
RESEARCH ARTICLE

A benchmark-driven approach to reconstruct

metabolic networks for studying cancer

metabolism

Oveis Jamialahmadi1, Sameereh Hashemi-NajafabadiID
2*, Ehsan Motamedian1*,

Stefano Romeo3,4,5, Fatemeh Bagheri1

1 Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran,

2 Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University,

Tehran, Iran, 3 Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg,

Sweden, 4 Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University,

Catanzaro, Italy, 5 Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden

* s.hashemi@modares.ac.ir (SHN); motamedian@modares.ac.ir (EM)

Abstract

Genome-scale metabolic modeling has emerged as a promising way to study the metabolic

alterations underlying cancer by identifying novel drug targets and biomarkers. To date, sev-

eral computational methods have been developed to integrate high-throughput data with

existing human metabolic reconstructions to generate context-specific cancer metabolic

models. Despite a number of studies focusing on benchmarking the context-specific algo-

rithms, no quantitative assessment has been made to compare the predictive performance

of these methods. Here, we integrated various and different datasets used in previous

works to design a quantitative platform to examine functional and consistency performance

of several existing genome-scale cancer modeling approaches. Next, we used the results

obtained here to develop a method for the reconstruction of context-specific metabolic mod-

els. We then compared the predictive power and consistency of networks generated by our

method to other computational approaches investigated here. Our results showed a satis-

factory performance of the developed method in most of the benchmarks. This benchmark-

ing platform is of particular use in algorithm selection and assessing the performance of

newly developed algorithms. More importantly, it can serve as guidelines for designing and

developing new methods focusing on weaknesses and strengths of existing algorithms.

Author summary

Several attempts have been made to develop computational approaches to integrate high-

throughput omics data with generic models of human metabolism. However, no compre-

hensive and quantitative platform is available to examine the performance of these

methods both functionally and structurally. Here, we collected numerous datasets to

benchmark some of the context-specific methods used to study the cancer metabolism in

order to provide a platform for future algorithm selection, comparison, or algorithm

design. Utilizing the performance comparison results, we took a benchmark-driven
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approach to develop a context-specific reconstruction algorithm based on the advanta-

geous features of algorithms studied here. The promising performance of our method

may provide the opportunity for feature algorithm design studies on cancer metabolism.

Introduction

The advent of next-generation sequencing has shed light on a myriad of mutational events

occurring in cancer-related genes. However, deciphering the associated mechanisms underly-

ing the phenotypic alterations cannot be solely deduced from these mutational events due to

both extensive heterogeneity of cancer cells and the complexity of biological networks [1, 2].

One emerging way to interpret omics measurements and unravel the complexity of cancer

metabolism is to employ genome-scale metabolic models (GEMs) to understand how the can-

cer metabolism responds to environmental and genetic stresses [3, 4]. General human meta-

bolic models encompass all possible biochemical reactions that are known to occur in different

human tissues and cells [5–7]; and hence, this generality in human GEMs implicates their

non-specificity to any human tissue or cell. The integration of numerous available cancer

high-throughput omics data with global human GEMs provides an invaluable opportunity to

study metabolic alterations of cancer cells, and to discover novel drug targets and biomarkers

via reconstruction of tissue/cell specific (context-specific) GEMs [2, 8, 9]. To date, many con-

text-specific reconstruction algorithms have been developed for data integration with general

GEMS [10–19], and several publications have reviewed the scope of these algorithms from per-

spectives ranging from mathematical properties to their applicability in the realm of cancer

metabolism [1–3, 8, 20]. Nevertheless, none of these publications quantitatively compared the

predictive power of these algorithms using common benchmarks and experimental datasets.

Recently, a number of studies have undertaken the challenge of designing and introducing

methods to benchmark existing context-specific reconstructions [21–24]. Machado and

Herrgård [21] comprehensively compared the predictive ability of several methods in terms of

internal fluxes, growth and uptake/secretion rates for Escherichia coli and yeast. Moreover,

they compared the results obtained with those of parsimonious FBA (pFBA) to evaluate the

impact of omics integration with the GEM under study. In another study, Pacheco et al. [22]

introduced a benchmarking method for the quality evaluation of context-specific algorithms

consisting of comparison and consistency based methods with a focus on the latter. Very

recently, Opdam et al. [23] systematically assessed the impact of algorithm assumptions

including parameter selection, expression thresholds and metabolic constraints on predictive

capability of generated context-specific models for four cancer cell lines. In a similar study,

Ferreira et al used transcriptomics and proteomics datasets to reconstruct cell-specific GEMs

of healthy liver and hepatocellular carcinoma (HCC) cells using four different algorithms.

Functional and structural analysis of these models revealed that none of the examined algo-

rithms were ideal based on comparison results [24].

Although these studies paved the way toward systematic evaluation of the developed con-

text-specific algorithms, the guidelines, and extensive comparison based benchmarks for pro-

spective development of new algorithms in the field of cancer metabolism have not been

thoroughly investigated.

Here, we have first extracted several experimental datasets, namely cancer essential genes,

growth rates, oncogenes and tumor suppressors, drug responses and metabolite uptake/secre-

tion rates from previous studies on context-specific reconstruction algorithms. These datasets

represent our comparison based tests for cancer GEMs. We also adapted the consistency based
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tests from previous benchmarking studies to further illuminate the structural characteristics of

generated networks [21, 22]. Through these set of tests, we examined several algorithms in

terms of functional and structural properties. Furthermore, we used the results obtained from

these benchmarks to identify the bottlenecks of the selected algorithms and to choose the most

appropriate ones for use in the realm of metabolic modeling of cancer. Finally, we took a

benchmark based approach to develop a context-specific reconstruction algorithm based on

incorporation of successful properties of the most accurate algorithms examined in this study.

To the best of our knowledge, this is the first time that such a benchmark driven approach is

employed to develop an algorithm based on extensive evaluation of its previous ancestors.

Methods

General human model setup

The consistent part of Recon 1 (i.e., all blocked reactions, which were unable to carry a non-

zero flux under any simulation conditions, were removed) was used as a general input model

for generating context-specific models [6, 16]. The biomass function and growth medium

(RPMI-1640) for Recon 1 were taken from Folger et al [25]. Since the measured metabolite

uptake/secretion rates showed the secretion of alanine and glutamate [26, 27], associated

exchange reactions were not constrained in input models (as constrained before in Folger et al
[25]).

To account for the impact of constraining the input model with cell-specific phenotypic

data, GEMs were generated using metabolite uptake/secretion rates measured in Jain et al [27]

study (CORE data), and compared to models generated using above-mentioned general

medium. These measurements were converted to usable unit of uptake rate (mmol gDW-1hr-1)

as follows (Eq 1).

vcmet;i ¼
4:3� Cmet;i

Vc
ð1Þ

where Cmet,i is the exchange rate of metabolite i in the medium (fmol cell-1hr-1), the coefficient

4.3 is the cell specific volume (mL gDW-1) taken from Frame and Hu study [28], Vc is the cell

volume measured by Dolfi et al [29] (fL cell-1), and vcmet;i is the upper bound of uptake rate of

metabolite i for the cell line c (mmol gDW-1hr-1). GEMs generated using these cell-specific

uptake rates are denoted by the superscript “C” to be distinguishable from the models gener-

ated using the general medium. It should be noted that, since some metabolites existing in sim-

ulated RPMI-1640 were absent from CORE data, the uptake rates from the general medium

were used to fill the missing exchange rates.

Algorithms setup

All in silico simulations were carried out on a 24 core SuperMicro system with 32 GB RAM,

using MATLAB R2017b (The MathWorks, Natick, USA) with Gurobi Optimizer 5.5 (Gurobi

Optimization, Inc.) as solver. Depending on the algorithm, COBRA [30] or RAVEN toolboxes

[31] were employed. For all algorithms, input general human model was constrained with the

above-mentioned uptake rates in the medium prior to the reconstruction process.

pFBA. The existing implementation in the COBRA toolbox was employed, and L1-norm

of flux distribution was minimized to reduce the number of optimal flux distributions [32].

The objective function was set to biomass generation through all simulation scenarios.

GIMME. The existing implementation of GIMME in COBRA toolbox was slightly mod-

ified to account for the direct use of expression values as weights in the objective function, as
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in the original study [17]. The fraction of objective function and the gene expression thresh-

old were selected based on sensitivity analysis. More than 13500 GEMs were generated by

simultaneously varying the fraction of objective function and gene expression threshold

linearly from 10−6 to 1, and between 1st and 99th percentile of the input expression profile,

respectively.

iMAT. The existing implementation of iMAT (Shlomi method) in COBRA toolbox was

used [15], and 3 parameters of the algorithm, namely, flux activation threshold (ε), low and

high expression thresholds were selected based on sensitivity analysis. More than 14500 GEMs

were generated by simultaneously varying the flux activation threshold (ε) from 10−3 to 10

(log-scale), low expression threshold from 1st to 75th percentile, and high expression threshold

from 25th to 99th percentile.

mCADRE. The modified version of mCADRE available at https://github.com/jaeddy/

mcadre was employed. In this version, fastFVA [33] was replaced by FASTCC [16] to acceler-

ate the computations for checking the model consistency. All other parameters were left as

their default values [12].

PRIME. The original implementation of PRIME [10] was employed, and TomLab solver

was replaced by Gurobi Optimizer which was used for other in silico simulations.

INIT. The existing implementation of INIT in RAVEN toolbox was used here. INIT

assigns weights to genes by dividing the gene expression in the target tissue to average expres-

sion across all the tissues [14]. Here, to be comparable with other algorithms, and due to the

high correlation between cell lines in the NCI-60 panel (mean pairwise Spearman R = 0.91),

the average gene expression across all cell lines were used in the weighting function.

FASTCORE. Since FASTCORE is a general algorithm for reconstruction of context-spe-

cific models, it does not introduce any assumptions for determining core reactions [16].

Therefore, core reactions were determined as described in the FASTCORMICS algorithm

[11]. To this purpose, gene expression arrays (CEL format) were normalized with fRMA [34]

via R-(D)COM Interface StatConnDCOM (http://www.statconn.com), processed with Bar-

code [35], and genes with z-scores above 5 were mapped to reactions using Gene-Protein-

Reaction (GPR) rules to form the set of core reactions [11]. Finally, the biomass function was

added to the core reactions.

FASTCORMICS. Identifying core reactions are similar to the procedure described for

FASTCORE, with the difference that z-scores below 0 are considered as non-expressed [11].

As FASTCORMICS allows for the inclusion of biomass function along with the required reac-

tions, this reaction was introduced to the algorithm and not independently added to the core

reactions.

CORDA. Discretized z-scores used for FASTCORMICS were employed for CORDA: z-

scores above 5 were considered for high confidence (HC) reactions, z-scores between 0 and 5

were considered for medium confidence (MC) reactions, and z-scores lower than 0 were con-

sidered as negative confidence (NC) reactions. Biomass function was also added to the set of

high confidence (HC) reactions [19]. The constraint value for defining the reaction depen-

dency was selected based on sensitivity analysis. Totally, 1200 GEMs were generated by linearly

varying the constraint value from 1% to 99% of maximal flux rate.

TRFBA. The original implementation of TRFBA [18] was modified to reduce the compu-

tational cost. TRFBA adds two linear constraints to the algorithm, one for associating the reac-

tion upper bounds with expression levels and the other for correlating the expressions of target

and regulating genes. Here, to be compatible with other algorithms, we only used the first con-

straint. The parameter C was calculated with respect to the minimum growth rate error as

reported in the original publication.
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Comparison analyses

Gene expression and growth rates. Processed and raw gene expression data for the NCI-

60 panel were retrieved from Lee et al [36] and CellMiner database [37] using the same micro-

array panel (Affymetrix Human Genome U133A). Associated doubling times were obtained

from the Developmental Therapeutics Program website (DTP) of the National Cancer Insti-

tute (https://dtp.cancer.gov/discovery_development/nci-60/cell_list.htm) and converted to

growth rates (μ) by dividing ln(2) by the observed doubling times. The power of algorithms to

predict the cancer growth was assessed by maximizing the biomass formation and the relative

error was calculated as follows:

e ¼
jgrowthexp � growthpredj

growthexp
ð2Þ

where growthexp and growthpred are observed and predicted growth rates, respectively.

Prediction of uptake/secretion rates. Metabolite uptake/secretion rates (CORE data)

measured in Jain et al study [27] were normalized to the cell volume data measured by Dolfi

et al [29] to evaluate the ability of generated GEMs to predict these experimental rates. Accord-

ing to the procedure described by Yizhak et al [10], the flux through the exchange reaction cor-

responding to the target metabolite was maximized under at least 90% maximum growth. Due

to the removal of biomass function for iMAT, the output fluxes from the algorithm were used

for comparison. Predictive power was determined by calculating the Spearman correlation

and correcting the p-values for false discovery rate (FDR) using the Benjamini-Hochberg

method (α = 0.05). When cell-specific medium was applied, uptake of the exchange reaction

under test was set to its original value in the input human model to remove the constraining

effect of measured metabolomics data on subsequent calculations.

Drug response simulation. According to the procedure introduced by Yizhak et al [10],

enzymatic targets for the selected metabolic drugs [38–40] were obtained from DrugBank

database [41], and their IC50 values (the required concentration of a drug for reducing the

growth rate to 50% of its maximal value) were simulated by maximizing the flux through the

target reaction and bounding the biomass to 50% of its maximum value. Predictive power of

algorithms was evaluated by computing the Spearman correlation.

Prediction of cancer essential genes. Gene dependency scores (CERES) were retrieved

from genome-scale CRISPR-Cas9 loss-of-function screen data publicly available in Project

Achilles (Avana library, 18Q4 release) [42]. Briefly, CERES estimates gene dependency levels

by accounting for the copy-number-specific effect, and therefore reduces false-positive depen-

dencies [43, 44]. Here, genes with negative CERES dependency scores (<0) were defined as

essential.

Flux balance analysis (FBA) was used to simulate the effect of gene knock-out on the growth

rate. In accordance with previous studies [11, 25], genes which their knock-out reduced the

maximal growth rate above 1% were considered as essential. A hypergeometric enrichment

test was used to evaluate the predictive accuracy of the methods for 22 cell lines that were pres-

ent in both Project Achilles and NCI-60 panel [42].

Prediction of oncogenes and tumor suppressors. A list of 903 oncogenes (OG) and 1247

tumor suppressor (TS) genes [45–47], along with a set of loss-of-function (LOF) mutations in

several tumors which were suggested to be enriched with tumor suppressors [48] were col-

lected. The enrichment of predicted OG, TS and LOFs was calculated by dividing the fraction

of OG/TS/LOF in the set of predicted OG/TS/LOF by the fraction of OG/TS/LOF in the input

general model [49]. The significance of the enrichment analysis was assessed using hypergeo-

metric test. To observe the enrichment of generated GEMs with OG (higher is better) or TS/
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LOF (lower is better) genes, p-value calculations were carried out with respect to the right and

left tail of the distribution for OG and TS/LOF, respectively [50].

Consistency analyses

Network connectivity. The level of connectivity for each GEM was assessed by fast con-

sistency evaluation method (FASTCC), which identifies reactions incapable of carrying a non-

zero flux under any conditions (blocked reactions) due to the presence of dead-end metabo-

lites or network gaps [16, 51]. The algorithms were then compared based on the mean fraction

of blocked reactions present in the generated GEMs.

Similarity check. Jaccard similarity index was used to evaluate the degree of similarity

among generated NCI-60 GEMs for each algorithm. To assess the ability of algorithms to dis-

tinguish between GEMs corresponding to specific cancer types, the average pairwise Jaccard

index for GEMs associating with each cancer type in NCI-60 panel was computed, and the res-

olution power of examined algorithms were compared. Since algorithms were compared based

on their reaction contents, only those capable of extracting a subnetwork from general human

model were considered (i.e. all algorithms except TRFBA and PRIME).

Robustness analyses. Two different approaches were employed for robustness analysis: i)

cross-validation to evaluate the confidence level of reactions included in generated GEMs [22],

and ii) evaluate the robustness of algorithms to noise in the input expression data [21]. Due to

computational difficulties, all analyses were only carried out for the GEMs generated for cell

line RXF 393.

Cross-validation. Similar to the work of Pacheco et al [22], a repeated 5-fold cross-valida-

tion (for 15 times) was used by removing 20% of input core reactions at each time (i.e. a total

of 75 GEMs). Hypergeometric test was applied to evaluate the capability of algorithms to

return the removed reactions back to the generated GEM. For INIT and GIMME, 20% of reac-

tion scores fed into the algorithm were set to 0 [22]. Since TRFBA and PRIME do not trim the

generic model, cross-validation was performed by removing 20% of input expression data and

evaluating the effect of missing expression data on growth rate prediction.

Robustness to noise. Gene expression data were randomly shuffled to generate a set of 20

noisy data (with same distribution of the original expression data) with similarly spaced inter-

vals of Spearman correlation coefficients ranging from R < 0.004 for entirely random data to

R = 1 for the original data [21]. These sets of random expression data were used to evaluate the

impact of noise in the input data on the growth rate predictions. Furthermore, resolution

power of generated GEMs regarding the noisy data was assessed by Jaccard similarity index.

Results and discussion

The following 8 context-specific reconstruction algorithms were used in this study: GIMME,

iMAT, INIT, mCADRE, FASTCORMICS, PRIME, CORDA and TRFBA (Table 1). These

algorithms were originally developed or used in several studies to study cancer metabolic alter-

ations, while FASTCORE, was also analyzed because it is the base algorithm for development

of FASTCORMICS, and therefore, may be exploited in the future for investigations on cancer

metabolism. Due to the high computational requirements of MBA, this algorithm was not

included in current study despite its pioneer role in cancer metabolic modeling [25].

Parameter optimization

Among all the methods studied here, GIMME, iMAT, CORDA and TRFBA rely on adjustable

parameters. Hence, we evaluated the interaction effect of parameters on the generated GEMs,

particularly on the growth rate prediction. Interestingly, both iMAT and GIMME tended to
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perform better in lower expression thresholds, fraction of objective function, and flux activa-

tion threshold (S1 Text). It is also of note that iMAT performed better when moderately

expressed states were removed, and therefore, a single expression threshold was used. The con-

straint value of CORDA showed no evident effect on the growth prediction (S1 Text). Finally,

the constant parameter C in TRFBA exhibited a non-monotonic dependence on growth rate

prediction error as previously reported (S1 Text).

Comparison-based analyses

Phenotypic analyses. Due to the heterogeneity of the data exploited by different context-

specific modeling algorithms, it is of paramount importance to provide a general platform

consisting of all these experimental data sets to compare the predictive power of existing or

newly developed computational methods. To evaluate the capability of each algorithm to esti-

mate the growth rate of cancer, relative error was calculated based on observed and predicted

growth rates (Fig 1). Conceivably, the GEMs generated with cell-specific medium (denoted

with c superscript) showed a better performance compared to their counterparts with general

medium. Both CORDA and iMAT exhibit similar behavior, and a worse ability to predict

growth rates. This may be due to the addition of a biomass reaction to the high confidence

reaction set in CORDA, forcing the algorithm to include reactions from medium and negative

confidence reaction sets within the final GEM. Moreover, FASTCORMICS and mCADRE

use a set of core reactions and extract a subnetwork from input generic model while trying to

include the core set in the final GEM. Although both algorithms show a low error distribution,

not all the generated GEMs were capable of predicting the growth in silico (25% and 17% for

FASTCORMICS and FASTCORMICSC, respectively, and 41% and 39% for mCADRE and

mCADREC, respectively). Among all algorithms, TRFBA exhibits superior capability to predict

Table 1. An overview of the Context-specific reconstruction methods studied here.

Method Approach Input data Subnetwork

extraction

Optimization

problem

Metabolic

objective

required

GIMME Minimizes the inclusion of reactions with expression levels below a

cutoff, while ensuring the activity of a defined objective function

above a certain threshold.

Transcriptomic Yes LP Yes

iMAT Categorizes reactions into highly and lowly expressed reactions,

and maximizes the consistency between reaction fluxes and

corresponding expression states.

Transcriptomic Yes MILP No

INIT Assigns weights to reactions and maximizes the consistency

between reaction fluxes and corresponding weights. Optionally, the

accumulation of specific metabolites can be allowed.

Transcriptomic;

Proteomic

Yes MILP No

mCADRE Defines a set of core reactions based on network topology and

expression data, and removes other reactions, while ensuring the

activity of core reactions and a set of metabolic functions.

Transcriptomic Yes LP No

FASTCORE Extracts a consistent subnetwork consisting of all core reactions

with addition of minimal number of non-core reactions.

Core reactions Yes LP No

FASTCORMICS A modified version of FASTCORE, with possibility of defining a set

of non-penalized, and biomass supported reactions

Transcriptomic Yes LP No

CORDA Employs a dependency assessment by minimizing the flux through

cost-consuming reactions. Only required undesirable reactions are

included in the output network.

Core reactions Yes LP No

PRIME Uses the phenotypic data to identify phenotype-associated

reactions, and modifies the bounds of corresponding reactions.

Transcriptomic;

Phenotypic

No LP Yes

TRFBA Uses phenotypic data to determine a constant to convert the gene

expression levels to upper bounds of gene-associated reactions.

Transcriptomic;

Phenotypic

No LP Yes

https://doi.org/10.1371/journal.pcbi.1006936.t001
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cancer growth; however, this is not surprising since TRFBA employs an optimized constant

based on prior knowledge of observed growth rates [18].

Next, to compare the algorithms based on their ability to predict observed uptake/secretion

rates, we used exometabolomics data for metabolites with an exchange reaction present in

the input model. Only 5 algorithms (Fig 2) resulted in significant correlations, among which

pFBAc only employed cell-specific medium as constraint. Apart from PRIME, which was capa-

ble of generating significant predictions using general medium, other significant predictions

were the result of constraining the GEMs with cell-specific medium, showing the key role of

metabolomics data in promoting the prediction accuracy of intracellular fluxes [52]. It is of

particular note that PRIME predicted a wider range of uptake/secretion rates than PRIMEc.

PRIME uses phenotypic data (e.g. observed growth rates), and by using a correlation based

approach, tries to find the genes with expression levels that are significantly correlated with

growth rates across the studied cell lines (e.g. NCI60 panel). As the result, the growth associ-

ated reactions identified by this method are independent of the input constraining criteria (i.e.

cell-specific or general media). However, flux bounds of growth associated reactions depend

on the min/max range, which in turn are affected by constraining criteria. Therefore, it seems

that the modified upper bounds in RPIME are less consistent with the objective functions

when constrained with cell-specific medium. In this case, the algorithm may experience the

over-constrained situation which may explain the poorer performance of PRIMEc compared

to PRIME (as shown in the following sections).

Notably, three algorithms (Fig 2C, 2D and 2F) showed a strong correlation (Spearman

R> 0.8) between predicted and measured lactate secretion rates. This is of special interest

because elevated lactate secretion is a major hallmark of cancerous cells [53], and attempts

have been made to predict meaningful lactate flux rates in the context of cancer metabolic

Fig 1. Growth rate prediction. Distribution of relative error for prediction of growth rates for all algorithms using

both general and cell-specific medium (designated by the superscript c). Each box-plot shows the distribution of error

across all cell lines in NCI-60 panel. Only algorithms capable of predicting non-zero growth rates were depicted.

Relative error was calculated according to the (Eq 2).

https://doi.org/10.1371/journal.pcbi.1006936.g001
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modeling [2, 54]. It is also of note that both TRFBA and PRIME adjust the flux bounds of

generic input model using prior knowledge of observed growth rates, while other algorithms

studied here try to extract a fixed subnetwork from the general human model [20]; however,

GIMME adopts an inclusive reconstruction approach, which may explain the ability of GIM-

MEc to predict metabolite uptake/secretion rates.

All algorithms were also investigated for their ability to predict drug response based on the

approach described by Yizhak et al [10] (see Methods for more details). As depicted in Fig 3,

while the correlation between the predicted and measured drug responses for most of the algo-

rithms is weak, PRIME and TRFBA predicted a wider range of drugs with slightly stronger

correlations. Furthermore, both PRIME and TRFBA outperformed their cell-specific counter-

parts. We therefore examined the flux distributions of both algorithms for Methotrexate (both

PRIME and TRFBA constrained with cell-specific medium failed to predict its drug response).

Our analysis showed that compared with general medium conditions, more exchange reac-

tions constrained with cell-specific medium reached their upper limits. Especially in the case

of PRIMEc, many of the internal reactions for which the bounds were adjusted, reached their

limits, suggesting that the solution space was shrunk due to these governing constraints.

Again, GIMMEc was able to identify significant correlations between predicated and mea-

sured IC50 values for two different drugs (Tamoxifen and Methotrexate). Although most of

the resulting Spearman correlations for drug response simulations (as a proxy of internal

fluxes of the network) were weak, the use of cell-specific medium had a modest positive effect

Fig 2. Uptake/secretion rates prediction. Spearman correlation between measured and predicted uptake/secretion

flux rates of metabolites for (A) iMATc, (B) GIMMEc, (C) pFBAc, (D) TRFBAc, (E) PRIME, and (F) PRIMEc.

Represented p-values were adjusted for False discovery rate (α = 0.05). Only methods with significant predictions are

shown.

https://doi.org/10.1371/journal.pcbi.1006936.g002
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on the performance of GIMME, iMAT, mCADRE and pFBA. Additionally, while cell-specific

constraints reduced the predictive power of TRFBA and PRIME, incorporating observed

growth data into the reconstruction pipeline of these approaches, improved their phenotypic

prediction performance over their competitors [10, 18].

Genotypic analyses. Since identifying novel therapeutic targets is another important

aspect of cancer metabolic modeling [2, 3, 9], the algorithms were also evaluated based on their

ability to predict cancer essential genes [42]. The mean enrichment p-values (log-transformed)

and the fraction of significant cell lines (of 22) per algorithm, were used to rank the perfor-

mance of each method (Fig 4B, S2 Text). While, the cell line-specific models generated by

TRFBA, PRIME and GIMME were more enriched (Fig 4A) in cell line-specific essential genes,

low performance of other algorithms are mainly due to their inability to reconstruct functional

GEMs for a number of cell lines. Importantly, similar to the findings observed with metabolite

uptake/secretion rates and drug response simulations (Figs 2 and 3), the incorporation of cell-

specific medium showed a double-edged effect on different algorithms. On one hand, it

Fig 3. Drug response predictions. Heatmap of significant Spearman correlations between simulated and experimental drug response data. The

Spearman coefficients for each drug have been shown on the figure. Superscripts indicate drug response data taken from (1) Holbeck et al [38], (2)

Garnett et al [39] and (3) Yang et al [40]. Only methods with significant drug responses are shown.

https://doi.org/10.1371/journal.pcbi.1006936.g003
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markedly improved the predictive capability of TRFBA by modulating the upper bounds of

reactions supported by metabolic genes. On the other hand, it negatively affected the perfor-

mance of PRIME (Figs 2, 3 and 4), which shares similar characteristics to TRFBA (Table 1).

One important difference between the two methods is the definition of normalization range by

PRIME, which acts as additional constraints to narrow down the solution space [10]. The rela-

tively lower uptake fluxes within cell-specific medium compared to those in general medium,

further tighten the constraints imposed on PRIMEc, which may explain its poorer performance

compared with TRFBAc or PRIME with looser constraints. Moreover, TRFBA uses the expres-

sion levels to limit the rate of a subset of reactions associated with a certain gene, rendering the

model more flexible compared with fixed upper bounds used by PRIME [18].

Moreover, since oncogenes and tumor suppressors are involved in conferring malignant

phenotype to tumor cells [55], it is of great importance to evaluate context-specific algorithms

for the number of oncogenes and tumor suppressor genes [45]. In addition, as mutational acti-

vation of oncogenes (OG) and loss of function (LOFs) mutations of tumor suppressors (TS) are

of pivotal importance in cancer progression [55], higher and lower enrichment of these muta-

tions respectively may denote higher context-specificity of assessed algorithms.

Although INIT showed higher enrichment values (higher for OGs, and lower for TS and

LOFs), the fraction of significant models was low (Fig 5). However, in terms of both fold

Fig 4. Prediction of general cancer essential genes. (A) Heatmap of enrichment p-values for predicted cell-line

specific essential genes. The numbers indicate -log10 enrichment p-values. GEMs with insignificant p-values are shown

in white. (B) Rank scores of the algorithms based on their significance and the number of GEMs with significant

enrichment (as described in S2 Text).

https://doi.org/10.1371/journal.pcbi.1006936.g004
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enrichment and model fraction, FASTCORMICS displayed a relatively better predictive per-

formance compared to other methods. It is also of note that employing cell-specific medium

(using exometabolomics data) had little or no effect on the number of OG, TS and LOFs

included in the final GEMs (Fig 5). This may be due to the construction pipeline of some algo-

rithms (FASTCORE, FASTCORMICS and mCADRE), which select core reactions without

taking into account the influence of media constraints [11, 12, 16], or use experimental data

(INIT) to assign weights to gene-associated reactions [14]. On the other hand, employing FBA

in GIMME, iMAT and CORDA as part of their construction process may explain little varia-

tion between the generated GEMs (Fig 5).

Fig 5. Prediction of oncogenes (OG), tumor suppressors (TS) and loss of function (LOF) mutations. Mean

enrichment of predicted (A) OGs and (B) TS and LOFs with experimental data. The error bars show the standard

deviation across GEMs generated with general and cell-specific media. Hypergeometric p-values are shown above each

figure. Model fraction represents the fraction of generated GEMs with significant p-values (<0.05). Only methods with

significant predictions are shown.

https://doi.org/10.1371/journal.pcbi.1006936.g005
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Consistency-based analyses

Consistency tests used here are mainly built on the approaches adopted by Pacheco et al [22]

and Machado and Herrgård [21]. We were particularly interested in studying the properties

of the generated GEMs regarding their topological holes (the extent of blocked reactions),

capability to differentiate between different contexts (e.g. tissues or cell types), and their

robustness to the missing or noisy data in the input. Since the flux consistent part of Recon 1

was employed here (i.e. all blocked reactions were removed prior to the simulations), we evalu-

ated the ability of each algorithm in generating connected networks in both constrained and

unconstrained states (Fig 6). There exist a number of methods for which the constraining cri-

teria had a large effect on the fraction of blocked reactions. It is of note that both FASTCORE

and FASTCORMICS share similar fundamental properties; however, the lower number of

blocked reactions in FASTCORMICS may be ascribed to the inclusion of biomass supported

Fig 6. Network connectivity of generated GEMs. The fast consistency evaluation method [16] was used to identify the fraction of blocked reactions in

the GEMs reconstructed by each method. The presence of blocked reactions were assessed in both constrained and unconstrained states. Data shown as

mean fraction of existing blocked reaction across all generated GEMs, and error bars represent the standard deviation.

https://doi.org/10.1371/journal.pcbi.1006936.g006
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reactions and defining non-penalized reactions [11]. Most notably, GIMME contained the

highest fraction of blocked reactions in unconstrained state. Since the expression threshold

used here for GIMME was relatively small, there were a large number of reactions considered

to be active while not supported by growth. Therefore, the algorithm favored their inclusion,

while they became blocked due to removal of unexpressed reactions. Both PRIME and TRFBA

share a similar number of blocked reactions in the constrained state, which presumably was

the result of bound constraints.

Next, the average Jaccard similarity index was calculated across different tissue types in the

NCI-60 panel to evaluate the ability of the methods to distinguish between distinct cancer

types (Fig 7). Considering the high correlation between expression data used here (pairwise

Spearman correlation coefficient range: 0.87–1), this assessment provides a useful basis for

comparing resolution power of different algorithms.

The diagonal in Fig 7 represents the level of similarity between GEMs generated for a partic-

ular type of cancer. Hence, it is expected that algorithms with higher resolution power result in

heat maps with high similarity among models of a certain tumor type (dark blue), while the

similarity among other cell-specific models remains lower (light blue). We devised a scoring

Fig 7. Similarity levels of generated GEMs between different tumors. Average Jaccard similarity index computed for GEMs built by (A) CORDA, (B)

FASTCORE, (C) FASTCORMICS, (D) GIMME, (E) GIMMEc, (F) INIT, (G) iMAT, and (H) mCADRE. Each square represents the average pairwise

Jaccard value for each cancer type in the NCI-60 panel.

https://doi.org/10.1371/journal.pcbi.1006936.g007
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scheme (S2 Text) to quantitatively compare the similarities between the GEMs coming from

each algorithm. INIT, which maximized the consistency between expression profile and model

reaction fluxes exhibited comparatively better resolution powers (Fig 7F), followed by FAS-

TCORE and FASTCORMICS (Fig 7B and 7C). Notably, while FASTCORMICS was developed

based on the FASTCORE, their ability to generate tissue-specific models was not similar (e.g.

prostate, ovarian and renal models in FASTCORE, and leukemia and CNS in FASTCORMICS

in Fig 7B and 7C). Furthermore, although CORDA and mCADRE share a similar reconstruc-

tion pipeline in terms of selecting a set of core and non-core reactions, mCADRE showed a rel-

atively better resolution power, which may be due to the use of a so-called flexible set of core

reactions by mCADRE, which in turn improved its tissue specificity [12]. Moreover, looking at

the tissue specificity of CORDA and GIMME (Fig 7A and 7D), it appears that the overall simi-

larity across the tissue-specific GEMs is considerably high (Jaccard index range of 0.93–0.98

for CORDA and> 0.99 for GIMME), indicating the inclusive approach of the two algorithms.

In addition, as observed for the enumeration of OG, TS and LOFs, cell-specific media had little

or no influence on the context-specificity of most algorithms (except for GIMMEc in Fig 7E).

Next, the robustness of GEMs to missing data in the input expression profile was evaluated

using 5-fold cross-validation. As shown in Table 2, only INIT and FASTCORMICS were sig-

nificantly able to recover the missing input reactions to the final GEMs.

Furthermore, the robustness of algorithms capable of predicting a non-zero growth rate

was further evaluated to the missing input data (Fig 8). iMAT exhibited a robust behavior in

growth rate predictions (less variation among different sets of input reactions), which may be

attributed to its focus on flux consistency maximization rather than on the growth rate. There-

fore, the missing reactions in the input affected the content of the network and not the biomass

supported reactions (Table 2). Moreover, the behavior of FASTCORMICS, PRIME and

TRFBA are similar, with few variations among different validation sets (Fig 8C, 8F and 8G).

Lastly, CORDA, FASTCORE and mCADRE were less robust to different input reaction sets

(Fig 8A, 8B and 8E).

To examine the robustness of algorithms to noise in the gene expression data, original

expression profile was shuffled to introduce increasing levels of noise ranging from original

data (Spearman R = 1) to completely shuffled data (Spearman R ~ 0). Normalized growth rate

predictions of GEMs generated with these sets of noisy data are shown in Fig 9. Although

robustness to noise is considered as an advantage of context-specific algorithms, the algo-

rithms should be also able to distinct between similar expression patterns [10, 21, 22]. Hence,

it is expected that a powerful algorithm in this context shows a moderate variation in flux pre-

dictions/network content at lower noise levels, with higher variations at higher noise levels.

Table 2. Cross-validation test results for the context-specific algorithms under study.

Algorithm Input model GEM size Recovered reactions Validation set Hypergeometric

p-value

INIT 2473 282.9 (22.4) 91.6 (11.1) 191.6 (0.5) 2e-40

FASTCORMICS 2473 440.5 (9.7) 12.8 (2.5) 39 0.03

CORDA 2473 1797.3 (4.1) 25.9 (3.2) 39 0.91

FASTCORE 2473 639 (41.3) 12.3 (2.8) 39 0.29

GIMME 2473 1126.3 (7.3) 11.8 (3.8) 260.4 (0.5) 0.99

iMAT 2473 2021.1 (13.6) 134.1 (7.1) 206.6 (0.5) 0.99

mCADRE 2473 1318.6 (26.4) 55.8 (5.3) 209 0.99

Data are presented as mean and standard deviation in parenthesis.

https://doi.org/10.1371/journal.pcbi.1006936.t002
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This behavior can be clearly seen for FASTCORMICS and iMAT, and to a certain extent for

TRFBA (Fig 9B, 9F and 9E). However, the noise threshold for such a behavior seems to be con-

text-dependent. The resolution power of these algorithms shown in Fig 10, provides a further

examination of the impact of noise on network structure of generated GEMs. As can be seen,

when noise level is low (high correlation coefficients), FASTCORE and FASTCORMICS gen-

erated structurally similar models. These algorithms however gained their ability to distinguish

among expression patterns at high noise levels (Fig 10B and 10C). CORDA and GIMME

showed a similar behavior to what was observed with similarity levels of tumor GEMs with

highly similar networks (Jaccard index range of 0.93–1 for GIMME and 0.91–1 for CORDA)

across different noisy data (Fig 10A and 10D). Furthermore, iMAT and mCADRE resulted in

relatively similar response to noise in the input data, with a gradual transition from similar to

distinct networks (Fig 10E and 10F). Most notably, INIT robustness to the introduced noise

was comparably low. Although this may explain the satisfactory performance of the algorithm

in differentiating the tumor GEMs (Fig 7F), the ability of algorithm to generate distinct

Fig 8. Normalized growth prediction of GEMs generated using data from repeated 5-fold cross-validation. (A) CORDA, (B) FASTCORE, (C)

FASTCORMICS, (D) GIMME, (E) mCADRE, (F) PRIME, (G) TRFBA, (H) iMAT. Only algorithms capable of predicting growth are shown. For each

algorithm, “model count” represents the GEMs generated by incomplete expression data or core reactions set in the input. For a better comparison,

growth rates were normalized to the maximum value.

https://doi.org/10.1371/journal.pcbi.1006936.g008
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networks from similar expression data (e.g. in different stages of cancer progression) remains

unclear.

Benchmark-driven approach

Both comparison and consistency tests employed here were based on previous cancer meta-

bolic modeling studies, and can be served as a guideline for selecting the best algorithmic

Fig 9. Normalized growth prediction of GEMs generated using noisy expression data. (A) CORDA, (B) FASTCORMICS, (C) GIMME, (D) PRIME,

(E) TRFBA, and (F) iMAT. Only GEMs capable of predicting growth are shown. The x-axis shows the spearman correlation coefficient between each

set of noisy data and original expression profile ranging from 1 (original) to R< 0.004 (random). For a better comparison, growth rates were

normalized to the maximum value.

https://doi.org/10.1371/journal.pcbi.1006936.g009

Fig 10. Similarity levels of GEMs generated with different sets of noisy expression data (A) CORDA (B)

FASTCORE (C) FASTCORMICS (D) GIMME (E) iMAT (F) mCADRE (G) INIT.

https://doi.org/10.1371/journal.pcbi.1006936.g010
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approach for the study of specific aspects of cancer metabolism [10, 11, 22]. While several con-

text/cell/tissue-specific algorithms have been developed so far, and their numbers are expected

to grow in future, there are few reports on developing algorithms based on already existing

context-specific algorithms (e.g. FASTCORMICS, MPA and tINIT based on FASTCORE,

iMAT and INIT, respectively) [11, 56, 57]. Furthermore, none of these methods were devel-

oped as the result of thorough examination of other existing algorithms. Thus, providing an

appropriate phenotypic and consistency benchmark for algorithms used in cancer metabolic

modeling is not only important for selecting the most accurate algorithms, but it may also play

a role in designing and developing new algorithms that best recapitulate the underlying meta-

bolic dysregulation in cancer. Here, we devised a quantitative scoring scheme to provide a

basis for evaluating various aspects of algorithms under study (S2 Text). We next hierarchically

clustered the resulting scoring matrix to classify the methods based on their performance in

different benchmarks (Fig 11).

The methods were clustered into three major groups. Group 1 contains 3 methods, with 2

of them (CORDA and mCADRE) trying to generate a functional GEM comprising of a set of

pre-defined core reactions. Unlike FASTCORE and FASTCORMICS, they are pruning algo-

rithms, and do not intend to generate a minimal GEM, but rather a functional one, which may

explain their relative closeness to GIMME, the third algorithm in the group 1. Overall, the 3

algorithms showed a weak to moderate performance over all benchmarks, which can be attrib-

uted to their inclusive approach. Algorithms in group 2 retain the general human network,

while tuning the solution space by relying on the prior knowledge of phenotypic data (growth

rate). Interestingly, while the methods constrained with cell-specific medium grouped together

in small sub-clusters, TRFBAc, pFBAc and PRIMEc were grouped together. As mentioned

earlier, the simultaneous incorporation of phenotypic and metabolomic data resulted in

Fig 11. Benchmark performance scores for algorithms under study. Hierarchical clustering (Euclidean distance) of the scores

each method received over different benchmarks. Three main clusters were identified: 1- GIMME, CORDA and mCADRE with an

overall weak to moderate performance; 2- PRIME, TRFBA and pFBAc with strong performance in comparison tests, and 3-

FASTCORE, INIT, iMAT and FASTCORMICS with strong performance in consistency tests. Numbers in column correspond to

comparison (blue color) or consistency (red color) benchmarks: 1-growth rate, 2- metabolite uptake/secretion rates, 3- drug

response, 4- essential genes, 5- enrichment of OG/TS/LOFs, 6- fraction of blocked reactions, 7- resolution power, 8- robustness to

missing data, and 9- robustness to noise. Colorbar indicates normalized performance scores.

https://doi.org/10.1371/journal.pcbi.1006936.g011
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overconstraining the solution space (e.g. drug response prediction), especially for PRIMEc.

Nonetheless, TRFBAc was positively influenced by cell-specific constraints, presumably due to

its more flexible approach to adjust the bounds of reactions. Interestingly, pFBAc performed

better than several context-specific algorithms in comparison benchmarks, suggesting the piv-

otal role of employing metabolomic data in deciphering underlying mechanisms of human

diseases [52, 58, 59]. Methods in this group resulted in satisfactory predictions over compari-

son, and fair performance in consistency benchmarks. Finally, group 3 included FASTCORE,

INIT, iMAT and FASTCORMICS. FASTCORE and FASTCORMICS iteratively solve a set of

LP problems that maximize the number of core reactions, while minimizing the inclusion of

non-core reactions. Moreover, iMAT and INIT maximize the consistency between experimen-

tal data and in silico predictions, and therefore find a trade-off between inclusion and exclu-

sion of highly- and lowly-expressed reactions, respectively. [23]. Although the mathematical

frameworks of the algorithms in this group are different, they performed similarly over differ-

ent benchmarks. Notably, FASTCORMICS and iMAT, and FASTCORE and INIT grouped

together in smaller sub-clusters. The low expression cutoff in iMAT resulted in inclusion of

biomass function in a number of models similar to that of the FASTCORMICS, which explain

the capability of both methods to perform some comparison tests; however, FASTCORE and

INIT failed to generate functional GEMs in the criteria used here. Nevertheless, the methods

in this category showed a moderate to strong performance in consistency tests.

Although there is no “perfect” algorithm which can satisfactorily pass all the benchmarks,

FASTCORMICS, TRFBA and PRIME performed relatively better in consistency and compari-

son tests, respectively. Hence, by taking a benchmark-driven approach, we focused our atten-

tion on designing a context-specific algorithm by exploiting these algorithms. It is worth

mentioning that previous efforts were mainly focused on general benchmarking of metabolic

modeling algorithms [21–24]. Thus, designing context-specific algorithms by adapting, cus-

tomizing and modifying advantageous features of powerful algorithms for cancer seems a

promising avenue to explore. In the following, we introduced TRFBA-CORE, and explained

its developmental stages based on modified characteristics of the afore-mentioned methods.

As shown in Fig 12, TRFBA-CORE comprises of two main steps: 1- identifying growth-corre-

lated reactions by stepwise TRFBA, and generating GEMs using modified FASTCORMICS

(S3 Text), and 2- identifying correlation C (Ccorr), and optimal C (Copt) in case of available

phenotypic data (e.g. growth rates).

Growth-correlated reactions. TRFBA employs a constant parameter, C, to convert

expression levels to upper bounds of gene associated reactions. This parameter is determined

from a sensitivity analysis on growth prediction error [18].Therefore, C is dependent on input

general model, expression profiles, and most importantly, a priori knowledge of experimental

growth rate data. In general, the use of experimental data to determine the maximum possible

flux values through the network reactions has been previously explored in E-flux and PRIME

algorithms [10, 60]; however, the way in which these algorithms deal with constraining the

upper bounds of network reactions highly influences the resulting phenotypic behavior

[10, 18].

Further examination of TRFBA revealed a strong positive monotonic relationship between

C and predicted growth (S1 Fig), implying that a stepwise change in C leads to a gradual varia-

tion of predicted growth. From this perspective, varying C from the point it begins to affect the

objective function (denoted as Cbrk) to 0 (full constraint), gradually narrows down the flux

intervals and solution space (S1 Fig). Hence, there exists a set of reactions in the metabolic net-

work for which the expression of their enzyme-coding genes (or reaction expression) varies

monotonically with the flux through the biomass reaction. Based on this observation, we

defined “growth-correlated reactions” as the set of reactions for which there is a strong
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correlation (using the Spearman correlation coefficients, corrected for FDR) between their

flux values and predicted growth rates during a stepwise change in C. It should be noted that,

the number of points used to discretize [0, Cbrk] interval may affect the size of resulting

growth-correlated reactions. We therefore, determined different sets of growth-correlated

reactions using different discretization intervals, and calculated the Jaccard scores for the

resulting sets. Our analysis showed a strong similarity between the generated sets of growth-

correlated reactions (S2 Fig). Hence, we selected the minimum step-size (500), above which no

significant improvement in GEMs performance was achieved.

As shown here and previously, PRIME utilizes experimental cell growth rate data to identify

a set of growth-associated reactions to be constrained in the output GEM [10]. In addition, it

has recently been shown that the decision on gene expression threshold for identifying core

reactions or stratifying them into active/inactive categories, profoundly affects the resulting

GEM structure in algorithms adopting such approaches [23].Thus, regardless of whether the

algorithms constrain the upper bound of reactions (such as PRIME and TRFBA) or categorize

Fig 12. TRFBA-CORE workflow. TRFBA-CORE employs the stepwise version of TRFBA to identify a set of growth-

associated reactions, build cell-specific models using modified FASTCORMICS, and generate tuned cell-specific

GEMs.

https://doi.org/10.1371/journal.pcbi.1006936.g012
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expression data to define a set of core reactions (such as FASTCORE family and GIMME),

they depend on either a priori knowledge of experimental growth rates or a proper expression

threshold to define a set of meaningful core reactions. Here, growth-correlated reactions do

not hinge on the optimized C, and consequently on experimental growth rates. We next used a

modified version of FASTCORMICS (S3 Text) to feed with this set of growth-correlated reac-

tions to generate tailored GEMs, which were expected to increase the context-specificity of

resulting networks (Fig 12).

Definition of Ccorr and Copt parameters. While the GEMs generated above were func-

tional, and contained the set of growth-correlated reactions, the decision on C independent of

experimental data, is however challenging. Based on our findings from the benchmarking sec-

tion, we hypothesized that C is associated with the level of integration between expression data

and metabolic network, which is fine-tuned when cell-specific media or other phenotypic data

are applied. To assess this hypothesis, we tried to maximize the integration level by minimizing

the Euclidean distance between flux rates and expression levels. In the original TRFBA, the lin-

ear inequality constraints describing the relationship between reaction fluxes and expression

levels can be converted to equality constraint by adding variables to left-hand side of the equa-

tion:

X

i2R

vi þ aj ¼ C � Ej ð3Þ

where R corresponds to the set of reactions associated with gene j. Therefore, minimizing the

above-mentioned Euclidean distance can be replaced by minimizing the Euclidean norm of

introduced variables (α). Thus, the resulting quadratic programming (QP) problem can be

written as:

min
X

k2½0;Cbrk�

a2

k

s:t:

S:v ¼ b

vlb � v � vub

X

i2R

vi þ aj ¼ C � Ej

ð4Þ

The solution to the above QP problem using stepwise TRFBA will result in a matrix of flux

distributions with rows corresponding to the reactions in the reconstructed GEMs and col-

umns corresponding to C iterations. To measure the level of consistency between expression

levels and predicted fluxes, we examined the number of variables (Nα) at each iteration, that

falls below a threshold (here, 1e-6). We observed that, the points (Ccorr) corresponding to the

first sudden change (detected using MATLAB built-in function FindChangePts) in the Nα,

resulted in significant correlation between predicted and measured growth rates for both gen-

eral and cell-specific media (Table 3). Interestingly, we observed similar results (Table 3) when

we used Recon 2 model [61]. The rationale behind this approach is that, a sudden increase in

Nα may represent a change in the network flux state, and corresponds to higher consistency

between predicted fluxes and expression profiles. Therefore, the Ccorr is the maximum point at

which there is a shift in the flux consistency of the network.

It is of interest to note that, when observed growth rates of cancerous cell lines are available,

TRFBA-CORE can benefit from optimal cell-specific C values (Copt). In this case, Copt for each

cell-line is easily approximated by a linear function of measured growth rates, and eliminates
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the need for sensitivity analysis as in the original TRFBA implementation [18]:

Copt ¼
Cbrk
Gmax
� Gmeasured ð5Þ

where Gmax and Gmeasured are maximum predicted growth and measured growth rates, respec-

tively. As expected, the predicted growth rates using Copt values obtained from the above linear

function showed a strong correlation to measured growth rates (Table 3).

As the final step of TRFBA-CORE, calculated values for Ccorr and Copt were used (a total of

4 different variations of TRFBA-CORE with general/cell-specific media, and with Ccorr/Copt)

to generate functional cell-specific models, which were then examined for their performance

in benchmarks used here.

Comparison benchmarks. TRFBA-CORE GEMs were evaluated for their predictive per-

formance against growth rates (S3 Fig), metabolites uptake/secretion rates (S4 Fig) and drug

response (S5 Fig). Since, TRFBA-CORE estimates Copt more accurately, it is not surprising

that it predicted the measured growth rates significantly better than other algorithms (Fig 1).

Interestingly, contrary to other methods, TRFBA-CORE was able to predict a number of

metabolites by taking into account only transcriptomic data (S4 Fig). A further improvement

in prediction range was achieved by using cell-specific medium and Ccopt. Moreover, TRFBA-

CORE performed significantly better than other methods in predicting drug responses; how-

ever, similar to PRIMEc, the GEMs constrained with cell-specific media failed to achieve physi-

ologically relevant results. Furthermore, TRFBA-CORE showed a similar performance to the

original TRFBA in predicting the cell line-specific essential genes (S6 Fig), and a fair perfor-

mance in enrichment analysis of the oncogenes (OG), tumor suppressors (TS) and loss-of-

function mutations (LOFs) (S7 Fig).

Consistency benchmarks. TRFBA-CORE contained a lower fraction of blocked reactions

compared to TRFBA, which can be attributed to the use of FASTCORMICS in the reconstruc-

tion process (S8 Fig). Moreover, while the resolution power of TRFBA-CORE was compara-

tively better than most competitors (S9 Fig), it failed to surpass FASTCORE, FASTCORMICS

or INIT, which seems to be due the focus of TRFBA-CORE on growth-correlated reactions

[62]. Nevertheless, while the growth rate predictions of TRFBA-CORE were sensitive to input

missing reactions (S10 Fig), it showed a better capability in recovering the missing reactions

compared to most of the methods (hypergeometric p-value < 5e-14). It should be noted that,

since input reactions for TRFBA-CORE are growth-correlated (and identified based on differ-

ent flux states), their removal from the input core reactions markedly affect the growth predic-

tions. However when a fraction of input gene expression data were missing (similar to the

approach we used for TRFBA and PRIME), TRFBA-CORE exhibited a significantly increased

robustness to growth rate predictions compared to TRFBA. Furthermore, the growth robust-

ness of the GEMs generated by TRFBA-CORE was similar to the trend observed for iMAT

and FASTCORMICS (S11 Fig); however, in terms of the similarity level (S12 Fig), its

Table 3. Spearman correlation coefficients between predicted and measured growth rates for Ccorr and Copt.

Network C Constraints

General Cell-specific

R p-value R p-value

Recon 1 Ccorr 0.28 0.028 0.49 5.9e-5

Copt > 0.99 < 4.1e-125 1 0

Recon 2 Ccorr 0.27 0.03 0.37 0.003

Copt > 0.99 < 1.9e-95 > 0.99 < 3.6e-92

https://doi.org/10.1371/journal.pcbi.1006936.t003
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robustness to the noise in input gene expression data was weak (similar to INIT). We next

used our scoring scheme to cluster the performance scores of TRFBA-CORE (Fig 13).

Surprisingly, while TRFBA-CORE is a subnetwork extraction method, it was grouped

with the methods that retain the general input model. GEMs generated with 4 variations of

TRFBA-CORE showed a satisfactory performance over both comparison and consistency

benchmarks. It is of interest to note that the inclusion of growth-correlated reactions improved

the functional ability of FASTCROMICS and consistency performance of TRFBA, the two

ancestors of TRFBA-CORE. However, it is of importance to note that, TRFBA-CORE requires

further improvements in terms of its ability to generate cell/tissue-specific models with higher

robustness of identified core reactions (e.g. growth-correlated reactions) to the step-wise con-

version of gene expression data to reaction upper bounds. Yet, the current benchmark-driven

approach can provide guidelines for the development of more advanced reconstruction meth-

ods with better capability to recapitulate various features of cancer metabolism.

Conclusion

Here, we employed a variety of structural and functional benchmarks to examine the predic-

tive performance of different algorithms developed to study cancer metabolism. These bench-

marks reflect quantitative rather than mere qualitative aspects of algorithms studied here. We

compared the performance of several algorithms, classified them based on their performance,

and found inconsistencies in the predictive capability of these methods. Moreover, we showed

that employing physiologically meaningful media using metabolomics (or possibly fluxomics)

can greatly improve the functional performance of the computational methods, pointing out

Fig 13. Hierarchical clustering of TRFBA-CORE performance scores. Hierarchical clustering (Euclidean distance) of the scores TRFBA-CORE

received in different benchmarks. Despite being a GEM extraction approach, TRFBA-CORE was clustered with algorithms that do not trim the input

model. TRFBA-CORE scores were generally higher in comparison benchmarks. Numbers in column correspond to comparison (blue color) or

consistency (red color) benchmarks: 1-growth rate, 2- metabolite uptake/secretion rates, 3- drug response, 4- essential genes, 5- enrichment of OG/TS/

LOFs, 6- fraction of blocked reactions, 7- resolution power, 8- robustness to missing data, and 9- robustness to noise. Colorbar indicates normalized

performance scores.

https://doi.org/10.1371/journal.pcbi.1006936.g013
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the need for more attention to medium uptake rates. Finally, we developed a computational

approach based on results obtained from benchmarks utilizing algorithmic features of

methods with highest predictive performance across different tests. The benchmark-driven

approach developed here outperformed several methods in a number of tests. TRFBA-CORE,

unlike its ancestors, does not rely on prior knowledge of phenotypic data (e.g. growth rates),

and only takes advantages of expression data. However, inclusion of high-quality phenotypic

and omics data will improve the predictive power of current method, as we found in the case

of TRFBA. TRFBA-CORE will be further explored in our future work to find potential novel

drug targets for cancer treatment.

Supporting information

S1 Text. Parameter optimization. The sensitivity analysis for GIMME, iMAT, CORDA and

TRFBA. Adjustable parameters of each algorithm were selected based on their performance in

growth rate prediction.

(PDF)

S2 Text. Scoring scheme for performance assessment of methods. All methods studied here

were assigned a numerical score based on their performance across different benchmarks.

(PDF)

S3 Text. Modified FASTCORMICS. FASTCORMICS was assessed with regard to the

assumptions made by the original implementation to improve the capability of the method to

generate functional GEMs.

(PDF)

S1 Fig. Schematic of existing monotonic relationship between C and predicted growth. The

breaking point (Cbrk) denotes the C value at which further reduction in C affects the predicted

growth rate.

(TIF)

S2 Fig. Pairwise similarity indices for sets of identified growth-correlated reactions at dif-

ferent step-sizes (50–2000). The indices are shown as the mean value across all cell lines in

NCI-60 panel.

(TIF)

S3 Fig. Growth rate prediction for TRFBA-CORE. Distribution of relative error for predic-

tion of growth rates for 4 variations of TRFBA-CORE (with general/cell-specific media, and

Copt/Ccorr). Each box-plot shows the distribution of error across all cell lines in NCI-60 panel.

(TIF)

S4 Fig. Uptake/secretion rates prediction for TRFBA-CORE. Spearman correlation between

measured and predicted uptake/secretion flux rates of metabolites for (A) TRFBA-COREcorr,

(B) TRFBA-COREopt, (C) TRFBA-COREc
corr, and (D) TRFBA-COREc

opt. Represented p-val-

ues were adjusted for False discovery rate (α = 0.05).

(TIF)

S5 Fig. Drug response predictions for TRFBA-CORE. Heatmap of significant Spearman cor-

relations between simulated and experimental drug response data for 4 variations of TRFBA-

CORE (with general/cell-specific media, and Copt/Ccorr). The Spearman coefficients for each

drug have been shown on the figure. Superscripts indicate drug response data taken from (1)

Holbeck et al [38], (2) Garnett et al [39] and (3) Yang et al [40].

(TIF)
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S6 Fig. Prediction of general cancer essential genes for TRFBA-CORE. Heatmap of enrich-

ment p-values for predicted cell-line specific essential genes for 4 variations of TRFBA-CORE

(with general/cell-specific media, and Copt/Ccorr). The numbers indicate -log10 enrichment p-

values.

(TIF)

S7 Fig. Prediction of OG, TS and LOF mutations for TRFBA-CORE. Mean enrichment of

predicted OGs and and LOFs with experimental data. The error bar indicates the standard

deviation across GEMs generated with general and cell-specific media. Hypergeometric p-val-

ues are shown above the figure. Model fraction represents the fraction of generated GEMs

with significant p-values (<0.05).

(TIF)

S8 Fig. Network connectivity analysis for TRFBA-CORE. The presence of blocked reactions

were assessed in both constrained and unconstrained states for 4 variations of TRFBA-CORE

(with general/cell-specific media, and Copt/Ccorr). Data shown as mean fraction of existing

blocked reaction across all generated GEMs, and error bars represent the standard deviation.

(TIF)

S9 Fig. Similarity levels of TRFBA-CORE GEMs between different tumors. Average Jaccard

similarity index computed for GEMs built by (A) TRFBA-CORE and (B) TRFBA-COREc.

Each square represents the average pairwise Jaccard value for each cancer type in the NCI-60

panel.

(TIF)

S10 Fig. Normalized growth prediction of TRFBA-CORE GEMs generated using data

from repeated 5-fold cross-validation. Model count represents the GEMs generated by

incomplete growth-correlated reactions in the input.

(TIF)

S11 Fig. Normalized growth prediction of TRFBA-CORE GEMs generated using noisy

expression data. The x-axis shows the spearman correlation coefficient between each set of

noisy data and original expression profile ranging from 1 (original) to R< 0.004 (random).

(TIF)

S12 Fig. Similarity levels of TRFBA-CORE GEMs generated with different sets of noisy

expression data.

(TIF)

S1 File. Graphical User Interface (GUI) of benchmark panel. MATLAB GUI application for

benchmark tests, along with all experimental datasets used here.

(7Z)

S2 File. MATLAB scripts for TRFBA-CORE.

(7Z)
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