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The complement system is a crucial defensive network that protects the host against
invading pathogens. It is part of the innate immune system and can be initiated via three
pathways: the lectin, classical and alternative activation pathway. Overall the network
compiles a group of recognition molecules that bind specific patterns on microbial
surfaces, a group of associated proteases that initiates the complement cascade, and
a group of proteins that interact in proteolytic complexes or the terminal pore-forming
complex. In addition, various regulatory proteins are important for controlling the level of
activity. The result is a pro-inflammatory response meant to combat foreign microbes.
Microbial elimination is, however, not a straight forward procedure; pathogens have
adapted to their environment by evolving a collection of evasion mechanisms that
circumvent the human complement system. Complement evasion strategies features
different ways of exploiting human complement proteins and moreover features different
pathogen-derived proteins that interfere with the normal processes. Accumulated, these
mechanisms target all three complement activation pathways as well as the final
common part of the cascade. This review will cover the currently known lectin pathway
evasion mechanisms and give examples of pathogens that operate these to increase
their chance of invasion, survival and dissemination.

Keywords: innate immune system, immune evasion, complement, complement inhibition, mannose-binding
lectin, ficolin, collectin, MASP

INTRODUCTION

To survive within the host, successful pathogens have evolved numerous effective evasion
strategies to overcome attacks from the immune system. The innate immune system, including the
complement system, is the host’s first line of defense against foreign pathogens and is therefore
crucial in determining outcome of a pathogen-host confrontation. The complement system
consists of a network of plasma proteins that trigger a proteolytic cascade upon activation (Ricklin
et al., 2010). Three pathways initiate complement activation: the lectin (LP), classical (CP) and
alternative (AP) pathways. The LP is initiated when the pattern recognition molecules (PRMs)
Mannose-Binding Lectin (MBL), ficolins (ficolin-1, -2 and -3) or collectin-10/-11 recognize
carbohydrate ligands that are specifically present on microbial surfaces (Figure 1A) (Garred
et al., 2016). The LP PRMs are soluble multimeric molecules consisting of a collagen-like
domain and a carbohydrate-binding domain. Similar to C-type lectin receptors expressed on the
myeloid cell surface, the ligand specificities of LP PRMs include carbohydrates such as mannose,
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N-acetylglucosamine and β-glucan (Dambuza and Brown, 2015;
Garred et al., 2016). The PRMs form a complex with associated
serine proteases named MASP-1, -2 and -3 that are activated
upon pathogen recognition. These complexes catalyze C4 and
C2 cleavage, leading to C3 convertase (C4b2a) formation.
The C3 convertase cleaves C3 into the opsonin C3b and the
anaphylatoxin C3a. Activation of C3 also leads to downstream
formation of the C5 convertase (C4b2a3b) which cleaves C5 into
the anaphylatoxin C5a and the fragment C5b; the latter attach to
the pathogen surface and initiates the terminal membrane attack
complex (C5b-9). The CP is activated when the complement
protein C1q recognizes antigen-antibody complexes on foreign
surfaces and its associated serine proteases cleave C4 and C2 to
generate the C3 convertase. The AP is activated by spontaneous
hydrolysis of C3 and through a C3-driven amplification loop
leading to formation of the alternative C3 convertase. Once the
C3 convertase is formed, all subsequent steps are common for
the three activation pathways. Regardless of activation mode,
the cascade of events leads to elimination of the intruder by
formation of cleavage products that function in opsonization and
lysis of the pathogen as well as generation of an inflammatory
response (Ricklin et al., 2010).

As a countermove, several pathogens possess efficient
mechanisms to avoid these defensive strategies from the host, and
many diverse pathogens share common general mechanisms to
avoid complement attack (Lambris et al., 2008; Zipfel et al., 2013;
Garcia et al., 2016). These evasion mechanisms can counteract
different events in the entire complement system, but this review
will focus on the mechanisms that interfere with activation of the
LP, i.e., mechanisms that interact with steps leading to formation
of the C3 convertase by LP (Figure 1B). The following sections
will provide an overview of mechanisms that involve; avoiding LP
recognition molecules, exploiting LP components and preventing
C3 convertase assembly.

AVOIDING LP RECOGNITION
MOLECULES

Masking of PAMPs
The surface structure of a pathogen provides a signature for
recognition by the host, e.g., MBL and ficolins recognize
pathogen associated molecular patterns (PAMPs) on the
microbial surface, which lead to LP complement activation.
Accordingly, one evasion strategy employed by pathogens is
to camouflage or alter the surface of the microbe (or the
infected cell) in order to hide from the host surveillance
systems (Figure 1B (1)). This strategy is used by certain
Klebsiella pneumoniae strains that can alter their capsular
composition to prevent recognition by the LP (Sahly et al.,
2009). It was shown that Klebsiella-induced respiratory burst
in phagocytes occurs via AP and LP. However, Klebsiella
serotypes that lack expression of capsular polysaccharides
containing mannobiose or rhamnobiose, which are recognized
by LP PRMs, induce lower respiratory burst in phagocytes
than those expressing the glycoepitopes. Additionally, these
serotypes are more likely to evade intracellular killing by

phagocytes. Therefore, lack of these glycoepitopes benefits the
pathogen.

Surface Expression of Decoy Proteins
Another strategy utilized by pathogens to avoid LP complement
activation is to express a protein on its surface that binds directly
to and inhibit the LP recognition molecules (Figure 1B (2)).
One example of this type of LP inhibitor is found in human
astroviruses (HAstVs); a coat protein composing the viral capsid
of the virus binds to MBL and thereby inhibits activation of LP on
mannan (Hair et al., 2010). HAstV Coat Protein binds to wildtype
MBL, but not to a variant of MBL mutated in a lysine residue
(Lys55) critical for binding to MASP-2. Hence, it appears that
Coat Protein blocks the serine protease binding region of MBL,
which interrupts the normal association of MBL with MASP-2.

A somewhat similar LP inhibitory mechanism is employed by
the intracellular parasite Trypanosoma cruzi, the causal agent of
Chagas’ disease (Ferreira et al., 2004; Sosoniuk et al., 2014). First
it was reported that T. cruzi calreticulin (TcCRT), a chaperone
molecule that translocates from the ER to the parasite surface,
binds specifically to the collagen-like domain of MBL resulting
in impaired MBL-binding to its ligand mannose. However, the
impaired ligand binding of MBL caused by TcCRT did not induce
any functional consequence in LP activation (Ferreira et al.,
2004). Later it was reported that TcCRT also binds to the collagen-
like domain of another LP PRM, ficolin-2, resulting in inhibition
of ficolin-2 mediated LP activation, although the interaction did
not impair the ligand-binding capacity of ficolin-2 (Sosoniuk
et al., 2014). Whether a direct TcCRT-MASP interaction takes
place, with or without release of the MASPs, was not investigated.
Nevertheless, these data indicate that T. cruzi uses TcCRT to
inhibit LP activation as a survival strategy.

Secretion of Decoy Proteins
Pathogens can also utilize secreted proteins to inhibit LP
activation (Figure 1B (2)). One example of a virus-encoded
inhibitor is the Flavivirus non-structural protein 1 (NS1); a
glycoprotein secreted from dengue virus (DENV) that binds
MBL (Thiemmeca et al., 2016). In the absence of NS1 MBL
binds directly to DENV and prevents attachment and entry
of virus to host cells. However, soluble NS1 is released
from DENV-infected cells together with DENV virions and
the competitive binding of NS1 to MBL protects the virus
from MBL-mediated neutralization, independent of complement
activation.

Other secreted pathogen-derived LP PRM inhibitory proteins
include the scabies mite inactivated protease paralogs (SMIPPs).
Scabies mites feed on epidermal protein and the SMIPPs are a
family of catalytically inactive serine proteases secreted by the
mites. The SMIPPs inhibit all three complement pathways and
their inhibitory action is due to binding of C1q, properdin and
MBL (Bergström et al., 2009). Specifically two SMIPPs, D1 and I1,
bind directly to MBL (but not to MASPs) and inhibit downstream
activation (Reynolds et al., 2014), but their mechanism of action
is different; binding of D1 to the MBL:MASP complex releases
MASP-2 from the complex, whereas binding of I1 does not.
Regardless of the mechanism, both molecules seem to provide
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FIGURE 1 | Activation and evasion of lectin pathway (LP) of complement. (A) The LP is activated when the pattern recognition molecules (PRMs)
Mannose-Binding Lectin (MBL), ficolins or collectin-10/-11 recognize pathogen associated molecular patterns (PAMPs) on microbial surfaces. Pathogen recognition
activates the PRM-associated serine proteases, MASPs, that catalyze C4 and C2 cleavage, leading to C3 convertase (C4b2a) formation. The C3 convertase cleaves
C3 into the opsonin C3b and the anaphylatoxin C3a. Activation of C3 also leads to downstream formation of the C5 convertase (C4b2a3b) which cleaves C5 into
the anaphylatoxin C5a and the fragment C5b. Attachment of C5b to the pathogen surface initiates formation of the lytic terminal membrane attack complex (C5b-9).
The functions of these generated cleavage products include opsonization and lysis of the pathogen as well as generation of an inflammatory response. Complement
inhibitory proteins like C1-INH and C4BP prevent excessive complement activation on host cells. (B) Microorganisms have developed multiple ways to evade
complement actions and the mechanisms known to interfere with LP activation are: (1) masking of the PAMPs and thus avoiding being recognized by PRMs, (2)
surface expression or secretion of proteins that bind and inhibit LP PRMs by disruption of the PRM:MASP complex and/or by impairment of PRM ligand-binding, (3)
secretion of proteases that cleave and destruct LP components, (4) recruitment of the host’s complement inhibitory proteins; C1-INH that inhibits the MASP activity
and C4BP that inactivates C4b, (5) utilization of LP components for voluntary opsonization by intracellular pathogens, (6) prevention of C3 convertase assembly by
hijacking C2 via a surface expressed protein or by blocking the C2 binding-site on C4b via a secreted protein.
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a favorable situation for the mite, in terms of avoiding LP
activation.

An alternative strategy to avoid LP recognition is when a
vector-borne pathogen co-opts a vector protein with inhibitory
action on LP. Borrelia burgdorferi, the Lyme disease agent, is
transmitted to vertebrates by ticks during the blood meal. In
order to suppress the immune system of the host, ticks secrete
salivary proteins at the bite-site. Among these proteins is the
Tick Salivary Lectin Pathway Inhibitor (TSLPI) (Schuijt et al.,
2011). As implied by its name, TSLPI impairs complement-
dependent killing through specific inhibition of the LP, which
benefits B. burgdorferi. Although CP and AP have shown to be
important for B. burgdorferi elimination, neither is inhibited by
TSLPI. The inhibitory effect on LP appears to be by prevention of
MBL ligand binding rather than impairment of MASP-2 activity.
Deglycosylation of TSLPI decreases the inhibitory effect of the
protein, suggesting that it binds to the carbohydrate recognition
domains of MBL. In addition, TSLPI reduced ficolin-2 ligand
binding, thereby inhibiting complement activation.

Enzymatic Cleavage of PRMs
Pathogen-derived proteases degrade complement components
into smaller non-functional fragments (Figure 1B (3)). Evidence
of such proteases that cleave LP PRMs comes from Tannerella
forsythia, the main cause of periodontitis. T. forsythia, produces
two metalloproteinases named Karilysin and Mirolysin that
degrade MBL, ficolin-2, ficolin-3 and C4, thereby inhibiting LP
(and CP) (Jusko et al., 2012, 2015). T. forsythia mutants lacking
the two proteases show reduced survival in serum, indicating
that complement inactivation is a crucial survival strategy for this
pathogen (Jusko et al., 2015).

EXPLOITING LP COMPONENTS

Recruiting Natural Human Complement
Inhibitors
Some microorganisms have evolved an ability to recruit
natural human complement inhibitors to their surface and
thus mimic the way host cells prevent excessive complement
activation (Figure 1B (4)). The known human inhibitors
affecting the LP are C1-inhibitor (C1-INH), C4b-binding
protein (C4BP), MBL/ficolin/CL-associated protein-1 (MAP-1)
and small MBL-associated protein (sMAP) (Schmidt et al., 2016).
Besides, a high degree of overlap between complement and
coagulation means that coagulation inhibitors can affect LP,
e.g., anti-thrombin inactivation of MASP-1 and -2 (Presanis et al.,
2004).

Escherichia coli and Bordetella pertussis are examples of
pathogens that recruit and utilize C1-INH to evade complement
(Lathem et al., 2004; Marr et al., 2007). C1-INH was discovered as
an inhibitor of the C1 complex (C1qr2s2: C1q and its associated
proteases), but it also targets LP complexes consisting of PRMs
and MASPs. Thus, if a pathogen manipulates C1-INH it will
probably disturb both pathways if these are active.

C4b-binding protein works as a cofactor in cleavage and
inactivation of C4b and C3b and many pathogens exploit

C4BP as part of their survival strategy, which has been
thoroughly described in previous reviews (Blom and Ram,
2008; Hovingh et al., 2016). Leptospira interrogans binds
C4BP via its surface molecule Lsa23 and induce C4b and
C3b degradation (Siqueira et al., 2016) (Figure 1B (4)).
Interestingly, Lsa23 is also able to attract plasminogen, which
after activation into plasmin was shown to directly cleave C4b
and C3b (Siqueira et al., 2016). This demonstrates that cross-
talk between complement and coagulation also exists in immune
evasion.

Utilizing LP Components to be
Phagocytized
Leishmania is a family of parasites transferred to humans
via sand flies causing visceral and cutaneous leishmaniasis.
Leishmania parasites can survive inside human macrophages
and it has therefore been of interest to identify molecules
involved in the interaction between the two. MBL was suggested
as a candidate because (i) MBL binds to Leishmania (Green
et al., 1994) (ii) it has been speculated whether some degree
of positive selection for low MBL individuals exist since a
high frequency of variant alleles causing lowered MBL levels
are sustained in many populations – the hypothesis being
that MBL mediates phagocytosis of pathogens able to reside
inside phagocytes (Garred et al., 1994). Case-control studies of
visceral leishmaniasis have concluded that the risk of infection
is decreased in individuals with genotypes associated with low
MBL levels (Alonso et al., 2007; Mishra et al., 2015), whereas a
study of cutaneous leishmaniasis showed the opposite (Araujo
et al., 2015). Increased MBL-driven macrophage uptake was
not confirmed in the visceral leishmaniasis studies; hence, it is
not clear if MBL acts as a direct opsonizer or if it mediates
downstream C3b deposition (Figure 1B (5)). A third hypothesis
has also been proposed: in vitro experiments have shown that
ingestion of MBL-opsonized L. chagasi stimulates macrophages
to secrete more TNF-α and IL-6 than non-opsonized parasites.
This MBL-mediated secretion was hypothesized to guide the
subsequent T-cell development in a parasite-favorable direction
(Santos et al., 2001). On the contrary, a study of Blastomyces
dermatitidis showed that MBL opsonization downregulated
the TNF-α secretion by macrophages and in this case a
downregulation of TNF-α was regarded as an advantage for
the pathogen (Koneti et al., 2008). Hence, consequences from a
pathogen attack/immune response can be difficult to interpret as
the same immune response has different effects depending of the
pathogen.

Mycobacterium tuberculosis also binds MBL (Bartlomiejczyk
et al., 2014) and has developed a strategy of hiding inside
macrophages by preventing lysosomal degradation (Flynn and
Chan, 2003). Case-control studies of tuberculosis infection have,
however, pointed in different directions; some show that MBL
increases susceptibility (Hoal-Van Helden et al., 1999; Søborg
et al., 2003; Selvaraj et al., 2006) and others show that MBL is
protective (Capparelli et al., 2009; Chen et al., 2015; Liu et al.,
2016) or insignificant (Chalmers et al., 2015). The reason for
the discrepancy could perhaps be found in the differences of
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assessing MBL genotypes and timing of the blood sampling
for measuring MBL serum levels. Hence, the role of MBL in
tuberculosis remains an open question.

Also human immunodeficiency virus (HIV) has been
speculated to use voluntary opsonization. Like all viruses HIV
utilizes the transcriptional machinery of the host cell to amplify
its genetic material. Complement activation on HIV mediates
deposition of C3b, which leads to phagocytosis (Thieblemont
et al., 1993; Bajtay et al., 2004) and because of MBL’s ability
to bind and activate complement on HIV, MBL may enhance
infection (Haurum et al., 1993; Saifuddin et al., 2000). A case-
control study have shown that low MBL levels are associated with
delayed AIDS onset (Maas et al., 1998) and the same has been
shown for MASP-2 (Boldt et al., 2016). Paradoxical, the latter
study also showed that the risk of getting the initial HIV infection
was increased with low MASP-2 levels (Boldt et al., 2016). The
stage of disease probably determines whether these LP molecules
represent an advantage or disadvantage for the host (Prohászka
et al., 1997) and perhaps explains why other studies have found
MBL to be a protective factor against HIV (Garred et al., 1997;
McBride et al., 1998).

PREVENT C3 CONVERTASE ASSEMBLY

Hijacking of C2
The parasites Schistosoma and Trypanosoma express a surface
protein that enables them to avoid complement attack by LP and
CP (Inal and Sim, 2000; Cestari et al., 2008). The molecule was
first described under the name sh-TOR (Inal, 1999), but is now
known as Complement Receptor Inhibitor Trispanning (CRIT).
CRIT binds C2 via its extracellular domain and thereby hinder
C2 binding to C4b, thus compromising C3 convertase (C4b2a)
formation (Figure 1B (6)). CRIT is an example of molecular
mimicry as it has been reported that CRIT binds C2 with a
domain homologs to a region on human C4b (Inal and Schifferli,
2002). Both LP and CP are disrupted when C2 is hijacked, but
T. cruzi specifically evades LP since complement on T. cruzi is
shown to predominantly be activated via this pathway (Evans-
Osses et al., 2013).

Blocking of C4b
The bacteria Staphylococcus aureus causes severe diseases like
toxic shock syndrome and includes methicillin-resistant S. aureus
(MRSA) strains. S. aureus has a palette of evasion mechanisms
and possibly one is to reduce the LP and CP activity using
a protein called extracellular adherence protein (Eap). Eap
binds C4b and blocks assembly of the C3 convertase C4b2a
(Woehl et al., 2015) (Figure 1B (6)). After secretion, a fraction
of Eap rebinds S. aureus, but it is the fluid phase Eap that
forms complexes with C4b. In fact, experiments showed that

only exogenously added Eap reduced opsonization/phagocytosis
and S. aureus were not more susceptible to phagocytosis after
knocking out endogenous Eap (Woehl et al., 2015). This
questions whether the purpose of Eap is to inhibit LP and CP.
It has been shown that patients with S. aureus infections have
high titers of anti-Eap antibodies confirming the importance
of the protein (Joost et al., 2011), but Eap is a multifaceted
protein with many functions in S. aureus virulence, which
can explain the reported antibody titers (Harraghy et al.,
2003).

A functional equivalent to Eap named complement interfering
protein (CIP) is secreted by Streptococcus agalactiae, which is a
bacterium that can be transmitted from mother to child during
pregnancy and cause severe neonatal disease. The amino acid
sequence of CIP is 15% identical to Eap and the function of
CIP is also to bind C4b and obstruct C3 convertase formation
(Pietrocola et al., 2016).

CONCLUDING REMARKS

Evasion mechanisms are found to interfere with different steps
of the LP cascade, from PRMs to C3 convertase formation. It
is a complex field as immune evasion and protection by the
host immune system sometimes represent two sides of the same
coin, e.g., MBL mediated opsonization. Evolution has equipped
microorganisms and humans with neutralizing and utilizing
countermoves against one another, but some microorganisms are
one step ahead, which makes them pathogenic. These are the
mechanisms important to investigate and probably more ways
of evading LP will be discovered in the near future. Studies on
mechanisms of immune evasion and complement inhibition will
provide pivotal insight into host-pathogens confrontations and
hopefully lead to better treatment for various human infectious
diseases.
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