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Hepatocellular carcinoma (HCC) is a heterogeneous disease that occurs in the setting of chronic liver diseases. The role of
glycosyltransferase (GT) genes has recently been the focus of research associated with tumor development. However, the
prognostic value of GT genes in HCC remains unclear. Therefore, this study aimed to identify GT genes related to HCC prognosis
through bioinformatics analysis. We firstly constructed a prognostic signature based on four GT genes using univariate and least
absolute shrinkage and selection operator (LASSO) Cox regression analyses in The Cancer Genome Atlas (TCGA) dataset. Next,
the risk score of each patient was calculated, and HCC patients were divided into high- and low-risk groups. Kaplan-Meier
analysis showed that the survival rate of high-risk patients was significantly lower than that of low-risk patients. Receiver operating
characteristic (ROC) curves assessed that risk scores calculated with a four-gene signature could predict 3- and 5-year overall
survival (OS) of HCC patients, revealing the prognostic ability of this gene signature. Moreover, univariate and multivariate Cox
regression analyses demonstrated that the risk score was an independent prognostic factor of HCC. Finally, functional analysis
revealed that immune-related pathways were enriched and the immune status was different between the two risk groups in HCC.
In summary, the novel GT gene signature could be used for prognostic prediction of HCC. Thus, targeting the GT genes may serve

as an alternative treatment strategy for HCC.

1. Introduction

Liver cancer is the sixth most common cancer, with ap-
proximately 800,000 new cases and 780,000 deaths per year
[1]. Hepatocellular carcinoma (HCC) is the second leading
cause of cancer mortality worldwide and always occurs in
the context of chronic liver diseases [2,3]. It is reported that
the development of HCC was correlated with several risk
factors, mainly including nonalcoholic fatty liver disease,
chronic viral infection, and alcohol abuse [1,4,5]. Despite
significant developments in the diagnosis and treatment of
HCC, the majority of patients with HCC are diagnosed at an
advanced stage, leading to a poor prognosis [6]. Thus, it is
necessary to explore novel prognostic factors for HCC
patients.

Glycosylation is a common process of protein modifi-
cation, mainly N- and O-glycosylation, that is catalyzed by

glycosyltransferases (GTs) and exhibits important roles in
various physiological and pathological processes [7-10].
Over the past few decades, a growing number of studies have
revealed that GTs are essential in the progression of various
diseases, such as joint diseases, inflammatory diseases,
cancers, and liver diseases [11,12]. Differentially expressed
GTs and their corresponding target proteins have been
demonstrated to act as tumor biomarkers and therapeutic
targets in specific cancers [13]. Additional evidence also
reveals a novel role of GTs, such as GLANT3 and B3GT3, in
the self-renewal of pancreatic cancer stem cells [14]. Fur-
thermore, Taniguchi and Kizuka discovered that N-glycan is
directly associated with cancers, which provided new bio-
markers for evaluating the progression, metastasis, and
treatment of cancers [15]. However, whether these GT genes
are involved in the prognosis of HCC patients remains
largely unclear.


mailto:xsrsyby@outlook.com
https://orcid.org/0000-0002-6780-7875
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5989419

Journal of Oncology

TaBLE 1: The detailed clinical characteristics of patients with hepatocellular carcinoma between the training and validation sets of TCGA

database.
Dataset
Total (n=371) o o
Training set (n=260) Validation (n=111) P value
Gender 0.2
Male 250 (67.4%) 181 (69.6%) 69 (62.2%)
Female 121 (32.6%) 79 (30.4%) 42 (37.8%)
Age 0.855
<60 169 (45.6%) 117 (45.0%) 52 (46.8%)
>60 201 (54.2%) 142 (54.6%) 59 (53.2%)
Missing 1 (0.3%) 1 (0.4%) 0 (0%)
Stage 0.12
Stage 1 171 (46.1%) 129 (49.6%) 42 (37.8%)
Stage II 86 (23.2%) 61 (23.5%) 25 (22.5%)
Stage 111 85 (22.9%) 52 (20.0%) 33 (29.7%)
Stage IV 5 (1.3%) 3 (1.2%) 2 (1.8%)
Missing 24 (6.5%) 15 (5.8%) 9 (8.1%)
T 0.077
TX 1 (0.3%) 0 (0%) 1 (0.9%)
Tl 181 (48.8%) 136 (52.3%) 45 (40.5%)
T2 94 (25.3%) 65 (25.0%) 29 (26.1%)
T3 80 (21.6%) 48 (18.5%) 32 (28.8%)
T4 13 (3.5%) 9 (3.5%) 4 (3.6%)
Missing 2 (0.5%) 2 (0.8%) 0 (0%)
M 0.826
MO 266 (71.7%) 184 (70.8%) 82 (73.9%)
M1 4 (1.1%) 3 (1.2%) 1 (0.9%)
MX 101 (27.2%) 73 (28.1%) 28 (25.2%)
Treatment 0.149

180 (48.5%)
191 (51.5%)

Pharmaceutical therapy, NOS
Radiation therapy, NOS

133 (51.2%)
127 (48.8%)

47 (42.3%)
64 (57.7%)

The aim of this study was to examine the clinical ap-
plication of GTs in the prognosis and to facilitate the de-
velopment of a personalized treatment approach for HCC
patients. Therefore, we comprehensively analyzed the ex-
pression profiles of GT genes using the RNA sequencing
(RNA-seq) data from The Cancer Genome Atlas (TCGA)
database and constructed a four-gene signature for pre-
dicting the prognosis of HCC. Then, the prognostic value of
the four-gene signature was evaluated and validated in the
training and validation sets from TCGA database. Intrigu-
ingly, this gene signature could effectively predict the
prognosis of HCC patients. In addition, we also performed
gene set enrichment analysis (GSEA) to study the potential
mechanisms of the four-gene signature.

2. Materials and Methods

2.1. Data Acquisition. The RNA sequencing (RNA-seq) data
and paired clinical information of 371 primary HCC samples
and 50 normal samples were downloaded from TCGA
database (Supplementary Table 1). Principal component
analysis (PCA) was performed to observe the distribution of
HCC samples and normal samples based on gene expres-
sions. Subsequently, 421 samples were randomly divided
into a training set, including 35 normal samples and 260
HCC samples, and a validation set, including 15 normal
samples and 111 HCC samples, in a ratio of 7 : 3. The detailed

clinical information statistics of HCC patients in the training
and validation sets are shown in Table 1. In addition, 210
human GT genes were obtained from the previous literature
(Supplementary Table 2) [16].

2.2. Construction and Validation of a Prognostic GT Gene
Signature. Differentially expressed genes (DEGs) between
HCC samples and normal samples were screened by using
the “limma” package of R software [17], and [log2FC| > 1 and
P value <0.05 were set as the screening condition. Differ-
entially expressed GT genes were obtained by overlapping
DEGs and GT genes. Then, univariate Cox analysis was
applied to identify differentially expressed GT genes asso-
ciated with overall survival (OS) of HCC patients in the
training set, and P value <0.05 was considered statistically
significant [18]. Moreover, least absolute shrinkage and
selection operator (LASSO) Cox regression algorithm was
used to filter false positive genes and construct a gene sig-
nature in the training set using the “glmnet” package in R [19].
Namely, a GT gene signature was established according to
genes and their corresponding coefficients obtained by LASSO
analysis. Furthermore, the risk scores of each HCC patient
were calculated according to the following formula [20]:

score = e sum (each gene’s expression level x corresponding coefficient).

(1)
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FiGure 1: Identification of differentially expressed glycosyltransferase (GT) genes associated with overall survival (OS) in hepatocellular carcinoma
(HCCQ). (a) The principal component analysis (PCA) between the tumor and normal groups in TCGA database. (b) Volcano plots showing the number
of DEGs screened from the training set of HCC in TCGA database. (c) DEGs were visualized between tumor and normal groups in the training set
from TCGA database using a heatmap. (d) The expressions of top 10 differentially expressed GTs between the tumor and normal samples. (e) Forest
plots showing the results of the univariate Cox regression analysis between the gene expression and OS in the training set from the TCGA database.

HCC patients were classified into high-risk and low-risk
groups based on the median value of risk scores of patients in
the training and validation sets, separately. Finally,
Kaplan-Meier (KM) survival analysis was performed using
the pressminer package in R and overall survival (OS) of
high- and low-risk patients was compared using the loga-
rithmic test. Receiver operating characteristic (ROC) curves
of time-dependent factors were drawn using the “survi-
valROC” R package, and the area under the curve (AUC) for
1-year, 3-year, and 5-year OS was calculated to assess the
prediction accuracy for the GT gene signature [21].

2.3. Relationship between the GT Gene Signature and Clinical
Characteristics. To investigate the relationship between the

GT gene signature and clinical characteristics, including
BMI, treatment, treatment type, prior malignancy, TNM
stage, and pathologic stage, the one-way ANOVA test or
Wilcoxon test was performed.

2.4. Construction of a Predictive Nomogram. To investigate
whether the GT gene signature could act as an independently
prognostic prediction factor, the GT gene signature and
other clinical features were merged to screen the indepen-
dently prognostic prediction factor via univariate and
multivariate Cox regression analyses in the training and
validation sets. Moreover, the forest plot was used to show
the results of univariate and multivariate Cox regression
analyses through the “rms” package in R.
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F1GURre 2: Construction of a prognostic model in the training set of TCGA cohort. (a, b) The distribution of risk score, overall survival (OS),
and survival status in the training set of TCGA cohort. (c) Kaplan-Meier analysis to compare OS between HCC patients in high- and low-
risk groups in the training set. (d) Receiver operating characteristic (ROC) analysis of the four-gene signature for predicting OS in the

training set of TCGA database.

2.5. Functional Enrichment Analysis. GSEA was utilized to
perform Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses based on
all genes between high-risk and low-risk groups [22].

2.6. Tumor Microenvironment Immune Infiltration Analysis.
To further investigate the correlation between the GT gene
signature and tumor microenvironment immune infiltra-
tion, the enrichment scores of infiltrating immune cells
between high-risk and low-risk groups were calculated by
single-sample gene set enrichment analysis (ssGSEA), which
was performed in the “gsva” package of R [23]. Moreover,
the immune score, estimate score, and stromal score be-
tween high-risk and low-risk groups were generated by the
ESTIMATE algorithm.

2.7. Statistical Analysis. All bioinformatics analyses were
performed with R software. Student’s ¢-test was performed
to compare differences between groups. We compared the

OS among different groups using Kaplan-Meier analysis
with the log-rank test. A P value <0.05 was considered
statistically significant, and all P values were two-tailed.

3. Results

The aim of our study was to examine the prognostic value of
GTs and contribute to the development of therapeutic
strategies for patients with HCC. In the present study, we
systematically investigated the expression profiles of GT
genes and established a four-gene signature for the prognosis
of patients with HCC. We also examined the potential
mechanisms of the four-gene signature.

3.1. Identification of Differentially Expressed Glycosyl-
transferase (GT) Genes Associated with OS in HCC. PCA
results of 421 samples from TCGA database revealed that the
tumor tissue and the normal tissue samples were distributed
in two directions (Figure 1(a)). To further explore genes
acting as prognostic factors for the progression of HCC, we
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FiGure 3: Validation of four-gene signature in the validation set of TCGA database. (a, b) The distribution of the risk score, overall survival
(OS), and survival status in the validation set of TCGA cohort. (c) Kaplan-Meier analysis to compare OS between patients with HCC in
high- and low-risk groups in the validation set. (d) Receiver operating characteristic analysis of the 4-gene signature for predicting the OS in

the validation set of TCGA database.

first comprehensively analyzed the training set of HCC from
TCGA database. As presented in Figure 1(b), a total of 2264
DEGs were identified based on thresholds of |log,FC|> 1
and P value <0.05, of which 1765 were upregulated and 499
were downregulated (Supplementary Table 3). The heatmap
showed the expression of DEGs between the tumor and
normal groups (Figure 1(c)). Furthermore, these DEGs were
combined with 210 GTs downloaded from the literature, and
28 differentially expressed GT genes were obtained (Sup-
plementary Figure 1). Importantly, the expression of the top
10 differentially expressed GT genes was significantly dif-
ferent between the two groups (Figure 1(d), P <0.05). To
further identify GTs associated with the survival of patients
with HCC, we performed a univariate Cox regression
analysis based on the 28 differentially expressed GT genes. As
a result, 11 of them were obtained using a cutoff of P value
<0.05 (Figure 1(e)).

3.2. Construction of a Prognostic Model in the Training Set.
After the LASSO Cox regression analysis of the training set,
we obtained a four-gene signature that included ALGS3,

B3GAT3, GLA, and ST6GALNAC4 (Supplementary Figure 2).
To better demonstrate the prognostic role of the four genes in
HCC, we first used Kaplan—-Meier analysis in TCGA dataset in
which samples were divided into high and low expression
based on the gene expression level (Supplementary Figure 3).
mRNA expression levels of the four genes in matched HCC
and adjacent noncancerous samples in TCGA database were
compared, as shown in Supplementary Figure 4. All four of
these genes were significantly associated with the OS of HCC
patients, which indicated that this gene signature may act as a
prognostic factor in HCC. Intriguingly, a protein-protein
interaction (PPI) network revealed that there were no direct
interactions between the 4 gene signatures (Supplementary
Figure 5).

Having shown that this gene signature may act as a
prognostic factor regarding the progression of HCC, we
investigated the practical prognostic value in HCC. The risk
score was calculated according to the gene expression levels
and their corresponding coefficients. Based on the median
value of risk score, patients with HCC were divided into
high- and low-risk groups. The results showed that the
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FIGURE 4: The correlation between the risk scores and clinicopathological characteristics of patients with hepatocellular carcinoma (HCC).
(a) The correlation between the four GT gene expression profiles stratified by the risk score and clinicopathological characteristics of patients
with HCC in the training set of TCGA database. (b) The correlation between four GT gene expression profiles stratified by the risk score and
clinicopathological characteristics of HCC patients in the validation set of TCGA database.

number of patients who died of HCC was significantly
increased along with an increasing risk score (Figures 2(a)
and 2(b)). The OS of patients with HCC was obviously
different between the two risk groups; HCC patients with
high-risk scores showed a poor OS compared with those
with low-risk scores (Figure 2(c), P = 0.00095). Stratified
survival analysis showed that risk factors including nonal-
coholic fatty liver disease (NAFLD), hepatitis B virus (HBV)
infection, and hepatitis C virus (HCV) infection had no
significant effect on the survival of patients in high- and low-
risk groups. Interestingly, HCC patients with HBV and HCV
infection in the high-risk group showed a significantly worse
OS than those in the low-risk group. Moreover, pharma-
ceutical therapy in the low-risk group contributed to a better
OS than in their high-risk counterparts (Supplementary
Figure 6). Thereafter, ROC curve analysis was performed to

investigate the effectiveness of the prognostic model
(Figure 2(d)). The area under the curve (AUC) reached 0.676
at 3 years and 0.631 at 5 years, which indicated that the risk
score of the prognostic model had high accuracy. To predict
the 3- and 5-year survival probability, we established a no-
mogram containing the four genes in this signature. As a
result, each factor corresponded to a point. In addition,
calibration curves revealed the consistence between the actual
and the predicted survival probability, indicating the strong
predictive performance of the nomogram (Supplementary
Figure 7, c-index = 0.66328, calibrated c-index = 0.64057).

3.3. Validation of the Four-Gene Signature in the Validation
Set. To obtain additional evidence regarding the prognostic
value of the gene signature, we accessed the prognostic
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F1GURE 5: Independent prognostic value of the risk score. Results of the univariate and multivariate Cox regression analyses regarding OS in
TCGA database (a, b) in the training set and (c, d) in the validation set.

model in the validation dataset of TCGA database. In-
terestingly, survival analyses of 4 genes confirmed that two
of these genes correlated with poor OS of HCC (Supple-
mentary Figure 8). To demonstrate the robustness of the
validation model from TCGA database, patients with HCC
were divided into high- and low-risk groups according to the
median value of the risk score (Figures 3(a) and 3(b)). The
results were consistent with those obtained from the training
set (Figure 3(c), P = 0.0039). In addition, ROC curve analysis
also showed that the AUC of the four-gene signature reached
0.708 at 3 years and 0.712 at 5 years, further revealing the
accuracy of the prognostic model (Figure 3(d)).

3.4. The Correlation of Risk Scores and Clinicopathological
Characteristics in Patients with HCC. The expressions of
these 4 signature genes between the two risk groups and
clinical characteristics in TCGA database were visualized
with a heatmap (Figures 4(a) and 4(b)). We found that the
expression of these signature genes significantly increased as
the risk score in TCGA database increased. Interestingly, we
found that the four-gene signature was related to the stage
(Figure 4(c)), indicating that the four-gene signature might
affect the development of HCC.

Furthermore, we performed univariate and multivariate
Cox regression analyses after adding clinical characteristics
to investigate whether the risk score of the prognostic model
was an independent factor for the HCC prognosis
(Figures 5(a)-5(d)). In the univariate Cox regression ana-
lyses, the risk score was correlated with the OS of patients
with HCC both in the training set and the validation set of

TCGA database (TCGA training set: HR=2, 95%
CI=1.5-2.8, P =2.2e- 05 TCGA validation set: HR=2,
95% CI=1.4-2.8, P =0.0034). The multivariate Cox re-
gression analyses showed that the risk score of the prog-
nostic model was still an independent factor for the OS of
patients with HCC (TCGA training set: HR=2.2, 95%
CI=1.5-3.2, P = 5.4e — 05; TCGA validation set: HR=1.7,
95% CI=1.1-2.7, P = 0.018).

3.5. Functional Analyses in TCGA Database of HCC.
Based on these observations, we next investigated the biological
progresses related to the risk score. Therefore, we focused on all
genes between the two risk groups to perform GSEA. As a result,
GO analysis revealed that the genes were involved in several
immune-related biological processes, such as GO: 0002263 cell
activation involved in immune response, GO: 0002275 myeloid
cell activation involved in immune response, GO: 0002283
neutrophil activation involved in immune response, and GO:
0002520 immune system development, which may be highly
associated with the development of HCC (Figure 6(a), P value
<0.05). Notably, the KEGG pathway analysis results further
indicated that these genes were involved in cancer-related
pathways, such as hsa05200~pathways in cancer, and
hsa05206~microRNAs in cancer (Figure 6(b), P value <0.05).
All significantly enriched GO terms and KEGG pathways are
shown in Supplementary Tables 4 and 5, respectively.

3.6. Correlation between the GT Gene Signature and Tumor
Microenvironment Immune Infiltration. To investigate
whether the risk score correlated with immune status in
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HCC, we analyzed the differences in the scores of immune
cell enrichment between high-risk and low-risk groups.
Interestingly, activated CD4 T cells, activated dendritic cells,
CD56dim natural killer cells, central memory CD8 T cells,
eosinophils, MDSCs, and natural killer T cells showed ob-
vious and significant differences between the two risk groups
(Figure 7(a), all P values <0.05). Moreover, the immune
score calculated by the ESTIMATE algorithm in the high-
risk group was higher than that in the low-risk group, which
further revealed that the risk score of the prognostic model
was strongly correlated with the immune status of patients
with HCC (Figure 7(b), P <0.05). Interestingly, the stromal
and ESTIMATE scores showed no significant difference in
the high-risk and low-risk groups (Figures 7(c) and 7(d)).

4. Discussion

HCC is a common malignancy with a poor prognosis
[24,25]. The critical role of glycosylation modification of
protein has been demonstrated in several cell biological
processes occurring in cancer, such as immune modulation
and metastasis, tumor cell invasion, cell signaling and
communication, and tumor angiogenesis [8,26,27]. Ac-
cordingly, this suggests that GTs catalyzing the glycosylation
modification process have a potential application in the
diagnosis and prognosis of HCC.

Over the past years, with significant progress in epige-
netics and metabolomics, various biomarkers have been
identified for many cancers [20,28,29]. In the current study,
we focused on whether GTs involved in the progression of
HCC are also associated with the prognosis of HCC. By
analyzing the expression profiles of HCC patients in TCGA

database, we identified a gene signature that could predict
the OS of patients with HCC. Four differentially expressed
GT genes, including ALG3, B3GAT3, GLA, and ST6GAL-
NACH4, correlated with the prognosis of HCC. Moreover, we
constructed a four-gene signature that divided HCC patients
into high- and low-risk groups for predicting the prognosis
of patients with HCC. Furthermore, the prognostic value of
the four-gene signature was assessed by ROC curves and
Kaplan-Meier analysis in the training and validation sets.
Importantly, the risk score generated from the four-gene
signature was demonstrated to be an independent prog-
nostic factor in patients with HCC by univariate and
multivariate Cox regression analyses. In addition, GSEA
results revealed that differentially expressed genes (DEGs)
between high- and low-risk groups were mainly involved in
several immune-related biological processes and signaling
pathways. Thus, the immune status between the two groups
was further evaluated.

Although a previous study has demonstrated that the
expressions of GT genes might mediate aberrant glycosyl-
ation in many cancers [16], their correlation with the OS of
patients with HCC still remains unknown. Surprisingly,
28 GT genes were differentially expressed between tumor
tissues and normal tissues, and four of them were dem-
onstrated to be signature genes, which indicated the po-
tential prognostic value of GT genes in HCC. Of the 4
signature GT genes, several genes have been shown to be
involved in the progression of tumors. ALG3 is an oncogene,
located at the 3q27.1 chromosomal region, which is corre-
lated with multiple malignancies [30]. In non-small-cell lung
cancer (NSCLC), the expression of ALG3 in tumor tissues
was significantly increased compared with that of normal
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algorithm were compared between high-risk and low-risk groups.

tissues [31]. Upregulation of ALG3 promoted the metastasis
of esophageal squamous cell cancer to lymph nodes and the
proliferation of cervical cancer cells [30,32]. ALG3 was also
found to promote the proliferation and metastasis of breast
cancer cells, and overexpression of ALG3 was associated
with poor prognosis [33]. In accordance with previous
studies, our results revealed that ALG3 was upregulated in
HCC tissues. To our knowledge, this is the first evidence
regarding the potential prognostic role of ALG3 in patients
with HCC.

An altered expression of the ST6GALNAC family of
genes has been reported in several cancers. Aberrant gly-
cosylation caused by the changes in ST6GALNAC4 ex-
pression levels promoted the lung cancer metastasis through
adhesion to galectins in the metastatic niche [34]. miR-4299
mediated the invasive properties and tumorigenicity of
human follicular thyroid carcinoma via targeting
ST6GALNACH4 [35]. B3GATS3, as a glycosyltransferase, may
mediate the attachment of saccharides to key proteins
[36,37]. Moreover, B3GAT3 has been shown to be highly
expressed in liver cancer tissues and was associated with
poor prognosis, which is consistent with our present study
[38]. Furthermore, high expression of B3GAT3 was related
to worsened OS in HCC patients without alcohol con-
sumption or hepatitis virus infection. However, high
B3GAT3 levels were moderately, but not significantly,
correlated with worse OS in patients with positive alcohol
intake or positive hepatitis virus status [38]. With respect to
GLA, it has been reported that it plays a role in tumor
progression, regulation of macrophages, and prevention of
fatty liver in mice [39].

In our study, we also explored the potential molecular
mechanisms of the four-gene signature, providing new in-
sights into treatment. Although the potential mechanisms of
regulating immunity have diverse clinical implications in
tumor immunotherapy, the relationship between tumor
immunity and GTs remains largely unknown. Based on all
the genes between the two risk groups, we performed GSEA
and unexpectedly found that several immune-related bio-
logical processes were significantly enriched. Therefore, we

hypothesized that there were potential associations be-
tween GTs and tumor immunity. Interestingly, the frac-
tions of infiltrating immune cells were significantly
different between low-risk and high-risk groups. In ad-
dition, patients of the high-risk group in TCGA contained
higher fractions of central memory CD8 T cells. A pre-
vious study has revealed that increased tumor-associated
CD8 T cells are related to poor prognosis in HCC patients
[40]. Therefore, the attenuated antitumor immune
function of high-risk patients may be a reason for their
poor prognosis.

Although we identified a novel four-gene prognostic
signature in HCC, there are several limitations to this
analysis. First, our prognostic signature was only estab-
lished in TCGA database and was not validated in other
independent databases. We tried many external verifi-
cations for the gene signature, and unfortunately, the
results were poor. Second, this study provided a prog-
nostic model constructed by four genes, which needs to be
further verified in clinical trials. In addition, many other
important prognostic genes in HCC might have been
excluded in the Cox analysis. Third, our study was con-
ducted based on retrospectively collected data and should
be verified in prospective studies with real-world data.
Notably, the associations between the risk score and
immune status have not yet been determined by in vitro
and in vivo experiments.

We comprehensively demonstrated a GT gene sig-
nature in the training set and validation set of TCGA
database for the first time and observed the prognostic
value for predicting OS in HCC patients. However, there
were obvious difference among the effects of each gene
on OS, and this may be due to the deficiency and clinical
information of the samples, leading to conflicting or
meaningless results. In addition, functional analysis
revealed that the DEGs between the high-risk and low-
risk groups were primarily involved in several important
immune biological processes and pathways, which may
provide a new direction for studies on the mechanism
of HCC progression. It is unclear how GT genes are
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involved in HCC prognosis, and this requires further
study.

5. Conclusions

In conclusion, we revealed the prognostic value of GT genes
in the progression of HCC for the first time. A GT gene
signature was identified which could effectively divide HCC
patients into high- and low-risk groups in order to accu-
rately predict their OS. Our study contributes to the un-
derstanding of the molecular mechanisms through which
GT genes are involved in the occurrence and development of
HCC and provides a unique approach to explore biomarkers
for targeted therapy in HCC.
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