the collapse speed is enhanced, namely, the collapse can be more easily 
stabilized in 2D system. That is, the collapse can be manipulated by adjusting the spin-orbit coupling, 
Raman coupling, geometric dimensionality and the external trap potential, which can provide a 
possible way for elaborating the collapse dynamics experimentally.

In the past decades, as the development of the laser cooling technique, ultracold neutral atoms provide an ideal 
platform for quantum simulations due to its purity, highly controllability and effortless observability1. Particularly, 
through the synthetic gauge field, the NIST Group has successively realized uniform vector potential2, synthetic 
magnetic fields3, electric fields4, and spin-orbit coupling (SOC)5 in a 87Rb Bose-Einstein condensate (BEC) during 
2009 to 2011, which makes it possible to simulate the properties of the charged particle in an electromagnetic 
field by using a neutral atom. In the recent experimental5–8 and theoretical9–16 research of synthetic SOC BEC, 
some new quantum phases possessing distinct magnetic features have been exhibited, such as non-magnetic zero 
momentum phase, magnetic plane wave phase and non-magnetic stripe phase. However, the stability plays an 
important role in the realization of BEC experimentally. Without SOC, the stability of the BEC closely depends 
on the interatomic interactions, the characteristic scale, and the geometric dimensionality. It mainly demon-
strates as the strongly repulsive diffusion and the strongly attractive collapse17–22. In a trap potential, this stability 
prevailingly presents as the collapse produced by quantum pressure due to attractive interaction. In addition, the 
collapse is also related to the research of the fundamental physics, such as all kinds of nonlinear systems23, plasma 
instability24, polaron formation25, and cold dark matter halos26. Recently, the collapse dynamics of BEC has been 
attracted more and more attentions27–30. There have been already several proposals to stop the collapse of attrac-
tive condensate, including by making the interaction strength time-dependent, and by adding fermions to the 
system, etc. Moreover, SOC can stabilize the collapsed BEC by means of modifying the dispersion relations31–38. 
It is shown that the stabilizing mechanism of SOC strongly depends on the geometric dimensionality and the 
external trap potential. In two-dimensional (2D) free space35, the conventional BEC exists the Galilean invari-
ance, which can nevertheless be broken by the SOC term, thus the BEC can be stabilized and a stable solitonlike 
structure is formed, while in 2D external trap potential37, an effective repulsive atomic interaction produced by 
the SOC and the Raman coupling (RC) can neutralize the mean-field attractive interaction, stabilize the system 
against collapse, change the stability criteria, and generate various phases. In 3D free space38, the SOC-induced 
modification of the dispersion relations of the BEC can neutralize the attraction, creating metastable solitons and 
forming the semivortices or mixed mode structures. However, for a trapped 3D binary BEC with SOC (a more 
realistic case in experiment), the stability of various phases has never been obtained, and the stability mechanism 
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is still not clear. Particularly, a full and deep understanding of the dependence of phase transition and stability 
mechanism on geometric dimensionality and external trap potential is still missing.

The purpose of this work is to study the distinct phases and their stability, and the stability mechanism of a 
trapped D-dimensional binary BEC with SOC. The collapsing threshold, the phase and stability diagrams and the 
collapse dynamics are presented by variational methods and confirmed by the direct numerical simulation of 
Gross-Pitaevskii equation in full parameter space. The main results are summarized in Fig. 1, where the complete 
stability and phase diagrams are depicted in intra- and inter-species interaction (g–g12) plane for different SOC, 
RC and geometric dimensionality. For a conventional BEC (i.e., without SOC and RC), the collapse will occurs for 
the attractive interactions beyond the threshold. However, the strong RC Ω and weak SOC k0 (i.e., k/ 20

2Ω > ) can 
stabilize the collapsed conventional BEC induced by strong intra-species attractive interaction g, then result in a 
stable phase I (i.e., the zero-momentum phase). As the increase of Ω k/ 0

2 (see Fig. 1(a1,b1,a3,b3)), the critical 
intra-species attractive interaction value for collapse increases, thus the BEC with a stronger intra-species attrac-
tion is also stable, while the region of phase I becomes larger and the region of phase II (the plane wave phase) 
becomes smaller. On the other hand, the collapsed BEC with strong inter-species attractive interaction g12 can be 
stabilized by weak RC and strong SOC (i.e., Ω <k/ 20

2 ), which generates a stable phase II. As the decrease of k/ 0
2Ω  

(see Fig. 1(a2,b2,a3,b3)), the threshold of collapse shifts down to stronger inter-species attraction, thus the BEC 
with a stronger inter-species attraction is also stable, while the regions of phase I (phase II) decreases (increases). 
Furthermore, a full and deep understanding of the dependence of phase transition and stability mechanism on 
geometric dimensionality and external trap potential is presented explicitly. Compared with the 3D case  
(Fig. 1(a1,a2,a3)), the regions of stable BEC are expanded, the collapse threshold is enhanced, the collapse speed 
is reduced, and the collapse can be more easily prevented in 2D external trap potential (Fig. 1(b1,b2,b3)), which 
can provide a possible way for elaborating the collapse dynamics.

Results
Model.  Based on the recent experiment related to the realization of BEC with SOC5–8, we consider a binary 
SOC-BEC loaded into a D-dimensional harmonic trap potential. According to the mean-field approach, the BEC 
is governed by the following dimensionless Gross-Pitaevskii (GP) equation5–7,12–15:

Ψ Ψ∂ ∂ = +t t h G tr ri ( , )/ ( ) ( , ), (1)0
SO

where Ψ = (ψ↑,ψ↓)T is the normalized spinor wave function so that ∫ Ψ =dr 12 , G gdiag( 11
2ψ= | | +↑

ψ ψ ψ| | | | + | |↓ ↓ ↑g g g, )12
2

22
2

12
2  characterizes the interatomic two-body interaction with the dimensionless inter-

action constants g N a m l2(2 ) /( )ij
D

ij z z
( 1)/2 3π ω= − , here, m, N, and  ω=l m/( )z z  represents the atomic mass, the 

number of atom, and characteristic length along z direction with trapped frequency ωz, respectively. The positive 
(negative) s-wave scattering lengths aij refers to the interatomic repulsion (attraction). The physical variables are 
rescaled as lz

D/2Ψ Ψ∼ , t tz
1ω∼ − , ∼ lr rz . The single-particle Hamiltonian

Figure 1.  The stability and phase diagram in g–g12 plane for D = 3 (a1–a3) and D = 2 (b1–b3). The solid and 
short dashed line, respectively, refers to stability and phase boundary by means of the variational methods. The 
dots represent the results of direct numerical simulation of Eq. (1). The solid line divides the interaction plane 
into two, one is collapse region the other is stable region, while the stable region is divided into phase I (zero 
momentum phase) and phase II (plane wave phase) by the short dashed line.
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where /( )zωΩ = Ω
∼   is the dimensionless RC constant accounting for the transition between the two spin states, 

=
∼ −k k l/( )z0 0

1  is the dimensionless SOC strength fixed by the momentum transfer of the two Raman lasers, the 
operator = − ∇p i  is the canonical momentum, σi are the usual 2 × 2 Pauli matrices, while ω=V rext

1
2

2 2 is a har-
monic trap with 1ω ∼  for D = 3 due to the spherical symmetry and ω ω ω= ��/ 1z  for D = 2 due to the 
pancake-shaped cylindrical symmetry where ω



 is the transverse trapped frequency. Note that, there is a peculiar 
property of violating both parity and time-reversal symmetry in Hamiltonian Eq. (2). Here, we have g11 = g22 = g 
in the absence of Zeeman splitting. Based on experiment5,39,40, for 87Rb atoms, corresponding parameters can be 
widely adjusted, which has already been estimated in the previous work37.

From the scale analysis, the amplitude of normalized spinor wave function can be estimated, i.e., Ψ ∼ −L D/2, 
where L is the dimensionless characteristic size of BEC. Therefore the dependence of the system’s energy on the 
characteristic size is obtained as ∼ + + + −− − −E L c L c c L c L c L( ) ( )kin int

intra
int
inter D

trap soc
2 2 1, where coefficient ckin, 

ctrap and csoc are all positive, while positive (negative) cint
intra and cint

inter  refers to intra- and inter-species repulsive 
(attractive) interaction, respectively. It is well known that the external trap potential changes the dispersion rela-
tions, which can balance the mean-field repulsive interaction and result in stable BEC instead of diffusion. 
Similarly, the SOC can also modify the dispersion relations, which suggests a way to neutralize the mean-field 
attractive interaction to stabilize the collapsed BEC dependent on the external trap potential and the geometric 
dimensionality. A full and deep understanding of the dependence of phase transition and stability mechanism on 
the coupling effects of SOC, RC, geometric dimensionality, external trap potential and interatomic interaction is 
presented explicitly in following by means of accurate variational analysis.

Variational analysis for phase transition and stability.  In order to obtain the stability diagram and the 
collapse dynamics of trapped D-dimensional binary BEC with SOC, while centers around the zero momentum 
and plane wave states, the following normalized spinor order parameter is convenient and applicable37,

ψ
ψ π

Ψ =










=






+

− −







φ

φ

↑

↓

− + ⋅ +

−

δ

t
R

s

s
r( , ) e

2 ( )
e 1

e 1
,

(3)
D

k r ri

/2

i
2

i
2

R
r2

2 2
i
2

2

with the width of the BEC R (R > 0), momentum k = (kx, ky, kz), the variational rate of radius δ, the phase difference 
between two pseusospin states φ, and the average spin polarization s (−1 ≤ s ≤ 1), i.e., 〈σz〉 = s. Upon substitute the 
spinor wave function into the Lagrangian  ⁎ ⁎ ⁎ h G dr[(i/2) ( ) ( ) ]0

SO
 ∫ Ψ Ψ ΨΨ Ψ Ψ= − − + , one can obtain
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Applying the Euler-Lagrangian equations ∂ ∂ − ∂ ∂ =  q d q dt/ ( / )/ 0i i , where qi = {k, R, δ, s, φ}, we arrive at
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Obviously, in the ground state, the BEC is located at a momentum state (km, 0, 0), where km = k0s. For the equilib-
rium state, one has δ = 0 and φ = 0, while s and R can be determined by the stationary equation of Eqs (8) and (9). 
The width of the condensate R is closely related to SOC and RC, thus the collapse can be manipulated by SOC and 
RC. The distinct phases of the ground state can be distinguished by the stationary solution of Eqs (7–9), while the 
breather dynamics of the BEC can be described by the evolution of Eqs (7–9).

On the other hand, in order to acquire a stable equilibrium state, there is not a negative eigenvalue in the cor-
responding Hessian matrix, i.e., ∂ ∂ ∂ ∂ − ∂ ∂ ∂ >E s E R E R s( / ) ( / ) ( / ) 02 2 2 2 2 2  and ∂2E/∂R2 > 0, which results in
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Hence, the stable equilibrium state can be obtained by the stationary equations of Eqs (8–11). In an external trap 
potential, the instability only demonstrates as collapse induced by strong interatomic attractive interaction. Thus, 
the BEC is unstable for R → 0, i.e., collapse occurs. However, for a stable ground state, R should be finite, where 
some distinct phases are demonstrated, which depends on s.

Phase and stability diagrams.  Here, we focus on distinct phases, the stability boundary and stabilizing 
mechanism of 3D system, while discuss the difference of phase transition and stability between 2D and 3D sys-
tem. In 3D system, the ground state can not been obtained analytically and the boundaries of the phase transition 
and stability can not be depicted analytically, which can only be described numerically by using Eqs (7–11), how-
ever, in particular cases, the analytical conditions of phase transition and stability can been acquired.

Case I: For g = g12, the condition of phase transition can be obtained by the stationary solution of Eqs (8, 10 and 
11). When Ω >k/ 20

2 , the system enters into a non-polarized zero momentum state (phase I) in the ground state, 
where k = (0, 0, 0) due to s = 0. When Ω <k/ 20

2 , the BEC condenses into a plane wave state with non-zero 
momentum k = (km, 0, 0) due to s k1 /(4 ) 02

0
4= ± − Ω ≠  in the ground state, where k k k1 /(4 )m 0

2
0
4= ± − Ω , 

which is a polarized plane wave phase (phase II). The phase II breaks the parity symmetry, time-reversal symme-
try, and U(1) gauge symmetry. Therefore, the condition of phase transition is defined as k/ 20

2Ω = , which is 
independent on the geometric dimensionality and external trap potential, meanwhile the SOC (RC) leads to the 
BEC translating from phase I (II) to phase II (I). Otherwise, in this case, Eq. (10) always stands up if Eq. (11) is 
satisfied, while Eq. (11) can be written as R > ((D − 2)ω−2/(D + 2))1/4. By inserting it into the stationary equation 
of Eq. (9), the stability condition can be obtained as

= > −g g c, (12)12

where

c D D[4(2 ) ( 2) ]/[( 2) ], (13)D D D D/2 ( 2)/4 ( 2)/4 ( 2)/2π ω= − +− + −

i.e., c = 2π for D = 2 and c = 8π(2π)1/2/(55/4ω1/2) = 2.68π for D = 3. Thus, in this case, the phase transition only 
depends on SOC and RC, while the stability criteria only depends on geometric dimensionality and external trap 
potential.

Case II: For k2 0
2Ω =  or Ω = k0 = 0, the phase transition only depends on g/g12 (see Eq. (8)). The BEC is in phase I 

for g12 < g and in phase II for g12 > g. Thus the intra-species (inter-species) repulsion promotes the system to con-
vert from phase II (I) into phase I (II). Therefore, the phase transition has nothing to do with SOC, RC, geometric 
dimensionality and external trap potential. In this case (i.e., Ω = k0 = 0), by using Eqs (8–11), the stability condi-
tion can be obtained as

> −
+ > − .

g c
g g c

,
2 (14)12

Thus, the collapse occurs if Eq. (14) is not satisfied, i.e., as g12 = 0, the collapsing critical intra-species attrac-
tion gcri = −c = −2.68π for D = 3 and gcri = −c = −2π for D = 237. This agrees with the previous theoretical17 and 
experimental17,27,28 results for single component BEC (g12 = 0).

Case III: For a given inter-atomic repulsive interaction, or weak attractive interaction, i.e., g > −c and g12 > −c, the 
BEC is always stable, and the condition of phase transition can also been obtained analytically. From the station-
ary equation of Eq. (8), one can acquire R g g k(( )/(2 )) /(2 )D

12 0
2 1/ π= − − Ω  for a crossover from s = 0 into s ≠ 0, 

i.e., from phase I into Phase II. By inserting it into the stationary equation of Eq. (11), the condition of phase 
transition is obtained as
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Evidently, the phase structure of BEC can be elaborated by adjusting SOC, RC, interaction and the system’s geomet-
ric dimensionality. When f > 0, the system enters into phase I, on the contrary, the BEC is in phase II for f < 0, which 
is also clearly shown in Fig. 2. For a fixed g12/g, as the increase (decrease) of RC (SOC), the system transfers from 
phase II into phase I. When g12/g changes, the critical value k( / )0

2
cΩ  of phase transition from phase II to phase I is 

gradually changes, as well as Ω <k( / ) 20
2

c  for g12/g < 1 and k( / ) 20
2

cΩ >  for g12/g > 1. Moreover, the phase transition 
boundary of 2D system is closer to Ω =k/ 20

2  than that in 3D case, i.e., the phase transition is more sensitive to Ω k/ 0
2 

for a lower dimension system. Thus, the phase transition can more easily take place in 2D than 3D system.
To more clearly understand the nature of this phase transition, E k/2

0
2∂ ∂  versus k0 is demonstrated in Fig. 3. The 

second derivative of energy has a jump at k0 = k0c, where the system exhibits a phase transition from phase I to phase 
II, and the jump point k0c shifts right as the increase of Ω and shifts left as the increase of g12/g. These indicate that this 
phase transition has a second-order nature. The critical values k0c are satisfied with the condition of phase transition 
f = 0 for interatomic repulsive interaction or weak attractive interaction, and also in agreement with Fig. 2.
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Figure 2.  The phase diagram for 3D system. The first panel: km as a function of Ω for different interactions, 
where k0 = 1.0 and g = 10. The second panel and the third panel: the phase diagram in Ω − k0 plane for g = 10. 
The dot line shows k2 0

2Ω = , while the white and black solid line represents the phase transition boundary for 
3D and 2D system, respectively.

Figure 3.  E k/2
0
2∂ ∂  as a function of k0 for g = 10 and D = 3.
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Figure 4.  The stability diagram in Ω–k0 plane. The short dashed line corresponds to k/ 20
2Ω = . The blue and 

black solid line shows the border of stability diagram and phase transition of 2D and 3D system, respectively.

Figure 5.  The collapse dynamics for 3D binary BEC with k0 = 2.0. (a,b) The time evolution of the BEC width for 
different k/ 0

2Ω  and distinct phases. (c,d) The collapse time versus Ω k/ 0
2 for distinct phases by means of the 

variational methods (the line) and the direct numerical simulation of Eq. (1) (the dots).
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Case IV: For general case in 3D system, i.e., both repulsive and attractive interaction, although the ground state 
can not been obtained analytically, the complete phase diagram and stability diagram can be presented numeri-
cally by variational Eqs (7–11), which is explicitly demonstrated in g − g12 plane (Fig. 1) and Ω–k0 plane (Fig. 4). 
For strong inter-species attraction (Fig. 4(a,b)), there is ηΩ = <k/ 2c0

2
1  that the collapse occurs as k/ c0

2
1ηΩ > , 

otherwise the stable phase II exists, where ηc1 is determined by the coupling effects of the interatomic interaction, 
the harmonic trap potential and the system’s geometric dimensionality. In this case, the stabilizing mechanisms 
are illustrated that ηΩ < <k/ 2c0

2
1  can lead to the BEC polarized, then stabilize the BEC with strong inter-species 

attractive interaction, and make the BEC enter into phase II. In other way, the weak RC and strong SOC (i.e., 
k/ c0

2
1ηΩ < ) can produce an effective inter-species repulsive interaction, which can balance the mean-filed 

inter-species attractive interaction to prevent the collapse and result in stable phase II. Further, ηc1 in 3D system 
is smaller than that in 2D system, which indicates that the BEC is more unstable in 3D than 2D system. These are 
also demonstrated in Fig. 1(a2,b2,a3,b3), where the stability and phase boundaries are depicted in g − g12 plane. 
For strong intra-species attraction (Fig. 4(c,d)), the Ω–k0 plane is divided into three regions, the collapse region 
for ηΩ <k/ c0

2
1, the stable phase II region for η η< Ω <k/c c1 0

2
2, and stable phase I for ηΩ > >k/ 2c0

2
2 , where ηc2 

is defined by f = 0. In this case, η η< Ω <k/c c1 0
2

2 can generate a spin polarized state, which can stabilize the col-
lapse produced by strong intra-species attractive interaction, and make the BEC convert into phase II, whereas 

k/ c0
2

2ηΩ >  can introduce a spin overlapped state, which can also stabilize the collapse produced by strong 
intra-species attractive interaction, and create a stable phase I. In other words, the strong RC and weak SOC (i.e., 

ηΩ >k/ c0
2

1) produces an effective intra-species repulsive interaction, which can balance the mean-field 
intra-species attractive interaction then prevent the collapse. Compared with the 3D system, in 2D system, the 
region of collapse (stable BEC) decreases (increases), and the stability boundary is closer to Ω =k/ 20

2 , namely, the 
BEC is more stable in 2D system. These are also evidently depicted in g–g12 plane (see Fig. 1(a1,b1,a3,b3)). In 
brief, the strong attractive collapse may be stabilized by elaborating the SOC, RC, harmonic trap potential, 
geometric dimensionality, and atomic interaction. Moreover, the collapse can be more easily stabilized in 2D than 
3D system for all cases.

Collapse dynamics.  The breathing behavior of the BEC can be obtained by Eqs (7–9). Obviously, the breath-
ing behavior is closely related to SOC, RC, and interatomic interaction. While the BEC width declines to zero in 

Figure 6.  The collapse dynamics for 2D binary BEC with k0 = 2.0. (a,b) The time evolution of the BEC width for 
different k/ 0

2Ω  and distinct phases. (c,d) The collapse time versus Ω k/ 0
2 for distinct phases by means of the 

variational methods (the line) and the direct numerical simulation of Eq. (1) (the dots).
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a limited time, the collapse occurs and the BEC is unstable, otherwise, the BEC is stable, and it is in phase I or 
phase II, which is demonstrated in Figs 5 and 6. Figure 5 depicts the collapse dynamics for 3D binary BEC. For 
strong inter-species attraction (Fig. 5(a,c)), when k k/ ( / )c0

2
0
2Ω > Ω , the BEC width declines to zero, and the col-

lapse time has a finite value, thus the BEC is unstable and the collapse takes place; when k k/ ( / )c0
2

0
2Ω < Ω , the BEC 

width always oscillates around the equilibrium state, and the collapse time tends to infinity, thus the BEC is stable, 
meanwhile the system enters phase II. Namely, when k/ 0

2Ω  is gradually close to Ω k( / )c0
2 , the collapse time 

increases, and it tends to infinity for Ω < Ωk k/ ( / )c0
2

0
2 , which indicates that the collapse speed is reduced as the 

decrease of Ω k/ 0
2, and it slows to zero for Ω < Ωk k/ ( / )c0

2
0
2 . For strong intra-species attraction (Fig. 5(b,d)), there 

is a critical value k( / )c0
2Ω  that the collapse occurs for Ω < Ωk k/ ( / )c0

2
0
2 , while for k k/ ( / )c0

2
0
2Ω > Ω  the BEC is stable 

and it enters phase I or phase II, which depends on Ω k/ 0
2 and g12/g. That is, the collapse speed decreases as the 

increase of Ω k/ 0
2, and it droops to zero for k k/ ( / )c0

2
0
2Ω > Ω . Thus, the collapse time and the collapse speed can be 

manipulated by Ω k/ 0
2, meanwhile the collapse produced by enough strong inter-species attractive interaction is 

stabilized by weak k/ 0
2Ω , and large k/ 0

2Ω  can prevent the collapse produced by enough strong intra-species attrac-
tive interaction.

The collapse dynamics for 2D case is demonstrated in Fig. 6, which is similar to 3D case. However, as the 
increase of the trapping frequency of transverse plane, i.e., the increase of ω, the stabilized collapse takes place at 
the smaller Ω k/ 0

2 for strong inter-species attraction (see Fig. 6(c)) and the larger k/ 0
2Ω  for strong intra-species 

attraction (see Fig. 6(d)). In the other hand, under the same conditions, as the increase of ω (which tends to 3D 
system step by step), the collapse time is gradually shorten, which leads to the larger collapse speed, i.e., the col-
lapse more easily take places. In short, from 2D to 3D system, the increased collapse speed results in stabilizing 
the collapse produced by enough strong attractive interaction more difficultly.

The stability boundary and collapse time can also been obtained by the numerical simulation of GP equation, 
which is respectively demonstrated in Figs 1, 5 and 6 with dots. Moreover, Fig. 7 depicts the density profiles of 3D 
wave packet by the direct numerical dynamics evolution of Eq. (1) in order to conform the collapse dynamics. In 
absence of the SOC and RC, the binary BEC simultaneously quickly collapse due to strong inter-species attraction 
(see Fig. 7(a1)), which can be stabilized by a spin polarized state generated by k/ 20

2Ω < , i.e., strong SOC and 
weak RC, while the BEC enters phase II (see Fig. 7(a2)). For strong intra-species, as without the SOC and RC, the 
more spin species collapses first, and later the less spin species collapses (see Fig. 7(b1)). The spin overlapping 
state induced by the strong RC and weak SOC (i.e., Ω >k/ 20

2 ) can stabilize this collapse, and converts the BEC 
into phase I (see Fig. 7(b2)). The simulated results indicate that the variational predictions are appropriate.

Figure 7.  The evolution for the density profiles of 3D wave packets. |ψ↑| and |ψ↓| are plotted in the upper and 
lower panel in each subgraph, respectively. (a1): g = 10, g12 = −100 and k0 = Ω = 0. (a2): g = 10, g12 = −100, 
k0 = 2.0 and Ω = 0.5. (b1): g = −50, g12 = 100 and k0 = Ω = 0. (b2): g = −50, g12 = 100, k0 = 2.0 and Ω = 15.0.
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However, due to the interference of the two species under the competitive effects between SOC and intera-
tomic interaction, a new unique quantum phase, i.e., the stripe phase, has been predicted theoretically12–15 and 
observed experimentally6, which display a periodic density modulation spatially. The region for existing the stripe 
phase can be qualitatively obtained by similar variational methods where the trial wave function can be assumed 
as a superposition of two plane wave with momentum ±kx corresponding to Eq. (3), i.e., the stripe phase only 
exists in the region of g12 < g and Ω k/ 20

2
 . As shown in Fig. 8, the dynamic evolutions for the density profiles of 

3D wave packets in different phase regions are demonstrated. In the parameter region of the stripe phase (see 
Fig. 8(a)), the evolutions of the density profiles demonstrates as the spatially periodic density modulation along x 
direction because the SOC is only added in x direction, i.e., there indeed is a stable stripe phase in this region. 
Otherwise, there is not a stable stripe phase out of this region (see Fig. 8(b)). Thus, the occurrence of the stripe 
phase can modify the phase diagram of zero-momentum and plane wave phases, whereas their stability criteria 
can not be changed.

Discussion
In conclusion, the combination of analytical and numerical methods depicts the phase and stability diagrams, 
while illustrates the stability mechanism of the trapped D-dimensional binary BEC with SOC. The dependence 

Figure 8.  The evolution for the density profiles of 3D wave packets in the regions of the stripe phase (a) with 
Ω = 1.0, k0 = 2.0, g = 100, and g12 = 150, as well as the none stripe phase (b) with Ω = 1.0, k0 = 4.0, g = 100, and 
g12 = 80, respectively. |ψ↑| and |ψ↓| are plotted in the upper and lower panel in each subgraph, respectively.
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of phase transition and the stability of the system on SOC, RC, interatomic interaction, geometric dimensionality 
and external trap potential is presented in full parameter space. It is shown that the SOC-induced modification of 
dispersion relations can generate a spin polarized state or an overlapped state, which can compensate for the strong 
interatomic attraction, and stabilize the collapse, then changes the stability criteria. In particular, the condition of 
phase transition and stability criteria are gained, which represents that the phase transition and stability not only 
rely on interatomic interaction, SOC and RC, but also depend on the system’s geometric dimensionality. A full and 
deep understanding of the dependence of phase transition and stability mechanism on geometric dimensionality 
and external trap potential is demonstrated. It is also conformed by the collapse dynamics, which indicates that 
from 2D to 3D system, the mean-field attraction for inducing the collapse is reduced and the collapse speed is 
enhanced, then the collapse can be more easily stabilized in 2D system. That is, the collapse dynamics may be elab-
orated experimentally by adjusting the SOC, RC, geometric dimensionality, harmonic trap and atomic interaction.

Methods
Here we have investigated the ground state properties of spin-orbit coupled Bose-Einstein condensate in a har-
monic trap potential by using variational approach from the mean field Gross-Pitaevskii equations. The stability 
phase diagram and stability mechanism are analytically obtained, while collapse dynamics, collapse time and 
collapse speed are also presented, which both confirmed by the direct numerical simulations of Gross-Pitaevskii 
equations by means of the fourth-order Runge-Kutta scheme.
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