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Alpinetin promotes hair regeneration 
via activating hair follicle stem cells
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Abstract 

Background:  Alopecia affects millions of individuals globally, with hair loss becoming more common among young 
people.  Various traditional Chinese medicines (TCM) have been used clinically for treating alopecia, however, the 
effective compounds and underlying mechanism are less known. We sought to investigate the effect of Alpinetin (AP), 
a compound extracted from Fabaceae and Zingiberaceae herbs, in hair regeneration.

Methods:  Animal model for hair regeneration was mimicked by depilation in C57BL/6J mice. The mice were then 
topically treated with 3 mg/ml AP, minoxidil as positive control (PC), or solvent ethanol as vehicle control (VC) on the 
dorsal skin. Skin color changes which reflected the hair growth stages were monitored and pictured, along with H&E 
staining and hair shaft length measurement. RNA-seq analysis combined with immunofluorescence staining and 
qPCR analysis were used for mechanism study. Meanwhile, Gli1CreERT2; R26RtdTomato and Lgr5EGFP−CreERT2; R26RtdTomato 
transgenic mice were used to monitor the activation and proliferation of Gli1+ and Lgr5+ HFSCs after treatment. 
Furthermore, the toxicity of AP was tested in keratinocytes and fibroblasts from both human and mouse skin to assess 
the safety.

Results:  When compared to minoxidil-treated and vehicle-treated control mice, topical application of AP promoted 
anagen initiation and delayed catagen entry, resulting in a longer anagen phase and hair shaft length. Mechanistically, 
RNA-seq analysis combined with immunofluorescence staining of Lef1 suggested that Lgr5+ HFSCs in lower bulge 
were activated by AP via Wnt signaling. Other HFSCs, including K15+, Lef1+, and Gli1+ cells, were also promoted into 
proliferating upon AP treatment. In addition, AP inhibited cleaved caspase 3-dependent apoptosis at the late anagen 
stage to postpone regression of hair follicles. More importantly, AP showed no cytotoxicity in keratinocytes and fibro-
blasts from both human and mouse skin.

Conclusion:  This study clarified the effect of AP in promoting hair regeneration by activating HFSCs via Wnt signal-
ing. Our findings may contribute to the development of a new generation of pilatory that is more efficient and less 
cytotoxic for treating alopecia.
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Introduction
Alopecia is one of the most common complaints in der-
matology clinics, 85% males and 40% of female world-
wide are suffering from hair loss [1]. Although it is not 
a life-threatening disease, alopecia has significant impact 
on patient’s self-esteem and overall life quality. Notably, 
alopecia has become more prevalent and affects people 
at a younger age. While minoxidil and finasteride, two 
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extensively used clinical interventions, could help pre-
vent hair loss by suppressing male hormones [2], their 
usage is restricted due to a multitude of adverse side 
effects. Minoxidil has poor efficiency, thus a long-term 
use is required to warrant desired therapeutic benefits. It 
also causes mild postural dizziness and peripheral edema 
in a small number of patients [3]. Finasteride could trig-
ger adverse effects including a decrease in libido, erectile 
dysfunction, and ejaculatory dysfunction [4]. Therefore, 
effective treatments that can promote hair growth with 
minimal side effects are yet to be identified.

Hair follicles grow in repeated cycles with three phases: 
the growth phase (anagen), the regression phase (cata-
gen), and the rest phase (telogen). The shape of hair fol-
licles and dermal papilla varies greatly in different hair 
follicle cycle stages. The dermal papilla of the telogen fol-
licle sitting at the bottom of the hair follicle is the first 
part to respond to growth signal. When the hair follicle 
enters the anagen phase, the dermal papilla ascends and 
is surrounded by proliferating hair matrix cells. In cata-
gen follicle, the dermal papilla becomes smaller again 
and forms an epithelial chain connected with the bulge 
[5]. These phases are tightly regulated and closely asso-
ciated with the activation or quiescence of various hair 
follicle stem cell (HFSC) populations, such as the Gli1+ 
cells in the upper bulge and hair germ, the Lgr5+ cells in 
the lower bulge, the Lef1+ cells in the hair germ (telogen) 
and dermal papilla (anagen), and the K15+ cells in the 
outer root sheath (ORS) [6–9]. The activation of HFSCs 
requires the precise regulation of a variety of signaling 
pathways. BMP signaling keeps HFSCs in the resting 
phase during telogen [10]. Several signaling pathways, 
including the sonic hedgehog (Shh), Wnt/β-catenin, and 
Notch pathways, are involved in anagen entry, among 
which the Wnt/β-catenin pathway plays a crucial role 
not only during the telogen-anagen transition in adults 
[11], but also in maintaining HFSC stemness [12]. Previ-
ous studies have demonstrated that various Wnt ligands 
(WNT1A, WNT3A, WNT4, WNT7B and WNT10B) 
could stabilize β-catenin and induce anagen-phase spe-
cific gene expression, and therefore promote hair follicle 
growth and hair shaft elongation [11]. Thus, compounds 
that can target the Wnt/β-catenin pathway to stimulate 
HFSCs would be candidates for hair regeneration in 
treating alopecia.

Clinical studies have shown that prescriptions con-
taining herbs from the Fabaceae (such as Astragalus 
membranaceus Bunge., Psoralea corylifolia Linn., and 
Glycyrrhiza uralensis Fisch.) and the Zingiberaceae 
(such as Davallia mariesii Moore ex Bak. and Salvia 
miltiorrhiza Bunge.) have significant therapeutic effects 
on alopecia [13]. Nevertheless, the pharmacodynamic 
ingredients in these prescriptions are complex, making 

it difficult to determine the underlying mechanisms and 
consequently limit their clinical use. Alpinetin (AP) is the 
main component found in Fabaceae and Zingiberaceae 
herbs. Studies have shown that AP could possibly target 
Wnt signaling pathway [14, 15]. However, the effect of AP 
on hair regeneration hasn’t been checked. In the present 
study, we sought to investigate the effects of AP in hair 
regeneration and its underlying mechanism.

Methods
General design of experiments
In animal studies, mice were randomly assigned to con-
trol or experimental groups whenever possible. When 
specific strains of mice were used, the mice with indi-
cated genotypes in the same litter were compared. Five 
mice in each group (n = 5) were used in most of the 
experiments, otherwise stated. For immunostaining 
quantification analysis, RNA-seq library preparation, and 
sequencing, experimenters were blinded to experimental 
conditions according to experimental designs [16].

Animals
C57BL/6J mice were purchased from Charles River 
Laboratories (Jiaxing, China) and Shanghai SLAC Labo-
ratory Animal Co.Ltd (Shanghai, China). Gli1CreERT2, 
Lgr5EGFP−CreERT2, R26RtdTomato mice were purchased from 
the Jackson Laboratory. Gli1CreERT2; R26RtdTomato and 
Lgr5EGFP−CreERT2; R26RtdTomato mice were used to moni-
tor the activation and proliferation of Gli1+ and Lgr5+ 
HFSCs after treatment. Four or six days after depilation, 
mice (6–7  weeks old) received three i.p. injections of 
200 mg/kg Tamoxifen (MACKLIN, Shanghai, China) dis-
solved in corn oil (MACKLIN) at 1-day intervals. Mice 
were housed with a 12 h/12 h light/dark cycle at 22  °C, 
with free access to food and water. Only male mice were 
used for the experiments. The experimental study was 
conducted according to the institutional guidelines with 
approval from the Review Committee of Zhejiang Chi-
nese Medical University.

Hair cycle synchronization
For hair cycle synchronization, hair on the dorsal skin 
was manually depilated in 6–7 weeks old mice, when the 
vast majority of dorsal skin hair follicles were in the telo-
gen phase. Two areas (1.5  cm by 1.5  cm for each, 1  cm 
apart from each other) on the left and right back skin 
near the forelimbs of the mice were depilated for each 
mouse, and the position of depilation areas were the 
same in  all mice. Mice were shaved with a razor, then the 
remaining hair shafts were plucked twice with beeswax 
paper.
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Topical drug treatment and tissue sampling
Mice were divided into three groups (n = 5 mice per 
group) as vehicle control (VC, treated with ethanol), 
positive control (PC, treated with Minoxidil), and Alpine-
tin group (AP, treated with Alpinetin). 20  µL 65% etha-
nol (MACKLIN), 5% Minoxidil (Wansheng, H20010714, 
Linan China) or 3  mg/mL AP (Standard Technology, 
Shanghai, China) dissolved in 65% ethanol, respectively, 
were applied topically at 24 h after depilation, mice were 
treated once a day for each skin areas until sample har-
vesting. Skin samples were collected at Day 4 (D4), D5, 
D7, D18, D19, and D22 after depilation from C57BL/6J 
mice; D4 and D6 from Gli1CreERT2; R26RtdTomato mice; 
and D4 from Lgr5EGFP−CreERT2; R26RtdTomato mice. Sam-
ples were fixed in 4% paraformaldehyde overnight fol-
lowed by tissue dehydration and then embedded in OCT 
(SAKURA, Tokyo, Japan). The embedded skin tissues 
were frozen and stored at − 80 °C until cryostat section-
ing. In C57BL/6J mice, hair shafts were collected from all 
treated areas at D13 and D17 after depilation to measure 
the length.

EdU administration
Single dose of EdU (Beyotime, Nantong, China) that was 
dissolved in PBS (GENOM, Jiaxing, China) was admin-
istered by intraperitoneal injection (50  mg/kg EdU) 4  h 
before dorsal skin harvesting at D4 and D19 after depila-
tion [17].

Histology, immunofluorescence, and image analysis
For histology analysis, Hematoxylin and Eosin (H&E) 
staining were performed according to standard protocols 
with minor modification: sections were incubated for 
5 min in hematoxylin and 30 s in eosin solutions. Image 
acquisition was performed on a Leica DM4000 micro-
scope. Only follicles with a clear and complete structure 
were chosen for length analysis. The length of hair folli-
cles was measured by ImageJ.

For immunostaining, the frozen sections were blocked 
in PBS with 5% Donkey serum  or 1% BSA and 0.25% 
Triton for 1–4  h at room temperature, then incubated 
with primary antibody at 4 °C overnight and were subse-
quently incubated with secondary antibodies conjugated 
with Alexa Fluor 488, 594 or 647 (1:1000, Invitrogen, Cal-
ifornia, USA). Nuclei were stained with DAPI (Solarbio, 
Beijing, China). The following primary antibodies were 
used: P-cadherin antibody (1:1000, AF761, R&D), K15 
(1:100, ab52816, Abcam), and Lef1 (1:200, 2230, CST). 
Image acquisition was performed on a Zeiss microscope. 
For quantification, 5 sections from each sample were 
processed and 5 randomly selected areas of each section 
were quantified in Image J.

RNA sequencing and analysis
Skin samples at D4 after depilation were collected for 
total RNA extraction. Dermis tissues with hair folli-
cle were used after removing interfollicular epidermal 
keratinocytes. Briefly, mRNA was enriched with Oligo-
dT magnetic beads followed by reverse transcription, 
fragmentation and library construction. Sequencing 
was conducted on NovaSeq 6000 at Novogene (Beijing, 
China). RNA-seq data were deposited in NCBI’s Gene 
Expression Omnibus (GEO) with GSE193763.

Raw sequencing reads were cleaned and then aligned 
to the mouse genome (mm10) by using STAR [18] and 
raw count matrixes were obtained by feature counts 
[19]. Then, differential gene expression (DGE) analysis 
was done by R package DESeq2 [20, 21]. The genes with 
minimum counts of 3, p-value < 0.01 and fold change 
(FC) > 1.5 were considered as differentially expressed 
genes. Pathway and process enrichment analysis was car-
ried out with Gene Ontology (GO) Biological Processes, 
and PaGenBase by using Metascape (http://​metas​cape.​
org/) [22]. GSEA was performed with gene sets obtained 
from MSigDB (https://​www.​gsea-​msigdb.​org/​gsea/​
msigdb). Chord plots of enriched GO terms were gener-
ated in R (v 4.1.2) using GOplot (v 1.0.2).

Cell culture and treatments
Human keratinocytes (hKC) and fibroblasts (hFB) were 
isolated from foreskin following circumcision (age 
between 20 and 30  years) with ethical approval (No. 
20191104-13) according to standard procedures [23, 
24]. Mouse keratinocytes (mKC) and fibroblasts (mFB) 
were isolated from neonatal dorsal skin as previously 
described [25, 26]. hKC were cultivated in EpLife (Gibco, 
NY, USA) supplemented with EDGS as provided by the 
manufacturer. mKC were cultivated in Defined Keratino-
cyte-SFM medium (Gibco). Fibroblasts were cultivated in 
DMEM (GENOM) supplemented with 10% fetal bovine 
serum (ExCell bio, Shanghai, China). All cells were culti-
vated in an incubator with 5% CO2 at 37 °C.

Cell viability assay
Cell viability was measured following the manufactory 
instruction of TransDetect cell counting kit (TransGen 
Biotech, Beijing, China). Keratinocytes (KC) and fibro-
blasts (FB) of both human and mouse were seeded into 
96-well at a density of 1 × 105 cells/well and 2 × 104 cells/
well, respectively, for 24 h before AP exposure. KCs and 
FBs were cultured with AP (dissolved in DMSO) for 
48 h and 72 h, respectively. Then, the cells were washed, 
100  µL of fresh medium containing 10  µL CCK8 rea-
gent was added, and cells were incubated until checked. 
The absorbance was measured at 450  nm by a MD M5 
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full-wavelength microplate reader (Molecular Devices, 
California, USA).

Statistical analysis
Statistical analysis was performed using Graph Prism 9 
(GraphPad Software, San Diego, California, USA). Data 
were expressed as mean ± SEM. One-way ANOVA fol-
lowed by Bonferroni multiple-test and non-parametric 
test were used to assess the statistical significance of dif-
ferences between the groups; p-value < 0.05 was consid-
ered to be significant [27]. The sample size was calculated 
by power analysis with p-value 0.05, power 0.8 and effect 
size estimated by pilot data [28].

Results
Topical application of AP stimulates hair growth
To check the effect of Alpinetin (AP) in promoting hair 
growth, we closely examined relevant phenotypes after 
topically applying vehicle control (VC, 65% ethanol 
treated), positive control (PC, minoxidil treated) or AP 
on depilated dorsal skin once a day according to experi-
ment design (Fig.  1a). For the skin color of C57BL/6J 
(C57) mice can indicate the hair follicle cycling stage. 
As shown in Fig. 1b, skin color change was considerably 
faster in mice with topical application of AP (D4) com-
pared to the PC- or VC-treated mice (D6). At D8, hair 
shaft was already observable in AP-treated mice, but not 
in VC- or PC-treated mice. The skin color of VC- or PC-
mice turned white at D18, indicating a transition from 
anagen to catagen, while that of AP-treated mice did not 
turn white color until 1 day later (D19).

These data suggested that AP could promote anagen 
entry and prolong the anagen phase. We next examined 
whether AP promotes the elongation of hair follicle and 
shafts. Histological analyses showed AP-treatment signif-
icantly increased hair follicle length at D7 (Fig. 1c). The 
hair shafts at both D13 and D17 in AP-treated mice were 
significantly longer than those in VC- and PC-treated 
mice (Fig.  1d). These results indicated that AP could 
stimulate hair growth in mice.

AP promotes anagen entry of hair cycle
Compared with hair follicles in the telogen phase, hair 
follicles in anagen phase grow longer and dermal papilla 
is surrounded by hair matrix cells (Fig.  2a). Therefore, 
we categorized the hair follicles based on the morpho-
logical features in different hair follicle cycles. Given 
that AP treatment accelerated skin color change and 
promoted hair shaft elongation, we further examined 
the skin biopsy histologically in telogen–anagen transi-
tion at D4 after depilation (Fig. 2b). Histological analysis 
showed that while only 17% and 26% of the hair folli-
cles entered the anagen stage in the VC- and PC-treated 

mice, respectively, all the hair follicles (100%) in the AP 
group were in the anagen stage (Fig.  2c, d, Additional 
files 1, 2: Fig. S1a). Notably, there seemed to be two types 
of hair follicles in the AP group: one type was straight 
and longer (Fig.  2d, AP#1); the other type was shorter 
and had a smaller hair follicle in their proximity, which 
called club hair. (Fig.  2d, AP#2), indicating AP might 
activate de novo hair follicle growth. P-cadherin protein 
is a marker indicating hair follicles entering the anagen 
phase [29]. Consistently, P-cadherin was barely detected 
in the hair germ of hair follicles in VC-treated mice and 
only expressed in ~ 50% of the hair follicles in PC-treated 
mice, while most cells in the hair germ and the bulge area 
expressed P-cadherin at D4 after AP application (Fig. 2e, 
Additional files 1,  2: Fig. S1b). Next, we examined cell 
proliferation in hair follicles using the EdU-incorporation 
assay. As expected, EdU+ cells were mainly detected 
in dermal papilla and hair matrix in all three groups 
(Fig.  2f ). We observed additional EdU+ cells located in 
the bulge area of hair follicles in AP-treated mice, but 
not in the club hair of AP-treated skin. Remarkably, the 
EdU+ cells in AP-treated group were much more than 
those in the other groups, suggesting that AP could facili-
tate hair cycle entry by promoting proliferation of hair 
follicle epithelium cells.

AP delays catagen entry by inhibiting cell apoptosis
We further determined whether AP affects anagen–cata-
gen transition (Fig.  3a). As shown in Fig.  2a, compared 
with the anagen phase, the hair follicle in catagen not 
only becomes shorter in length, but the dermal papilla 
also begins to shrink down to the bottom of the hair fol-
licle, while forming an epithelial chain with the bulge, 
indicating the transition into catagen phase. Histologi-
cal analyses showed that dermal papilla size reduced in 
VC- or PC-treated groups at D18 after depilation, indi-
cating hair follicles entering the catagen stage (Fig. 3b, f ). 
On the contrary, all hair follicles following AP treatment 
remained in the anagen stage at this point. Significantly, 
most hair follicles in AP-treated mice were still in the late 
anagen stage at D19. At D22, hair follicles in all the three 
groups have entered the telogen stage. These results sug-
gested that AP delayed catagen entry as well as shortened 
catagen duration.

Since the AP group was in the anagen stage at D19, 
we wanted to know whether cells in hair follicles were 
proliferative. Surprisingly, cells in the dermal papilla in 
the AP group, but not those in the VC or PC-treated 
groups were incorporating EdU at D19 (Fig.  3c), sug-
gesting AP treatment could sustain cell proliferation. 
On the contrary, cleaved caspase 3, a marker for apop-
tosis, was expressed in the bulge in the VC or PC-
treated groups but was not detected in the AP group 
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at D19 (Fig. 3d), indicating AP hadn’t get into catagen 
entry. Most hair follicles have entered catagen in VC 
or PC-treated groups, as the hair follicle retracts, the 
dermal papilla was pulled upward towards the perma-
nent portion of the hair follicle where stem cells reside. 
K15+ HFSCs in both hair germ and bulge appear 

quiescent, no EdU staining was observed in VC group, 
few staining was observed in PC group, while all hair 
bulb appeared EdU+ in AP group (Fig.  3e). Taken 
together, these data showed that AP stimulated hair fol-
licle entering anagen earlier and delayed catagen entry 
(Fig. 3g).

Fig. 1  AP promotes hair follicle and hair shaft growth. a Experimental scheme of topical drug treatment and sampling. b Skin color of depilated 
skin areas at day 1 to 19 (D1, D4, D6, D8, D18 and D19) after depilation. c Hematoxylin and eosin (H&E) staining of VC-, PC- or AP-treated skin at D7 
after depilation. Scale bar, 100 μm. Quantitation of hair follicle length. The average hair follicle length of 3 individual animals (n = 3) in each group 
was presented. The average length was calculated from 4 to 6 hairs in each animal. d Hair shafts pulled at D13 (upper panel) and D17 (lower panel) 
after depilation. Quantitation of hair shaft length (n = 50 hair shafts per group from 5 mice). Scale bar, 1 mm. Data are presented as mean ± SEM. 
*p < 0.05; **p < 0.01
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AP activates hair follicle stem cells
We have shown that AP could extend the anagen stage as 
well as promote hair follicle cell proliferation and won-
dered if AP could affect hair follicle stem cells (HFSCs). At 
D4 after treatment, there were more Lef1+ stem cells in 
the dermal papilla and K15+ stem cells in the ORS in the 
AP-treated group compared with the VC- or PC-treated 
groups, as well as for EdU+ proliferating cells (Fig.  4a). 
Lgr5+ HFSCs are the pioneer stem cell population 
that are triggered at the onset of anagen [30]. By using 
Lgr5EGFP−CreERT2; R26RtdTomato transgenic mice, Lgr5+ 
HFSCs were labeled 8  days before depilation. Lgr5-
EGFP+tdtomato+ cells are HFSCs or progenies that 
express Lgr5, while Lgr5-EGFP−tdtomato+ cells are hair 
follicle cells that derived from Lgr5-EGFP+tdtomato+ 
stem cells, however, not expressing Lgr5 anymore as they 
become transitional amplification cells, participating in 
the rapid proliferation of hair follicle in the anagen phase 
[31]. At D4 after depilation, Lgr5+ (EGFP+; Tomato+) 
cells were detected in the lower bulge and hair germ of 
telogen hair follicle in the VC-treated group. In the AP 
treatment group, Lgr5 + (EGFP + ; Tomato +) cells were 

present in the expanding bulge, and a small number 
of transitional amplification cells (EGFP−; Tomato+) 
derived from Lgr5+ cells were observed in ORS (Fig. 4b). 
These results indicate that AP promotes the prolifera-
tion of Lgr5+ HFSCs (EGFP+; Tomato+) and prog-
enies. Similarly, Gli1creERT2;  R26RtdTomato transgenic mice 
is used to label Gli1+ HFSCs, another marker of HFSCs 
identified previously [9]. Gli1+ stem cells or progenies 
were rarely detected in follicles following VC treatment, 
whereas significant amount of Gli1+ stem cells/prog-
enies (tomato+) were detected in the inner root sheath 
(IRS) from the upper bulge to the matrix after 6-day AP 
treatment (Additional files 1, 3: Fig. S2). Fewer hair folli-
cles containing Tomato+ cells were detected in VC group 
either at D4 or D6 post depilation (Additional file 3: Fig. 
S2). These results indicated that AP could efficiently 
stimulate different stem cell populations in hair follicles.

AP functions through Wnt signaling
To explore the underlying molecular mechanism, by 
using RNA-seq we investigated the transcriptional 
changes in skin induced by AP treatment. Compared 

Fig. 2  AP drives anagen entry. a Hair follicle cycle diagram. b Experimental scheme of topical drug treatment and sampling. c Quantification for 
proportion of hair follicles at anagen stage (n = 228 hair follicles from 4 mice per group). Data are presented as mean ± SEM. **p < 0.01. c H&E 
staining of VC-, PC- and AP-treated skin at D4 after depilation (n = 5 mice). Scale bar, 100 μm. Immunofluorescence images for P-cadherin (e) and 
EdU (f) staining in hair follicles of VC-, PC-, and AP-treated mice at D4 after depilation (n = 50 hair follicles per group from 5 mice). Scale bars, 50 μm
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to the VC group, there were 1017 up-regulated and 
550 down-regulated genes identified in the AP group 
(Fig.  5a). Enrichment analysis showed that the signifi-
cantly up-regulated genes in the AP group were enriched 
for Gene Ontology (GO) terms including tissue mor-
phogenesis, positive regulation of cell migration, skin 
development and hair cycle, as well as the Wnt signaling 
pathway (Fig. 5b). In-depth GO analysis revealed poten-
tial key regulators which significantly contributed to the 
enhanced Wnt signaling pathway and hair regeneration. 
For instance, Egr1, Wnt11 and Hmga2 are important 
genes involved in Wnt signaling pathway, whose expres-
sion are both upregulated over twofold. Meanwhile, the 
AP-induced upregulation of Fgf20, Itga6 and Csf1 may 
be the significant regulators promoting hair regeneration 

and cycle (Fig.  5c). Tissue-specific marker gene enrich-
ment analysis also showed that a list of epidermis-specific 
genes are upregulated after AP treatment, in line with the 
morphological findings that AP treatment facilitates hair 
follicle proliferation (Fig. 5d).

GSEA analysis revealed that the gene sets of skin 
development and epidermis development were clearly 
enriched in the AP-treated group, which was consist-
ent with GO analysis (Fig.  5e). In addition, the set of 
genes associated with Wnt signaling pathway were also 
enriched in AP-treated group. Specifically, genes related 
to epidermal development (Krt10, Krt80, Atp7a, Krt16, 
Krt77, Itga6) and Wnt signaling pathway (Fzd1, Apcdd1, 
Fzd6, Sfrp1, Fzd4, Ror1, Lrp6, Lrp5, Reck, Fzd10, Fzd5, 
Fzd9) were up-regulated in the AP group (Fig.  5f ). The 

Fig. 3  AP delays anagen-catagen transition. a Experimental scheme of topical drug treatment and sampling, n = 5 mice per group. b H&E staining 
of VC-, PC- and AP-treated skin at D18, D19, and D22 after depilation. n = 5 mice per group. Scale bars, 100 μm for D18, D19, 50 μm for D22. c 
Immunofluorescence images and quantification of EdU staining within hair follicles of VC-, PC-, and AP-treated mice at D19 after depilation. n = 50 
hair follicles per group from 5 mice. Scale bars, 50 μm. d Immunofluorescence images and quantification of capspase3 staining within hair follicles 
of VC-, PC-, and AP-treated mice at D19 after depilation. n = 50 hair follicles per group from 5 mice. Scale bars, 50 μm. e Immunofluorescence 
images of K15 staining in hair follicles of VC-, PC-, and AP-treated mice at D19 after depilation. n = 5 mice per group. Scale bars, 100 μm. f 
Quantification of DP size of VC-, PC-, and AP-treated mice at D19 after depilation. g Comparison of the duration of catagen, anagen and telogen 
phase in VC-, PC- and AP-treated skin, n = 5 mice per group
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expression of Fzd1 and Lef1, the principle receptor and 
the core transcription factor involved in canonical Wnt 
pathway, which are important regulators functioned in 
the induction of primary hair/follicle, were also induced 
by AP application among the top list and validated by 
qPCR (Additional files 1, 4: Fig. S3), though not showed 
in Fig. 5e. These results suggested that AP regulates hair 
follicle development through the Wnt-Lgr5-Lef1 axis.

AP exhibits no cytotoxicity in keratinocytes and fibroblasts
While AP showed a promising effect to stimulate hair 
growth, it is critical to test the toxicity of a potential 
druggable compound. We did the in vitro pioneer cyto-
toxicity study for AP in primary cultured keratinocytes 
and fibroblasts, the two main cell types in skin from both 
human and mice. To examine the cytotoxicity of AP, we 
treated primary fibroblasts and keratinocytes obtained 
from human (Fig. 6a) and mice (Fig. 6b) at a wide range 
of concentration (0.01 μg/ml, 1 μg/ml, 100 μg/ml). Inter-
estingly, AP increased proliferation of human fibroblasts 
at the high dose (100 μg/ml) and slightly increased prolif-
eration of mouse fibroblasts. However, AP did not affect 
cell viability in human keratinocytes at all concentrations 
and slightly increased mouse keratinocytes proliferation 
at the high dose (100  μg/ml). These findings suggested 
that AP exposure had no cytotoxicity in the two main 
types of skin cells.

Discussion
AP is mainly found in Zingiberaceae plants, and it is 
abundant in cardamom and turmeric that are commonly 
used in clinical treatment for the multi-effects and low 
toxicity, which is demonstrated in our toxicological stud-
ies as well. Alpinia katsumadai Hayata, which is rich in 
AP ingredients, is a condiment used in daily life, and is 
classified as medicinal and edible, suggesting its safety 
as well. The pharmacological effects of AP have so far 
been mostly anti-inflammatory, including significantly 
reducing TNF-α, IL-6 and IL-1β expression levels [32]. 
Other reports have also demonstrated that AP possesses 
antibacterial, antioxidant, anti-cancer, antithrombotic, 
antiemetic and analgesic properties, as well as maintain-
ing blood pressure, blood lipid and blood glucose levels 
[33–35]. Additionality, AP was less polar property com-
pound and belongs to fat soluble ingredients, making it 
can be easily absorbed by the skin. It is therefore feasible 
to turn it into shampoo and other forms of commodity 
for daily use, making it marketable. However, 65% etha-
nol was used as a solvent to dissolve AP in the present 
study, which is likely to be irritation to the skin. In the 
future, a more adaptable solvent will be required for ther-
apeutic treatment or daily use product.

To date, medication and hair transplantation are the 
two most common treatments for hair loss. Two com-
monly used medicines include minoxidil and finas-
teride, both of which yet have drawbacks. As for hair 

Fig. 4  AP stimulates Lgr5+ HFSC at the onset of anagen. a Upper panel: experimental scheme of topical drug treatment and sampling. Lower 
panel: immunofluorescence images for dual-staining of EdU and Lef1, dual-staining of EdU and K15 in hair follicles of VC-, PC-, and AP-treated 
mice at D4 after depilation. Quantification of K15 staining in hair follicles (n = 50 hair follicles per group from 5 mice). b Upper panel: experimental 
scheme of topical drug treatment and sampling. Lower panel: lineage tracing of Lgr5+ HFSCs by using Lgr5EGFP−CreERT2; R26RtdTomato mice at D4 after 
depilation, dual-staining of Tomato and GFP, n = 3 mice per group. Scale bars, 50 μm
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transplantation, hair follicles from other cites of the body 
are needed, skin lumps and scarring may occur, and only 
around half of the transplanted hair follicles survive [36]. 
Moreover, hair transplantation is expensive due to its 
costly operation procedures. Alopecia treatments with 
efficiency, safe and lower cost are of the urgent need for 
clinic. Activation of HFSCs is a challenge yet promising 
therapeutic strategy for curing hair loss. The most com-
mon types of hair loss include androgenetic alopecia 
(AGA) and alopecia areata (AA), which are non-cicatri-
cial alopecia. They are characterized by damaged hair fol-
licle progenitor cells but a relatively intact pool of HFSCs, 
which makes hair loss treatable [37]. HFSCs, when acti-
vated, can promote hair regeneration. Therefore, finding 
new compounds like AP to directly activate HFSCs will 
pave the way for hair loss treatment.

Lgr5 is identified to be a Wnt target gene in the HFSCs, 
and Lgr5+ HFSCs are the first HFSC population to 
respond to hair growth signals [38]. In this study, we con-
firmed that Lgr5+ HFSCs were activated and proliferated 
quickly upon AP application. Canonically, Wnt proteins 
stabilize β-catenin and activate its downstream genes via 

Frizzled receptors and low-density lipoprotein-related 
protein (LRP) co-receptors [39]. According to our RNA-
seq data, up-regulated genes were enriched in the path-
way of Wnt activation in the AP-treated group with high 
Frizzleds and LRPs expression. There are other pieces of 
evidence supporting our finding that AP affects HFSC via 
Wnt signaling. AP is found to be the agonist of peroxi-
some proliferator-activated receptor G (PPARG), which 
functions together with β-catenin [40, 41]. Therefore, AP 
is likely to stimulate Wnt/β-catenin pathway via upregu-
lating its receptors and co-receptors in telogen–anagen 
transition, thus other compounds targeting these recep-
tors might also promote hair regeneration.

In the current study, we used a depilation model to 
mimic the process of hair regeneration, plucking was 
used to induce synchronous cycle of the hair follicles, 
thus we could clearly monitor the effect of AP in stim-
ulating hair follicle into growth. We did observe that 
AP had a strong effect in promoting hair regeneration. 
However, in the future we sought to check for its effect 
in other animal models that could mimic alopecia in a 
pathological condition, including dermal injection of a 

Fig. 5  RNAseq analysis reveals the molecular mechanism of AP-treated skin. a Volcano plot of the differentially expressed genes between AP and 
VC-treated groups (FC > 1, p < 0.01). b Highly enriched Gene ontology (GO) analysis of up-regulated genes in AP group. c GO Chord plot showing 
the expression spectrum of significantly upregulated gene in the Go terms. Genes are selected according to the log2FC, and they are linked to their 
assigned term via colored ribbons. d Summary of histospecific gene enrichment analysis in PaGenBase. e Gene set enrichment analysis (GSEA) 
between AP and VC-treated groups. f Heat map of genes that are significantly up-regulated in epidermis development and Wnt signaling pathways, 
n = 4 mice per group
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mixture of cells isolated from AA-affected skin and pre-
treatment of IFN-γ in C3H/HeJ mice for AA [42], or sub-
cutaneous injection of dihydrotestosterone in C57BL/6J 
mice for AGA [43]. Because there are inflammation and 
oxidative stress in both AGA and AA [43–46], as AP can 
function as an anti-inflammatory agent as well as an anti-
oxidant [47], and evidenced as a HFSCs stimulator in our 
study, we speculate that it might work efficiently in AGA 
and AA animal models, though need further experiment 
to address.

Conclusion
For the first time we demonstrated that AP, a primary 
active component in Alpinia katsumadai Hayata or 
Alpinia japonica (Thunb.) Miq. plants can promote hair 
regeneration by stimulating the activation and prolif-
eration of HFSCs via Wnt signaling. Our findings may 
contribute to the development of a new generation of 

pilatory that is more efficient and less cytotoxic for treat-
ing alopecia.
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