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Abstract: Freeze-drying, also known as lyophilization, is a process in which water in the form
of ice under low pressure is removed from a material by sublimation. This process has found
many applications for the production of high quality food and pharmaceuticals. The main steps of
the freeze-drying process, such as the freezing of the product and primary and secondary drying,
are described in this paper. The problems and mechanisms of each step of the freeze-drying process are
also analyzed. The methods necessary for the selection of the primary and secondary end processes are
characterized. The review contains a description of the effects of process conditions and the selected
physical properties of freeze-dried materials, such as structural properties (shrinkage and density
porosity), color, and texture. The study shows that little attention is given to the mechanical properties
and texture of freeze-dried materials obtained from different conditions of the lyophilization process.

Keywords: freeze-drying; shelf temperature; lyophilization pressure; physical properties; foods;
sublimation; desorption

1. Introduction

Freeze-drying is a process in which water is sublimated by the direct transition of water from
solid (ice) to vapor, thus omitting the liquid state, and then desorbing water from the “dry” layer [1–5].
It is widely used for the stabilization of high-quality food, biological materials, and pharmaceuticals,
such as proteins, vaccines, bacteria, and mammal cells. In the process, the quality of the dried product
(biological, nutritional, and organoleptic properties) is retained [6,7]. This is due to the fact that freezing
water in the material prior to lyophilization inhibits chemical, biochemical, and microbiological
processes. Therefore, the taste, smell, and content of various nutrients do not change. Raw food
materials contain a lot of water, ranging from 80% to 95%. The removal of water by sublimation
results in the creation of highly porous structure of the freeze-dried products, and the rehydration of
lyophilisates occurs immediately [8,9].

The water in the products can be free water or water bound to the matrix by various forces.
Free water freezes, but bound water does not freeze. In the freeze-drying process, all ice water and
some bound water must be removed. Therefore, lyophilization is a highly complex and multi-step
process that consists of [1,6]:

• The freezing of the product, most often under atmospheric pressure.
• Primary drying—proper freeze-drying—ice sublimation, most often at reduced pressure.
• Secondary drying—desorption drying—drying the product to the required final humidity.

The effect of freeze-drying should be considered from the economic aspect and the quality of the
freeze-dried material. The cost of a product mainly depends on the freeze-drying time. Therefore,
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process parameters and other conditions of its course are often set so that its time is as short as possible.
Setting parameters to speed up the process can lead to the deterioration of the product’s properties.
For example, increasing shelf temperature can lead to the defrosting of the product and the collapse of
the structure or to the thermal degradation of heat-sensitive food ingredients.

The conditions of the freeze-drying process should be selected in a way that does not melt the
water. Liquid water is the reaction medium and changes the rheological properties of the product.
The presence of liquid water during the freeze-drying of food products may result in many changes in
the composition, morphology, and physical properties of foods (e.g., shrinkage). It may also reduce
the period of ensuring high quality during storage [10]. The color and structure–texture properties
are crucial in the quality evaluation of food by consumers. Therefore, the dependence of these food
properties on the parameters of freeze-drying is extremely important.

The effect of freeze-drying conditions on the nutritional properties, antioxidant activities [11–14],
and glass transition characteristics [12,15,16] of different food materials can be found in the literature.
It is widely believed that freeze-drying is the best method of drying. However, improperly selected
process parameters may cause unfavorable changes in the material, such as shrinkage, color change,
collapsed structure. Therefore, the aim of this review was to characterize all stages of the freeze-drying
process, discuss the phenomena taking place during those stages, present their impact on the course
of the process, and explain the effect of the process conditions on the selected physical properties of
different food products.

2. The Characteristics of the Freeze-Drying Process

During the three stages of the freeze-drying process (sublimation, primary drying, and secondary
drying), six main physical phenomena can be distinguished that have a significant impact on the course
of the process, the quality of the obtained material, and the overall costs of the process. Those are:

• The phase transition of the water contained in the product into ice.
• The ice to vapor phase transition.
• The desorption of water molecules from material structures.
• The obtainment of a sufficiently low pressure.
• The re-sublimation of water vapor removed from the material on the surface of the condenser.
• The removal of a layer of ice from the surface of the capacitor.

Both the kinetics of the process and the properties of the obtained product depend on the
parameters in which these phenomena occur.

The main feature of freeze-drying, the only one that distinguishes it from vacuum drying, is the
need to keep free water frozen. This is one of the most difficult problems in freeze-drying.

Freeze-drying is a mass exchange process that requires heat transport. The heat of sublimation is
2885 kJ/kg [17,18]. If too little heat is supplied, the process will be slow, which will increase its costs.
If the supplied heat flux is too high, it will cause an accumulation of heat in the material and an increase
in its temperature, consequently leading to the possibility of the appearance of liquid water. Hence, it is
extremely important to maintain a balance between the amount of heat supplied and used. One way to
assess whether the amount of heat supplied is too high is to monitor the temperature of the lyophilized
material [19]. Its value must not exceed the value of the cryoscopic temperature for a given material
or the glass transition temperature for a given water content. If the glass transition temperature is
exceeded, the structure may collapse (porosity reduction), which is highly disadvantageous due to the
reduction of the specific surface of the product. As a consequence, the time of the second drying stage
lengthens, the rehydration capacity of the product deteriorates, the product has a higher final water
content [20]. Moreover, it may result in lower product stability during storage.

Maintaining a constant, low temperature (according to the pressure in the chamber) during
the sublimation period proves that the balance between the amount of heat supplied and used for
sublimation is maintained. However, it does not mean that the process runs at the maximum possible
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sublimation rate under given conditions. Too low a value of the supplied heat flux may limit the
sublimation rate. On the other hand, an increase in temperature may indicate that the heat input is too
high. It can be also the effect of the possible heat consumption by sublimation due to increase of the
heat transport resistance. Therefore, for more complete control, changes in the water content should
also be monitored simultaneously [19].

The parameter that determines the amount of heat supplied is the heat transfer resistance, while the
resistance to mass movement (water vapor), both inside and outside the material, determines the
amount of heat used for evaporation. Therefore, the course of lyophilization is determined by all the
factors affecting the value of both these resistances. These factors are related to the process parameters
at each stage, the design of the freeze-dryer, and the properties of the lyophilized material.

2.1. The First Stage of the Freeze-Drying Process—Freezing the Raw Material

Though freezing is one of the most critical stages during lyophilization, the importance of the
freezing process has been rather neglected in the past [4].

Both solid products (fruits and vegetables) and liquid products (coffee and juices) must be frozen
before freeze-drying [4,21,22]. Freezing is the crystallization of a solvent that, in the case of food
products, is water. The additional benefits resulting from the conversion of water into ice in the
material before the freeze-drying are as follows:

• Immobilizing the ingredients in solution and preventing foaming occurring during pressure
reduction in the freeze-dryer chamber.

• Limiting the chemical, biochemical, and microbiological changes taking place in the material.
• Creating a specific structure of ice crystals in the frozen product, which, in the next step, facilitates

or limits the migration of water vapor from the dried material; the structure of ice formed during
freezing determines the intensity of mass movement and, as a result, shapes the final morphology
of the dried material [23].

• Stiffening of the structure, counteracting contraction of the cells of plant or animal tissue caused
by the removal of water from them, which is possible due to the plasticization of the material by
liquid water.

When the cryoscopic temperature is exceeded, the water begins to crystallize and the solution
or cell juice cryo-concentrate, which leads to the transport of the dry substance components. Thus,
freezing should be carried out to avoid concentration gradients within the frozen tissue. For this reason,
it is advantageous to obtain a state of supercooling (lowering the material temperature below the
cryoscopic temperature), which causes it to occur simultaneously in the entire volume of the material
and accelerates the freezing process [22,24].

The freezing rate is very important for freeze-drying; the kinetics of ice nucleation and crystal
growth determine the physical state and morphology of the frozen cake (layer of frozen material) and,
as a result, the properties of the freeze-dried product [25]. Ice morphology is directly correlated with
the rate of sublimation both in primary and secondary drying.

Taking the course of lyophilization into account, the appropriate freezing rate depends on the
type of material—whether it is a solution, suspension, or biological material with a cell structure.
To optimize the freeze-processes of liquid materials, the ice crystal sizes must be large enough to
obtain the shortest primary drying time. The formation of numerous, small ice crystals during the
freezing step leads to a high resistance to mass transfer in the dried product, whereas the formation
of a few large ice crystals leads to small resistance [7]. However, to intensify the secondary drying
period, these sizes need to be smaller to provide a large specific surface area for the dried matrix. As a
result, the desorption of non-frozen water from pores on the surface of the amorphous matrix proceeds
faster [7]. Therefore, the method of freezing should be decided after analyzing the course of primary
and secondary drying. If the secondary drying takes a long time, it can be accelerated by changing the
freezing conditions to obtain a lot of small ice crystals. Ceballos et al. [26] investigated the effect of
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freezing rate on the properties of freeze-dried soursop fruit pulp. After six hours of lyophilization in
the obtained material, a higher water content was correlated with a higher freezing rate. This proved a
higher resistance to mass movement in the case of a quickly frozen material. For a biological material
with a cell structure in which one wants to preserve the biological functions of the cell membrane,
quick freezing should be used so that ice crystals do not damage it. Likewise, the rate of freezing
may influence the behavior of bioactivity by protein molecules. The cell membrane resists mass
transport; therefore, its destruction may facilitate the diffusion of water vapor. Thus, slow freezing
may be preferable. Similarly, when freeze-dried solutions or other materials lacking an internal porous
structure are freeze-dried, large crystals, after sublimation, leave spaces to facilitate sublimation.

Cellular materials have a certain porosity that positively influences mass transport resistance [27].
In the case of frozen liquids, it is possible to create a porous structure of the material and reduce
the heat and mass transport path via the application of the new spray-freezing into liquid (SFL)
technology [28–33]. By spraying the liquid into liquid nitrogen or cold air, it is possible to obtain a
material in the form of ice spheres and thus obtain a porous bed that is then freeze-dried. (Figure 1).
The result is a granulate with the desired particle diameter. In this method, it is possible to obtain
a very high freezing rate due to the small particle diameter (low resistance to heat transport) and
the large contact surface with the cooling medium. The freezing time is in the millisecond range.
The sublimation rate is also high due to the low resistance to heat and mass transport as the effects of the
small particle diameter. This technique allows for a high degree of control over the residual moisture
content, mass density, and particle size. It allows for the easy manipulation of process parameters
such as the temperature of the cryogenic liquid, the chemical composition and concentration of the
solution, and the atomizer type. It allows for the obtainment of liquid powders with the desired
particle diameter [30]. A certain disadvantage of the method is the limitation of heat conduction due to
the small contact surface of the frozen product spheres with the heating surface and the empty spaces
between the spheres. Therefore, radiant heating from the top shelf is important, while the positive
effect of voids is a low resistance to water vapor movement [33].
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The freezing rate is directly proportional to the temperature difference between the cryoscopic
temperature of the material and the temperature of the freezing medium, and it is inversely proportional
to the heat transfer resistance. The temperature difference is a value that can be easily adjusted,
especially when freezing in outdoor units [19].

The heat transport resistance for a given material depends on the thickness of the layer. The smaller
the thickness, the lower the resistance and the faster the process. However, the smaller the thickness
of the material, the less material is processed. Spin freezing is a way to reconcile these two mutually
exclusive aspects. During spin freezing, the product is frozen before freeze-drying in unit packages.
The desired amount of material, resting on the bottom of the package, forms a fairly thick layer.
Swirling the package during freezing creates a layer of frozen material, with a much smaller thickness
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and a larger evaporation surface, on the walls (Figure 2). This method allows you to regulate the
freezing rate in a much larger range of values [35]. The oxidizable liquid or semi-liquid food products
are freeze-dried. It is worth recommending this method for the lyophilization of this type of product
in unit packages similar to vials. It significantly reduces the drying time. In addition, it gives the
possibility of vacuum packaging in the freeze-dryer chamber, which allows one to obtain a product
protected against oxidation.
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A way to speed up freezing, especially in the case of large-sized materials where the conduction
resistance prevents rapid freezing, is to use supercooling. In the absence of crystal seeds, the material
must be supercooled below the cryoscopic temperature for nucleation to form. The greater the degree
of subcooling, the faster the freezing process takes place in the entire volume of the material. A higher
degree of supercooling increases the rate of ice nucleation and the effective rate of freezing, yielding a
high number of small ice crystals [35,36]. In a study by Searles et al. [36], it was found that the primary
drying rate is about 4% lower for each degree of additional supercooling.

The supercooling state can be achieved by various methods, e.g., by adding cryoprotectants [37],
thanks to the external magnetic field that prevents the movement of water molecules to the crystal
surface [38,39]. Another way is freezing at elevated pressure [40]. By taking advantage of the pressure
dependence of the freezing temperature, the product can be subjected to super atmospheric pressure
and then reduced in pressure, causing it to freeze.

If it is possible to evaporate from the free surface, the self-freezing effect can be used. If the
water begins to intensively evaporate, it takes away heat from the product from which it evaporates,
causing it to quickly freeze in its entire volume without the need for separate unit operation [41].

Silva et al. [42] studied the freezing process of coffee extract in comparison with air-freezing and
contact; vacuum freezing led to significantly smaller freezing times. At the same time, some of the
solvents were evaporated, thanks to which additional compaction of 26–43%, contrasting with 1–2%
losses for air freezing and contact freezing, was obtained. This fact, along with the extremely porous
structure formed during vacuum freezing, makes this method particularly interesting for soluble coffee
production by freeze-drying. Such a phenomenon may occur in the initial stage of drying—during the
reduction of pressure in the freeze-dryer chamber. However, there are restrictions. In the case of a
non-cellular material, there is intensive evaporation during pressure reduction, and since the viscosity
of the liquid at low temperature is high, it causes the material to splash. In the case of a cellular material
that provides a high mass transport resistance, there are two cases for the use of this phenomenon.
Evaporation can be facilitated when the material is naturally thin (e.g., vegetables or other deciduous
plants) or in the case of a thin scrap of tissue with damaged cell membranes by cutting [7]. Another way
to reduce mass transport resistance is by destroying cell membranes. Such an effect can be obtained by
acting on the structure with a pulsed electric field (PEF). PEF pretreatment provokes the damage of cell
membranes and accelerates mass and heat transfer processes without undesirable changes in food
tissues [43]. Parniakov et al. [44] showed that the reduction of the temperature of an apple slice treated
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with PEF depends on the degree of structure destruction. With the degree of cell wall disintegration
equal to 0.96, while reducing the pressure in the freeze-dryer to a value of 1000 Pa, the temperature
of the apple decreased from 25 to −10 ◦C due to evaporation; meanwhile, for undamaged tissue,
the temperature only decreased to approximately −5 ◦C.

2.2. Primary Drying—Sublimation

Primary drying is the term for the freeze-drying period in which the ice sublimation process
takes place. When designing the lyophilization process for a given material, the following process
parameters should be determined: the pressure in the freeze-dryer chamber and the intensity of heat
supply. The flux of the supplied heat depends on the heating method. In the case of contact heating,
setting the appropriate shelf temperature is necessary. When the material is heated by radiation,
the distance from the material, the range of infrared radiation, and the intensity of radiation should
be selected [45]. In the case of microwave heating, the intensity of the microwaves and the duration
of their operation are important. Another process parameter is the temperature of the condenser
surface, but it is a parameter that results from the design of the cooling cycle in the freeze-dryer.
The temperature of the condenser surface should be from about −60 to −80 ◦C [46], depending on the
type of freeze-dried material. Therefore, the set pressure in the chamber, the vapor pressure above the
sublimation surface, and the condenser temperature should be determined at the design stage of the
refrigerant circuit. It should be remembered that the desublimation or deposition surface temperature
increases during the process. The ice layer that forms is the heat transfer resistance that increases with
increasing ice thickness. This resistance causes a temperature gradient between the ice surface and the
capacitor surface. It is therefore important to remove this layer during the process, or a large capacitor
surface area should be designed [46] so that the ice layer is not too thick.

During the sublimation period, the amount of heat supplied should correspond to the amount
of heat necessary for the sublimation of the ice. Heat can be supplied by heat conduction [47–49],
heat radiation [6,45,50–52], or microwave heating [53–61]. For the sublimation process to proceed,
two basic conditions must be met: the sublime steam must be constantly removed from the sublimation
area, and to maintain the differential pressure of the vapor resulting in the removal of water vapor
from the chamber, the heat necessary for sublimation must be continuously supplied to the material.
If either of these two basic conditions are not met, some unfavorable phenomena occur, such as the
softening, thawing, bulging, or collapse of the structure [46].

The sublimation process takes place from the surface of the product during pressure reduction in
the freeze-dryer. During lyophilization, the ice–vapor phase boundary moves into the material [19,62]
or, in the case of porous and heterogeneous materials, from places where the resistance to mass
movement is the lowest. The driving force of the sublimation process is the difference between the
vapor pressure above the sublimation surface piw (as the saturation pressure corresponding to the
temperature Ti of the sublimation surface) and above the evaporator surface pa (as the saturation
pressure corresponding to the surface temperature Ta on which the resublimation process takes place).
To initiate sublimation, the pressure in the chamber must be significantly lower than the vapor pressure
of the ice resublimated on the condenser [4].

The total resistance to mass movement consists of three components: resistance to movement
inside the dry layer Rd, resistance to mass transport from the surface of the dry layer to the resublimation
surface Rs, and ice sublimation resistance Rl.

Thus, the sublimation rate can be described by the formula [63]:

G =
piw − pa

Rd + Rs + Rl
(1)

where G is the ice sublimation rate, kg/(m2
·s), Rd is the resistance inside the dry layer; m2/(Pa·s kg),

Rs is the resistance to mass movement from the dry surface to the resublimation surface; m2/(Pa·s kg),
and Rl is the ice sublimation resistance; m2/(Pa·s kg).
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The ice sublimation resistance Rl can be expressed by the formula:

Rl =

√
Ti

Kl
(2)

where Ti is the temperature corresponding to the saturation pressure and Kl is a constant, depending on
the molecular weight of the sublimating substance; for water, Kl = 0.018.

Assuming pure ice sublimation (no dry layer resistance), the Ti temperature corresponds to the
saturation pressure piw. The evaporator temperature Ta, corresponding to the saturation pressure
pa, is much lower than that of the piw (pa << piw); the sublimation surface is also the surface of the
ice, so Rd = 0. It can also be assumed that the resistance of the convective mass transport from the
evaporation surface to the resublimation surface is negligible. Under such conditions, the sublimation
rate reaches the maximum value Gmax [62]:

Gmax =
piw

Rl
=

piwKl
√

Ti
(3)

Assuming that the ice sublimes at −10 ◦C, i.e., the saturation pressure is 260 Pa, and then:
Gmax = 0.29 kg/(m2

·s). If the sublimation temperature of ice drops to −20 ◦C, Gmax will decrease by
half, and at the sublimation temperature of −30 ◦C, Gmax will reach the value of 0.04 kg/(m2

·s). Thus,
by lowering the working pressure in the sublimation chamber, the ability to sublimate is significantly
reduced [59]. In practice, this value will be lower due to the resistance to movement of the mass
created by the dry layer. The dried product resistance to mass transfer (Rp) depends on several
parameters, namely (1) the rate of freezing, related to the formation of ice crystals with different sizes
and morphologies; (2) the formulation, related to the quantitative and qualitative dry substance content
and total layer thickness; and (3) the processing conditions during primary drying, related to the
possible formation of micro-collapse [7].

Assegehegn et al. [46] tested the sublimation rate in vials using pressures from 5 to 20 Pa and at
shelf temperatures in the range from −10 to −30 ◦C. At a pressure of 15 Pa and a shelf temperature of
−20 ◦C, they achieved a sublimation rate of 0.17 g/h; at a pressure of 5 Pa and the same temperature,
it was 13 g/h for the vials placed in the front of the freeze-dryer and 0.11 and 0.8 g/h in the center of the
freeze-dryer. These results also indicated that the sublimation effect differs depending on the position
inside the freeze-dryer chamber. Therefore, when determining the pressure of the freeze-drying
process, its value should not be reduced too much without substantive reasons. The higher its value,
the greater the temperature difference between the vapor generated and the condenser (the higher
the temperature, the faster the water vapor is removed from the chamber). The limitation is the
chemical composition of the sublimated material. The pressure in the freeze-dryer chamber must be
low enough for the free water in the product to solidify. This is especially important for materials with
high contents of monosaccharides and salts, the presence of which lowers the cryoscopic temperature,
and for materials containing cryoprotectants. The pressure in the freeze-dryer chamber should be
below 610 Pa (the approximate triple point pressure of water). Usually, in the case of plant materials,
it is around 63–124 Pa at a temperature from −25 to −20 ◦C and lower [64]. In the pharmaceutical
industry (solutions of active proteins, sugars), this range is 5–20 Pa [46].

For sublimation to take place, the heat of phase change, which is 2885 kJ/kg, must be provided.
The higher the driving force of the heat exchange process, the higher the heat flux, and, therefore,
the higher the temperature difference between the material and the heat source. This difference is a
tool for the process operator to control the heat movement process.

As reported in the literature [65,66], there are different mechanisms of heat transfer during primary
drying. Therefore, the overall heat transport effect is related to direct conduction through the ice layer.
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The rate of heat transfer through direct conduction can be defined as the flux of heat conducted through
the frozen layer of the material [62]:

q =
λi

xf
(Tlw − Ti) (4)

where λi is the ice specific thermal conductivity, W/(m·K); xf is the ice layer thickness, m; Tlw is the
temperature of the lower ice layer, K; and Ti is the temperature on the border of sublimation, K.

Referring to Formula (4), if that heat is conducted through a 1 cm thick layer of frozen water,
and the temperature difference between the inside of the material and its surface is 10 K, then a
maximum of 2.24 kW/m2 is delivered to the evaporation surface. This flux is equivalent to the
sublimation capacity of 7.9 × 10−4 kg/(m2

× s) of ice. This value is much lower compared to the
Gmax value. Thus, it can be concluded that the rate-limiting factor for sublimation is heat transport
through the ice layer.

Assegehegn et al. [46], examining the dependence of the sublimation rate on the shelf temperature,
found a proportional relationship between the shelf temperature and the sublimation rate. At a pressure
of 5 Pa, an increase in temperature from −20 to −5 ◦C caused a two-fold increase in the sublimation rate,
while in the experiment conducted at a pressure of 15 Pa, an increase in the shelf temperature from −30
to −17 ◦C caused an increase in the sublimation rate from 0.08 to 0.20 g/h. These results confirmed that
heat transport through the ice layer is the rate-limiting factor for sublimation. If adequate energy is not
supplied during the sublimation period, the product temperature drops until the appropriate vapor
pressure and pressure in the chamber reach dynamic equilibrium. At this point, no net ice sublimation
is observed [46].

If the process parameters are not selected properly, the structure may collapse (porosity reduction),
which is highly unfavorable due to the reduction of the specific surface of the product. As a consequence,
the time of the second drying stage lengthens, the rehydration capacity of the product deteriorates,
and the product has a higher final water content and a poor visual assessment [20]. Moreover, it may
result in a lower product stability during storage.

It was found that the resistance to mass movement imposed by the dry layer depends not only on
the freezing conditions but also on the process parameters. For the same conditions of pressure, shape,
layer thickness, and location in the freeze-dryer chamber, the dried product resistance decreased from
1.94 to 1.37 mbar h/g with an increase in shelf temperature from −30 to −17 ◦C [46].

2.3. Second Drying—Desorption

The desorption drying process, also known as post-drying, takes place under reduced pressure
with the simultaneous heating of the product to the assumed water content, determined individually
for each raw material. At this stage, the drying rate is significantly reduced compared to the sublimation
process due to the small amount of water, high resistance to heat, and mass transport through the
porous material layer, as well as the bonding of water particles by the components of the dry substance,
especially those constituting a monolayer [67].

It is generally accepted that water exists in solid matrices in three different forms that correspond
to specific regions of the sorption isotherm [68]. In the first region corresponding to water activity
values below 0.2, water molecules form a monolayer, are tightly bound to the solid matrix through
hydrogen bonds, and are inaccessible to the reaction. In the second region, corresponding to
water activities between 0.2 and 0.5, the water is loosely bound, forming a multilayer. In this area,
water molecules no longer form hydrogen bonds with the components of the dry matter. The molecular
interactions of water–water dominate, which favors the formation of microscopic regions of condensed
water. This form of water may already constitute a solvent and reaction medium. The third form of
water corresponds to a water activity greater than 0.5. It is relatively free water, fills the capillaries,
and complies with Raoults’ law [69] in primary drying. The freeze-drying process removes water that
mainly corresponds to the first two forms of water. Free water crystallizes in the freezing process
and is removed in the first phase of drying [70]. The duration of secondary drying can make up a
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significant proportion of the process time, especially if the moisture content of the final product is
low. The final moisture content of the lyophilizate is a critical parameter, as it determines the stability
and = storage stability of the product. The final equilibrium humidity depends on the parameters of
desorption drying. Too high or too low a value of this moisture content is unfavorable; too high is
not favorable for long-term storage, too low may damage the active material. It is assumed that the
final equilibrium dry matter content should be higher than 95% [62]. For pharmaceutical products,
target dry matter contents as high as 98–99% or higher are common. At such high dry matter contents,
the water contained in the monolayer is removed [67].

Depending on the chemical composition, structure and freezing conditions, the components of the
dry substance may be in an amorphous state (always when the freezing rate is high) or in a crystalline
state. In the case of a large number of amorphous components, the water content after sublimation
drying is complete can potentially affect storage stability. Its content may be 5–20% (depending on
the solids content in the preparation) of the initial water content [67]. On the other hand, the water
content in crystalline materials after sublimation is complete is insignificant because all available water
crystallizes during the freezing stage [67].

The dry substance matrix can also absorb water that is transported from the sublimation surface
through the “dry” layer. During the desorption drying process, the heating temperature of the material
must be lower than the maximum temperature allowable for the material due to the possibility of
thermal degradation and the possibility of a transition to the rubber state. Thus, the maximum
allowable temperature results from the specifics of a given material and is determined individually.
In the case of protein drugs, the maximum allowable temperature should be lower than 40 ◦C [67,71,72],
and for food products, fruits, and vegetables, the maximum allowable temperature may reach 60–70 ◦C
or higher but always below the glass transition temperature.

The fulfilment of this condition is very important because it affects storage stability.
The physicochemical properties of the glass state (molecular mobility, viscosity, viscosity changes,
structural breakdown, crystallization, etc.) change with changing water content. When the vitreous
material is stored below its Tg, the reaction rate is lower at a low water content because the diffusion
and mobility of the reactants are limited. As the water content increases, the Tg of the formulation is
lowered to a temperature below the storage temperature. Then, the material becomes rubbery and the
mobility of the dry substance constituent molecules increases, the stability of the product to decrease.
Therefore, in this state, the bioactivity of the ingredients can significantly change. For this reason,
secondary drying significantly determines the characteristics of the freeze-dried material [68,69,73].

Regardless of the reasons, it is very important to remove any remaining water after freeze-drying
is complete. The lower the water content, the higher the glass transition temperature of the dried
product (Tg), which significantly affects its storage stability. The dried product should be stored
at a temperature well below its Tg to avoid structure collapse and flow. Residual water acts as a
plasticizer and increases the mobility of dry matter particles, facilitating various types of unfavorable
transformations. The rate of desorption is strongly dependent on the temperature. Trelea [70] found
that in the usual temperature range encountered in freeze-drying, desorption is more than three times
faster at 40 than at 10 ◦C.

During secondary drying, adsorbed (non-frozen) water is desorbed [73]. Liapis and Bruttini [74]
found that there are several mechanisms of water removal in secondary drying: These are (1) simultaneous
adsorption and desorption at the interface between the surface of pores and gas, (2) convective transport
in pores, (3) gas diffusion in pores, (4) the diffusion of water in the solid particles, and (5) the diffusion
of water on the surface of the solid. They concluded that the first three mechanisms were rate-limiting
during desorption. The pressure in the chamber is usually kept at the same level as in the first period
or slightly lower. However, to increase the desorption rate, the chamber pressure should be made as
low as possible.

Millman et al. [75] conducted research on the development of an optimization model for secondary
drying conditions (chamber pressure and shelf temperature) based on the assumed final product’s
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moisture content and the maximum allowable product temperature limits. They found that the shortest
time necessary to achieve the assumed moisture content primarily depends on the selected end criterion
of the process, including the average or maximum moisture content in the dry layer. In this study,
a different water content was noted after a certain amount of time, depending on the position of the
sample in the freeze-dryer chamber. The model developed by Sadikoglu et al. [76,77] minimized the
process duration due to the variability of the shelf temperature and chamber pressure profiles over time
within the maximum allowable product temperature limit at critical locations and the final product
moisture requirements. Both of these models assume their one-dimensional movement from the top to
the bottom of the sublimation boundary and the distribution of temperature and moisture in the porous
layer. Subsequent studies, taking the two-way movement of heat and mass into account, confirmed the
necessity to modify the desorption parameters during its duration [78,79]. An additional benefit of this
procedure is that there was less variation in moisture contents in samples taken at different locations in
the chamber. The study of Sadikoglu et al. [78] also provided information on the number and location
of samples that should be monitored in real-time to ensure product stability and quality.

Recent research on the modelling of secondary drying has been based on the use of a dynamic
desorption model as a software sensor for monitoring secondary drying. It links the model with the
measurement of the desorption rate, which allows for the determination of the residual moisture
content of the product and the kinetic parameter of desorption in real-time. From there, it is possible
to estimate, in real-time, the remaining amount of water at the end of the first drying, the change
in product moisture during secondary drying, and the time remaining to reach the target moisture
content [80,81]. Trelea [70] introduced an additional aspect to the model assumptions. Additionally,
they considered significantly different desorption kinetics for water molecules with different degrees
of association with the solid matrix, as well as the dependence of the desorption rate on temperature.
As a result, a model of the equilibrium moisture and desorption kinetics of the lyophilized preparation
of lactic acid bacteria was developed.

2.4. Methods of Determining the End of Primary and Secondary Drying

The separation mechanisms of mass and heat transport during primary and secondary drying,
as well as other methods of process intensification, indicate the necessity to identify the moment of
transition from primary drying to secondary drying. During primary drying, some of the material is
a dry layer and some is solidified water. Thus, there is no clear boundary between the first and the
second phases of freeze-drying, and both processes can occur simultaneously for a certain time [76,82].
Taking the fact that primary drying is the sublimation of the solidified solvent into account, the end of
primary drying should be considered to be the moment when the last ice crystal sublimates and only
the bound water remains in the material. By monitoring the freeze-drying process, it is possible to find
changes in the intensity of increase or decrease in the value of parameters characteristic for this process,
such as material temperature, humidity, or water vapor pressure in the freeze-dryer chamber [74].
The course of the kinetics of the loss of material mass is also changing. These dependencies are used
in the methods of determining the end of primary drying: the comparative pressure measurement
of Pirani, the capacitance manometer, the pressure rise test, product temperature or shelf surface
temperature response, and the kinetics of mass changes [20].

If there is water vapor in the chamber of the freeze-dryer, the values of the Pirani gauge—operating
on the thermal conductivity principle—are higher than the readings of the capacitive gauge,
which shows absolute pressure regardless of the gas composition. The point where the Pirani
pressure begins to rapidly drop is the end of sublimation [20].

Another way to determine the end of primary drying is the pressure increase test, which relies
on checking whether sublimated water vapor from the material is still accumulating in the
freeze-dryer chamber. This can be checked by cutting off the condensation chamber for a short
time. When sublimation is not complete, the pressure in the chamber increases [20].
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The temperature of the product remains relatively constant during the primary drying phase so
long as there is ice sublimation, followed by an increase of temperature [20], but it can also mean the
overheating of the material and the melting of ice. Therefore, it is also worth controlling on-line changes
in the water content (based on mass changes) and recognizing primary drying as completed when the
water content corresponds to the multilayer capacity, determined based on sorption isotherms for a
given product.

An example of this control method is shown in Figure 3. The values of water contents, obtained after
the time after which the material temperature increased to the cryoscopic temperature both at the
surface and along the material axis, are presented on the drying rate curve. These values are also the
values at which the sublimation process is finished. If these values are much higher than the water
content corresponding to multilayer capacity for a given material, then the ice melted (Figure 3A).
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Figure 3. Kinetics of changes in the water content and material temperature measured along the
slice axis and at its upper and lower surface during the freeze-drying of 1 cm-thick apple slices.
The process was carried out at a pressure of 63 Pa and different shelf temperatures (T): (A)—T = 10 ◦C;
(B)—T = 50 ◦C: adopted from [19].

Reaching the cryoscopic temperature when the lyophilized material has a water content that is
higher than the bound water content indicates the melting of the ice (Figure 3A); meanwhile, when it is
reached with a sufficiently low water content, the process is correct (Figure 3B).

When the weight of the material does not change within 30 min, it can be assumed that the
equilibrium water content, under process condition, has been reached.
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3. Effect of Freeze-Drying Conditions of the Selected Physical Properties of Materials

The physicochemical and structural changes of food products during processing may significantly
affect the final product quality. Color changes and a lack of color stability are important problems that
occur during food treatment and storage. Additionally, processing procedures have an impact on
porosity, texture, taste, the retention of nutrients, and the sorption of materials [15]. The application
of the drying process leads to many changes in the physical, chemical, and nutritional properties of
foods [83]. Freeze-drying is a less damaging process than air-drying and spray-drying [84]. For this
reason, lyophilization is recognized as the best food dehydration method [85]. Controlling the freezing
rate, temperature level, total gas pressure, and final mean moisture content is required to obtain a
freeze-dried product with adequate quality [84].

3.1. The Shelf Temperature

The process parameters of freeze-drying may significantly affect many quality attributes of foods
and other materials subjected to this kind of dehydration. The temperature of the heating plate is
one of the parameters that plays an important role in creation of the material structure during the
freeze-drying. Undesired changes in the material structure can be a result of inappropriate temperature
applied in the process [54]. An excessive collapse of the structure may lead to a decrease of the
freeze-drying rate during secondary drying, as well as the deterioration of many features of products
related to texture, porosity, volume, shape, stickiness, rehydration capacity, and stability [20,67].
Alves and Roos [86] showed that the appropriate conditions of the freeze-drying process have been
identified by many researchers using a method of trial and error. Food materials are different in terms
of structure, initial moisture content, and composition, and it is difficult to predict their behavior during
freeze-drying. However, Antelo et al. [87] proposed a different approach based on a combination of
dynamic modelling with the efficient and optimized off-line and on-line control of the freeze-drying
process to obtain the required quality of products.

The mechanisms of drying and pore creation, as well the stability of products, are different during
the primary and secondary stages of freeze-drying. The sublimation of ice is the longest part of the
drying process, and it consumes more energy than during secondary drying stage [6,46,88]. For this
reason, extensive work on designing the appropriate freeze-drying cycles, and especially primary
drying for different food products, has been done [20,77,88,89].

Malik et al. [88] applied a different shelf temperature (−20, −30, and −40 ◦C) at the primary step
of the freeze-drying of gum Arabic solutions with concentrations of 20–60%. The secondary drying
was performed at 20 ◦C with a constant chamber pressure of 0.1 mbar. The investigation showed that
the puffing effect was significant for the 60% concentration of Arabic gum in the sample when drying
occurred at shelf temperatures of −30 and −20 ◦C. The porosity of freeze-dried hydrocolloid was also
higher at the higher temperatures of the shelf during primary drying. Temperatures of −20 and −30 ◦C
were not sufficient to cool down the sample because these temperatures exceeded the melting point.

The effects of the shelf heating temperature on the quality parameter and drying time of
different freeze-dried products have been reported in the literature. Grapefruit puree was subjected to
freeze-drying at room temperature without shelf heating and at a shelf temperature of 40 ◦C. It was
observed that an increase of the shelf temperature caused a shortening of the drying time by more than
50% [16]. The traditional freeze-drying of mushroom (Cordyceps militaris) also showed a significant
reduction of the drying time of about 37% when the process temperature was increased from 40 to
70 ◦C [13]. The sublimation rate is generally higher at higher temperatures, but material dried at
excessive temperatures can collapse and lose the pore structure created by the freezing process [87].
In order to control product stability, especially during the secondary drying stage, the temperature
of the product should be limited to between 10 and 35 ◦C for heat-sensitive materials, and for less
heat-sensitive materials, the temperature can be higher than 50 ◦C [54,90]. Higher temperatures of
freeze-drying at the secondary stage accelerate the drying process because more energy is required
to remove the remaining water in the material [13,91]. However, too high a temperature may cause
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the melting of ice during the sublimation step of drying, resulting in structural changes such as
shrinkage [54,92]. The selection of a proper shelf temperature should be based on the balance between
the input and the required heat [13]. Additionally, the final quality of dried material is a crucial factor
during the design of the freeze-drying process.

Egas-Astudillo et al. [16] reported that the application of higher temperatures during the
freeze-drying of fruit puree enabled them to obtain a product with a higher quality and a lower process
cost due to reduced drying time. Raising the shelf temperature from ambient to 40 ◦C promoted a
slight increase in the porosity of freeze-dried grapefruit puree from 0.81 to 0.83. In addition, the mean
area of pores also increased. The results obtained by Egas-Astudillo et al. [16] may indicate that not
only was the structure of the material changed, but the mechanical resistance (fracture force) of the
material dried at a lower heating plate temperature was also reduced.

The physical properties describe some features of food, which are particularly important to
customers, such as the shape, volume, color, and texture of food products. The porosity of the
freeze-dried product is a significant discriminant of its quality. The pores’ size and their distribution in
the material have significant effects on the texture of foods, especially their crispness and crunchiness.
Some works on the relationship between the shelf temperature, as well as the density, shrinkage,
and porosity of freeze-dried products, have been presented in the literature [93,94]. Sabalni and
Rahman [93] noted a decreasing trend of apparent porosity and an increase of apparent density with
the increase of shelf temperature in the range from −45 to 15 ◦C for abalone, potato, and brown
date. A similar tendency was also reported by Krokida et al. [95] for freeze-dried potatoes, carrots,
and bananas. However, for freeze-dried-fruits, such as apples and yellow dates, the apparent porosity
increased with an increase of the plate temperature. The shrinkage of the material was also lower [93].
The glass transition concept, which states that significant changes in the apparent porosity (reduction
in pore formation) and the collapse of the structure occur at or close to Tg, cannot be applied to all
dried products [93,96]. The mechanism of pore formation and shrinkage during drying can be varied
for foods because of their different structure, composition, initial porosity of materials [93,97], variety,
ripeness, size, shape, pre-treatment prior to drying, and process conditions [98]. Some structures
may also be more resistant to collapse during the drying process [93]. The investigations carried out
by Sablani et al. [94] showed the applied shelf temperature of −5, −15, and −25 ◦C did not affect
the final porosity and apparent density of freeze-dried garlic. However, the study showed that the
porosity continuously increased with decreasing water content in the material during drying at a shelf
temperature of −5 ◦C, whereas at lower shelf temperatures, the general tendency was similar but a
fluctuation of porosity (drop) occurred when the critical moisture content was reached. At that stage,
it was assumed that there was no ice remaining in the dried material, and the effect of temperature on
pore formation was not observed.

The type of material and its composition may influence the shrinkage of the freeze-dried product.
The shrinkage of material did not significantly differ under the different shelf temperatures of 20, 40,
and 70 ◦C for freeze-dried apples (13%) and strawberry (8%) [15]. It was consistent with investigations
of Shishehgarha et al. [99] for freeze-dried whole strawberries under various temperatures in the range
from 30 to 70 ◦C. This study showed that the value of shrinkage was also independent of the shelf
temperature but the number of collapsed fruits increased with the heating temperature. In the case of
pear, a high shelf temperature (70 ◦C) maximally caused 12% shrinkage in the sample, but at lower
temperatures, it resulted in a decrease of this parameter to around 6%. It was concluded that the
susceptibility to shrinkage in the pear sample at high temperatures of freeze-drying could be related to
the glass transition of the pear [15].

The porous structure of dried products may affect color descriptors, especially the lightness of
material due to the presence of air voids and pores. The determination of the color parameters of
dried products is crucial because the color of the product is one of the main quality criteria evaluated
by consumers. Changes in the color of dried foods can be an indicator of the undesired thermal
degradation of many bioactive compounds.
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The effect of shelf temperature on the color of different products has been analyzed in some
publications [11,85,100,101]. Krzykowski et al. [11] applied different shelf temperatures (20, 40,
and 60 ◦C) during the freeze-drying of red pepper puree. The process time was shortened by more
than half by raising shelf temperature in the range of 20–60 ◦C. A similar tendency was observed
during the drying of whole and pulped cranberries when the temperature of the heating plate was
increased from 30 to 70 ◦C. The time of drying was shorter by about 40% [100]. The freeze-drying
of pepper puree increased its lightness and yellowness in comparison to fresh material. However,
redness decreased at 20 ◦C but increased at 40 and 60 ◦C. Generally, the long drying time of pepper at
20 ◦C and the application of a high temperature of 60 ◦C led to a decrease of the color intensity due to the
degradation of carotenoids [11]. The freeze-drying of cranberry pulp and whole fruits with increasing
shelf temperature caused an increase of the lightness, redness, and color intensity. The intensive heat
treatment caused changes in color as a result of the degradation of reddish anthocyanin pigments [100].

Hammami and Rene [101] noted that the lightness of freeze-dried skin and pulp did not change
with the increase of the heating plate temperature. However, shelf temperatures higher than 60 ◦C
caused a slight decrease in the lightness of strawberries, which can be linked to the presence of
dark brown color at the surface of the fruit. The browning of the skin led to a significant decrease
of color coordinates, which was caused by the excessive heating of products and non-browning or
Maillard reactions. Similar phenomena were observed for freeze-dried apples when the heating shelf
temperature exceeded 55 ◦C [85]. Silva-Espinoza et al. [14], during the freeze-drying of orange puree,
did not observe changes in lightness L* with an increasing process temperature from 30 to 50 ◦C,
but the chroma C* was enhanced at the higher shelf temperatures of 40 and 50 ◦C and the hue angle
decreased for temperatures below 50 ◦C.

Khalloufi and Ratti [15] investigated the color changes of apple, pear, and strawberry during
freeze-drying at shelf temperatures of 20, 40, and 70 ◦C. The color attributes did not differ significantly
for apple and pear for lower heating temperatures of 20 and 40 ◦C. Additionally, in the case of
strawberry, the increase of the b* value in comparison to raw material was caused directly by the
freeze-drying process, not by the intensity of heating. The higher temperature affected the browning of
pear and apple. The glass transition temperature was used as an indicator of possible color changes.
The highest value of Tg was observed for strawberry, whereas the lowest was observed for pear. It was
concluded that strawberry should be less sensitive to color deterioration than the pear under the
same freeze-drying conditions. Shishehgarha et al. [99] also reported that an increase of the heating
shelf temperature to 70 ◦C did not have a significant effect on the color and volume of freeze-dried
strawberry. During the freeze-drying of grapefruit puree, heating the material to 40 ◦C did not affect
the color of the final product [16]. Martínez-Navarrete et al. [12] observed that freeze-drying of a
mandarin snack preserved the orange color, which was characteristic for this type of fruit. Though the
addition of biopolymers (Arabic gum, WPI-Whey Protein Isolate) affected the color of the snack more
than increasing the shelf temperature to 40 ◦C.

Texture is one of the most important attributes in the quality evaluation of food products.
Semi-empirical models have been used to describe the mechanical properties of porous foods based
on density changes during processing [102–105]. Additionally, to predict the textural properties of
foods based on their microstructure, finite element modelling has been applied [106–108]. Apart from
mechanical properties, porosity and density are also used to characterize some texture features of dried
products [109]. The state variables (temperature, moisture, and deformation during drying), the state
of material (glassy and rubbery) and the external environment, as well as other drying conditions,
may significantly affect the final texture of dried products [105]. Numerous publications have shown
that the drying process influences the mechanical properties of different materials. Moist material
subjected to drying is frequently viscoelastic, and with the progress of the dehydration process,
the product becomes more brittle at a low moisture content [110–113].

The effect of shelf temperature on the texture of freeze-dried products can be found in a few
research studies. Silva-Espinoza et al. [14] noted that the compressed cylinders of freeze-dried orange
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puree obtained at a higher shelf temperature behaved the same as a material with higher rigidity.
Additionally, the values of the slope of the fracture curve were related to the sample resistance and
the deformation increase with raising shelf temperature. The high temperature of 50 ◦C created the
mechanical rigidity of the freeze-dried product before it fractured. It was an important feature of the
dried material because it could be related to the higher mechanical resistance of the product during
its transport.

Penetration tests were used to evaluate the texture of freeze-dried strawberries after rehydration.
It was found that the temperature of the heating plate did not have a significant influence on the
texture attributes of rehydrated strawberries [101]. A similar tendency was observed for freeze-dried
apples [85]. The minimal texture degradation of freeze-dried strawberries was observed under the
following optimal process conditions: a shelf temperature of 15 ◦C and a rate of temperature increase
of 1.6 ◦C/min or a shelf temperature of 45 ◦C and a heating rate of 0.4 ◦C/min. The application of a
low shelf temperature and a high rate of heating enabled them to maintain cell integrity. The high
temperature of a shelf with a low heating rate prevented meltdown and cell collapse [114].

The puncture test was applied to measure some mechanical properties of the freeze-dried mandarin
snack. The study showed that the heating of the shelves from room temperature to 40 ◦C had a
significant effect on texture. The fracture force and area under the puncture curve decreased, but the
number of peaks increased with an increase of the shelf temperature. The sample without biopolymer
incorporation, freeze-dried at 40 ◦C, was estimated as a crunchy product with every fragile structure,
but it was more stable during storage regarding mechanical parameters than the snack obtained at a
lower heating temperature [12]. Mawilai et al. [115] investigated the effect of shelf temperature (30, 40,
and 50 ◦C) on the texture of freeze-dried dragon fruits during secondary drying. The pulp dried at a
temperature of 40 ◦C and was characterized by the lowest hardness and the highest crispness. However,
hardness did not significantly differ for the dried peel in the case of an increase of temperature, but its
crispness increased.

The textural properties of a dried material are strongly related to its water content and water
activity [112]. Though these parameters are important for a proper evaluation of many other properties
of freeze-dried foods, it has been noticed that many investigators do not always measure and control
the values of the water content and water activity after freeze-drying. Table 1 shows the values of
water activity and water content obtained for freeze-dried materials in different operational conditions.
The water content for most of the freeze-dried products varied from 0.01 to 0.1 g/g d.m., and water
activity ranged from 0.08 to 0.330.

Table 1. Water activity and moisture content of selected freeze-dried products.

Material Initial
Moisture Content

Water Content
After Drying

Water Activity of
Freeze-Dried Product Ref.

Grapefruit puree 83.0–86.7% 0.013–0.030 g
water/g sample n/a [16]

Orange puree n/a <4% n/a [14]

Strawberry 90.8% 2% n/a [15]

Apple 86.3% <0.5% n/a [15]
n/a n/a 0.14 [116]

Garlic 73.2% 0.061–0.095 g
water/g sample n/a [94]

Arazá (Eugenia stipitata
McVaugh) paste 96.0% 0.02 kg/kg d.m. 0.08 [117]

Pear 84.3% <0.5% n/a [15]
Dragon fruit 86.5–87.5% 8.53–9.87% 0.08–0.16 [115]

Cooked rice 60.0% 1.69–2.09% n/a [118]

Hydrocolloid gels 83.6–87.5% 1.4–4.0% 0.14–0.330 [119]

n/a, not available.
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3.2. The Pressure Chamber

The application of adequate working parameters of lyophilization, including the working
pressure, may significantly affect the course of the process but also the quality of the obtained
products [12,14,101,120]). The orange puree was freeze-dried at different pressures inside the chamber
(5 and100 Pa). A significant effect of pressure on color attributes was observed. A low pressure led
to higher values of lightness L* and lower values of chroma C*. Samples dried at a higher working
pressure were darker and had a saturated color [14]. An increase of the working pressure from 12 to
100 Pa resulted in a decrease of in L*, as well as an increase of the yellowness and greenness of the
freeze-dried kiwi [121].

Udomkun et al. [122] carried out the freeze-drying of papaya slabs at three different levels
of chamber pressure and at a constant shelf temperature of 20 ◦C. All color indexes were similar
for samples dried at working pressures of 28 and 77 kPa. The application of a lower pressure of
9 kPa caused an increase of the L*, b*, and ∆E (total colour difference) values but a decrease of the
a* value. Hammami and Rene [101] also observed a decrease of the L* value at a higher pressure for
freeze-dried strawberries, and it was accompanied by a significant shrinkage of the sample. The applied
pressure during freeze-drying should be lower than 50 Pa to reduce the shrinkage of sample fruits,
such as strawberries.

The working pressure did not have an obvious effect on the apparent density, solid density and
porosity of freeze-dried papaya. A slightly higher porosity was recorded for samples dried at the
lowest pressure of 9 kPa. SEM micrographs showed that the pressure during freeze-drying had a
noticeable effect on the changes in the surface and structure of the final product. The samples obtained
at 28 kPa were characterized by a less collapsed and more homogeneous and porous structure than
papaya samples dried at 9 and 77 kPa, the structure of which contained dense dry layers and large
cavities. Oikonomopoulou, Krokida, and Karathanos [10] also observed a higher porosity and an
increase of the number of large pores in the case of the application of lower working pressure for
freeze-dried potato, mushroom, and strawberry. The bulk density of these freeze-dried materials
decreased along with the decrease of the applied pressure (from 1.5 to 0.06 mbar).

Pressure has a strong impact on the sublimation process, especially the temperature of ice
sublimation. The sublimation removal of ice creates pores and gaps with different characteristics.
Therefore, the desired porosity, density, and final water content can be obtained by manipulating the
freeze-drying parameters [10,95,123].

Structure descriptors, such as density and porosity, may characterize the texture of the dried
products. Additionally, the formation of pores and their distribution in products during drying enables
one to design the process and influences many different properties, such as the textural properties of
foods [10,96,124].

Different operating pressures had a little effect on the fracture force of dried orange puree,
although the effect was statistically significant. The authors supposed that a lower process pressure
might result in the creation of a dried product with a more fracture-resistant texture [14]. On the
contrary, Domin et al. [121] noted that a lower pressure caused a decrease of the penetration force.
The higher force recorded for the kiwi samples obtained at a higher pressure was related to the collapse
of the structure during freeze-drying. The process was carried out without the heating of the plate.
Hence, the increase of pressure caused an increase of the freeze-drying temperature, which led to the
collapse of samples.

3.3. The Freezing Rate

The freezing of materials before the sublimation process is also an important step in the creation
of freeze-dried products. The freezing rate affects the structure of frozen and dried material.

The color attributes of freeze-dried orange puree, which was frozen at a slow rate (−45 ◦C in a
conventional freezer) and a fast rate (−38 ◦C in a blast freezer), were characterized by similar mean
values. The freezing rates also did not significantly affect texture [14]. Additionally, the slow and
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quick freezing did not influence the color indexes and texture of the freeze-dried carrot samples.
However, the application of quick freezing in liquid nitrogen instead of slow freezing (a household
freezer at −15 ◦C) reduced the shrinkage of freeze-dried carrot samples from 3.2% to 2.2% [125].
The effect of the freezing rate on the properties of freeze-dried products could be related to the initial
structure and composition of materials. Genin and Rene [61] have reported that the texture, degree of
ripeness, and moisture content in plant tissue have considerable impacts on the freeze-drying process.
The loading density, the height of the product layer, the surface of the product, and condenser capacity
may also affect the freeze-drying rate [101].

Samples of apples were frozen to −25 ◦C with different rates of 0.5, 2, and 3 ◦C/min, and then they
were freeze-dried. Slow freezing reduced the drying time by 8.3% in comparison to the fastest freezing
rate. The slow rate of freezing caused damage to the cell wall, which facilitated the moisture removal.
The decrease of the cooling rate also resulted in a softer texture of apples and a higher rehydration
capacity [126].

The structure of the freeze-dried maltodextrin–agar system showed that more heterogeneous
pores were formed at freezing temperatures of −40 and −80 ◦C than at −20 ◦C [123]. The lower freezing
temperatures and higher nucleation rates created homogeneous structures with more uniform and
smaller pores [123,127,128]. The higher freezing temperatures resulted in less rapid nucleation and a
longer time of ice crystal growth, which led to the occurrence of large pores. Maltodextrin–agar gel
frozen at −80 ◦C and freeze-dried was most resistant to compression. It was stated that rapid freezing
caused crust formation. The product also had smaller pores and thinner wall membranes. In addition,
the gaps between walls were substantially limited. For this reason, the higher freezing rate caused
an increased mechanical strength of the freeze-dried materials [123]. A similar effect of enhanced
resistance to compression produced by a higher cooling rate was observed for freeze-dried alginate
gels [129].

Table 2 summarizes the different conditions (shelf temperature, pressure chamber, and freezing
temperature) applied during the freeze-drying of different products and their selected properties.
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Table 2. Parameters of lyophilization and the properties of selected freeze-dried products.

Dried Material Material Size and Form Freezing Parameters Shelf Temperature Pressure of the Chamber Drying Time Properties of Material Ref.

Abalone Cylindrical disks (2.5 cm
diameter and 0.7 cm height) −40 ◦C −45, −30, −20, −10, −5, 0,

10, and 15 ◦C 100 Pa 72 h

The increase of a shelf temperature in the range of −45–15 ◦C
caused an increase of the apparent density of dried abalone
from 372.9 to 472.1 kg/m3 and a decrease of apparent porosity
from 0.733 to 0.664.

[93]

Apple

Cylindrical disks (2.5 cm
diameter and 0.7 height) −40 ◦C −45, −30, −20, −10, −5, 0,

10, and 15 ◦C 100 Pa 72 h The increase of a shelf temperature in the range of −45–15 ◦C
caused an increase of apparent porosity from 0.876 to 0.910. [93]

Semi-circular slices (55 mm
in length, 2.2–2.5 mm thick) −25 ◦C −25 ◦C at 1st step drying,

40 ◦C at 2nd drying
20 Pa at 1st step drying,

5 Pa at 2nd drying 24 h

The moisture content was negatively correlated with
hardness of freeze-dried apples. The application of
freeze-drying resulted in a lower springiness compared to
that of the air-drying method. Additionally, the color
difference ∆E of freeze-dried apples (11.37) was lower than
that obtained for air-dried apples (21.11).

[116]

Puree—layer with thickness
of 4 mm −40 ◦C 20 ◦C 63 Pa 26 h

The apple puree freeze-dried at 20 ◦C absorbed less water
than air-dried samples. The application of freeze-drying
method enabled the obtainment of powder with a slightly
lower hygroscopicity than after microwave-drying.

[130]

Banana Cylinders with diameter of
20 mm and 8 mm height

−35 ◦C (48 h), tempered
for 1 h in liquid N2

Product temperature from
−50 to −8 ◦C 3–300 Pa 24 h

The values of the bulk density of the banana decreased after
freeze-drying from 1900 kg·m−3 to values lower than
400 kg·m−3. The values of bulk density increased (about
~30%) as the temperature of process was increased from −50
to −8 ◦C. The porosity of freeze-dried banana was the highest
at the low temperature of −50 ◦C (~0.9).

[95]

Carrot Cylinders with diameter of
20 mm and 8 mm height

−35 ◦C (48 h), tempered
for 1 h in liquid N2

Product temperature from
−50 to −5 ◦C 3–300 Pa 24 h

The values of bulk density of carrot tissue decreased after
freeze-drying from 1750 kg·m−3 to values lower than
250 kg·m−3. The bulk density values increased (about ~40%)
as the temperature of process was increased from −50 to
−8 ◦C. The porosity of freeze-dried carrot was reduced by
about 10% after drying at higher temperatures.

[95]

Coffee solutions Layer with thickness of
20 mm

1 set: −40 ◦C at 1 ◦C/min
2 set: fluctuation of

temperature between
−40 and −20 ◦C

−40 ◦C at the
primary drying,

20 ◦C at the
secondary drying

10 Pa 18 h

Samples freeze-dried with temperature oscillations (−20 and
−40 ◦C) had larger pores than material frozen at −40 ◦C.
Temperature fluctuations during freezing promoted large
crystal formation and resulted in a higher total porosity by,
on average, 18%. The application of freezing cycles led to
faster reconstruction rates.

[131]:

Dragon fruit Pieces with thickness of
1 cm

−40 ◦C fast freezing (an
air blast freezer and a
contact plate freezer)

−5 ◦C at the
primary drying,

30, 40, and 50 ◦C at the
secondary drying

40 Pa
50 h at 30 ◦C,
55 h at 40 ◦C,
60 h at 50 ◦C

The apparent densities of freeze-dried dragon fruits were
0.16, 0.19, and 0.08 g × cm−3 at the drying temperatures 30,
40, and 50 ◦C, respectively.
The hardness of dried fruit decreased from 9.26 to 4.33 N and
crispness increased from 6.83 to 10.56 with the increase of the
heating temperature.

[115]:
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Table 2. Cont.

Dried Material Material Size and Form Freezing Parameters Shelf Temperature Pressure of the Chamber Drying Time Properties of Material Ref.

Eggplant Cubes of 9 mm side −40 ◦C

1 set: −30, −15, and 0 ◦C
at 1st step drying, 20 ◦C at

2nd step drying
2 set: −30 and 0 ◦C at 1st

drying, 20 ◦C at 2nd
step drying

1 set: 10 Pa
2 set: 10, 20, and 40 Pa

1 set: 7–15.3 h
2 set: 14–20.9 h

The loss of antioxidant capacity was 49.9 and 68.6% for
freeze-dried samples dried at −30 and 0 ◦C, respectively.
The increase of drying temperature from −30 to 0 ◦C caused
the loss of ascorbic acid from 37.9 to 12.2%. Total polyphenol
content—TPC—in dried product was retained at higher
pressures. The loss of TPC was 32.5% at 40 Pa and 47.7% at
10 Pa.

[132]:

Garlic Brick shaped samples
(20 × 10 × 10 mm) −40 ◦C −5, −15, and −25 ◦C 108 Pa 72 h

The decrease of shelf temperature from −5 to −25 ◦C during
the freeze-drying of garlic resulted in a decrease of the
apparent density from 469 to 431 kg/m3 and an increase of the
shrinkage expansion between 0.44 and 0.52, as well as the
true density decreased in the range of 1534–1504 kg/m3.

[94]:

Grapefruit puree 1-cm layer −45 ◦C room temperature, 40 ◦C 9 Pa 1.5−21 h
The increase of temperature promoted an increase in the
porosity of freeze-dried puree (from 0.78 to 0.83) and a
decrease in the number of pores formed from 415to 312.

[16]:

Gum Arabic
solutions

Layer with a height of
0.5 cm −40 ◦C (at 1 ◦C/min)

−20, −30, and −40 ◦C at
primary during, 20 ◦C at

secondary drying
10 Pa 18 h

The degree of puffing was stronger for samples dried at
higher (−20 and −30 ◦C) compared to lower (−40 ◦C)
temperatures of the shelf. The primary drying temperature
did not affect the size of pores and pore distribution for
solutions with concentrations of 20, 30, 40, and 50%.
The mean pore diameter of 60% freeze-dried gum
hydrocolloid system increased from 745 to 973 µm with the
increase of shelf temperature from −40 to −20 ◦C.

[88]:

Kiwi Whole fruit (without peel) −40 ◦C n/a 12, 20, 42, 85, and 103 Pa n/a

The increase of pressure in the range of 12–100 Pa resulted in
a decrease of L* from 65.3 to 58.3, as well as a* values from
−2.7 to −6.8, and the increase of b* from 22.3 to 28.3.
The higher pressure affected the increase of penetration force
for freeze-dried kiwi fruit from 4.3 to 16.2 N.

[121]:

Lime juice Sample juice layer with a
thickness from 0.3 to 1.1. cm −30 ◦C −61 ◦C 3 Pa 1–10 h

The freeze-drying of lime juice did not affect acidity
(4.10–4.15 g citric ac./100 mL), antioxidant activity
(17.5–18.3 mg ascorbic ac./100 mL), and carotenoids content
(0.61–0.64 mg ·100 mL-). Fresh juice and reconstituted
freeze-dried juice did not significantly differ in relation to
sensory attributes.

[133]:

Loco
(Concholepas
concholepas)

(boiled)

Samples 1 × 1 × 0.5 cm
Cubes 0.5 side cm −25 ◦C n/a

6,7 Pa and
9.6·10−4 Pa (AFD-

atmospheric
freeze-drying)

6.7−12 h

The pore surface of freeze-dried loco obtained at a low
pressure was 0.32 m2 pores/m2, while after AFD, this value
was half (0.16 pores/m2 material surface). The water
absorption capacity of the freeze-dried sample was higher
than 1.0 at a low pressure, while at AFD conditions, it was
lower than 1.0.

[134]:

Maltodextrin
sugar–agar
solutions

Cube
(10 × 10 × 10 mm) samples

−20, −40, and −80 ◦C,
tempered at −80 ◦C

before drying
Room temperature 10 Pa 48 h

The pore size and thickness of pore membranes of the
freeze-dried system were reduced with a decrease of the
freezing temperature. The system frozen at −80 ◦C was more
resistant to compression than samples frozen at −40 and
−20 ◦C.

[123]:
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Table 2. Cont.

Dried Material Material Size and Form Freezing Parameters Shelf Temperature Pressure of the Chamber Drying Time Properties of Material Ref.

Orange puree Puree, layer with a
thickness of 0.5 mm

−45 ◦C—slow rate: a
conventional freezer
−38 ◦C—fast rate—a

blast freezer

30, 40, and 50 ◦C 5 and 100 Pa
25 h at 30 ◦C,
7 h at 40 ◦C,
6 h at 50 ◦C

The color attributes L, C*, and h* of freeze-dried orange puree
were affected by working pressure. The lower values of L*
and higher C* were characteristic for samples dried at the
high pressure of 100 Pa. The lower range of h* values
between 80.3 and 82.6 was registered for the samples dried at
higher pressure (100 Pa) and the temperature of the shelf
below 50 ◦C. The lower pressure of 5 Pa and a higher
temperature of 50 ◦C created more resistant to fracture a
freeze-dried sample. The lower degradation of vitamin C was
observed for samples dried at 40 and 50 ◦C than at 30 ◦C.

[14]:

Pepper Samples and puree with
layer of 5 mm −25 ◦C 20, 40, and 60 ◦C 63 Pa 290 min (60 ◦C)

900 min (20 ◦C)

The red pepper freeze-dried at higher temperature 60 ◦C was
characterized by lower values of L* (lightness =35.5),
a* (redness =27.6), and b* (yellowness =23.8) than the sample
dried at 20 ◦C (L* = 39.2, a* = 34.8, and b* = 27.0). Additionally,
the increase in drying temperature caused a decrease of the
total phenolic content (from 12.6 to 11.8 mg GAE/g d.m.) and
antioxidant activity (EC50- concentration required to obtain a
50% antioxidant effect) from 21.7 to 26.1 mg d.m./mL).

[11]:

Potato Cylindrical disks (2.5 cm
diameter and 0.7 height) −40 ◦C −45, −30, −20, −10, −5, 0,

10, and 15 ◦C 100 Pa 72 h

The increase of a shelf temperature in the range from
−45–15 ◦C caused an increase of apparent density of dried
potato from 204.2 to 452.2 kg ×m−3 and a decrease of
apparent porosity from 0.863 to 0.698.

[93]

Rice (cooked) The layer of 1.8 mm −18 ◦C 90 ◦C 80 Pa (initial) and 20 Pa
(final) 12 h

The freeze-dried rice had a better rehydration capacity than
the freshly cooked sample. Freeze-drying caused the
extensive breakage of the grains. The extent of breakage was
dependent on the cooking method and was lower in
freeze-dried parboiled rice (3.6–36.9%) than non-parboiled
grain (50%).

[118]:

n/a
−30 ◦C for 72 h,

tempered for 1 h in
liquid N2

n/a 4, 13, and 125 Pa 24 h

The bulk density of freeze-dried rice decreased from ~0.9 to
~0.8 for kernels boiled for 4 min and from ~0.6 to ~0.5 for
kernels boiled for longer than 20 min with the decrease of
applied pressure from 125 to 4 Pa. The porosity of dried
kernels was the highest at low pressures.

[10]:

Strawberry Whole fruits and slices (5
and 10 mm thick) −40 ◦C 30, 40, 50, 60, and 70 ◦C n/a 12–48 h

The color of strawberries and the volume reduction of fruits
did not change in case of different drying temperatures.
The percentage of collapsed samples exceeded 20% at drying
temperatures higher than 50 ◦C.

[99]:

Yellow dates Halves −40 ◦C −45, −30, −20, −10, −5, 0,
10, and 15 ◦C 100 Pa 72 h

The increase of a shelf temperature in the range from
−45–15 ◦C caused a decrease of the apparent density of dried
dates from 485.1.2 to 205.5 kg·×m−3, as well as an increase of
apparent porosity from 0.709 to 0.864.

[93]:

n/a, not available.
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4. Summary and Conclusions

The cited literature on the analysis of the phenomena occurring during the entire freeze-drying
process comes mainly from the area of pharmacy. Maintaining the biological activity of this group
of products, both after the process and after the storage period, is the overriding goal. Therefore,
many studies concerning the influence of the individual stages of freeze-drying on the final activity
of the product have been carried out. Therefore, a modern technologist should make every effort to
preserve not only substances that are noticeable by the consumer but also vitamins and other bioactive
substances, often very labile, that are degraded during processing. The presented publications also
showed the effect of process conditions on the physical properties of freeze-dried foods. This has been
analyzed by some authors, mainly concerning the shrinkage and porosity of dried material. The texture
of a freeze-dried product obtained at different parameters of the process, such as the shelf temperature,
chamber pressure, and the freezing rate, were investigated in a small range. Texture is a major feature
assessed by consumers. This was surprising because the textural properties of food are strongly linked
with the sensory analysis of food products. More publications can be found in regard to the color of
the dried material. This is also important because changes in color during the freeze-drying process
provide some information on the degradation of bioactive compounds such as antioxidants.

It should be understood what changes a selected material is subject to at each stage of freeze-drying,
and the parameters of each stage should be selected based on the specificity of a raw material.
The selection of proper conditions for the freeze-drying of a food material should be performed based
on the characteristics of raw materials, such as composition (water content, the presence of sugars,
proteins, and bioactive compounds), type of material (tissue, liquid material, semi-liquid material,
and gel), and the glass transition temperature of foodstuff. The selection of freeze-drying parameters
is sometimes arbitrary, but it should be based on preliminary research because each food material is
different, and it is not possible to use some freeze-drying parameters for all types of food. The control
of the heat supply is necessary to not exceed the melting point, which may lead to material degradation.
Such control will ensure shorter drying time and the more uniform concentration of bound water at
the end of secondary drying. This is a way of achieving a high-quality product.
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