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Spiking neural networks (SNNs) have attracted many researchers’ interests due to
its biological plausibility and event-driven characteristic. In particular, recently, many
studies on high-performance SNNs comparable to the conventional analog-valued
neural networks (ANNs) have been reported by converting weights trained from ANNs
into SNNs. However, unlike ANNs, SNNs have an inherent latency that is required to
reach the best performance because of differences in operations of neuron. In SNNs,
not only spatial integration but also temporal integration exists, and the information is
encoded by spike trains rather than values in ANNs. Therefore, it takes time to achieve
a steady-state of the performance in SNNs. The latency is worse in deep networks
and required to be reduced for the practical applications. In this work, we propose a
pre-charged membrane potential (PCMP) for the latency reduction in SNN. A variety of
neural network applications (e.g., classification, autoencoder using MNIST and CIFAR-
10 datasets) are trained and converted to SNNs to demonstrate the effect of the
proposed approach. The latency of SNNs is successfully reduced without accuracy loss.
In addition, we propose a delayed evaluation method (DE), by which the errors during
the initial transient are discarded. The error spikes occurring in the initial transient is
removed by DE, resulting in the further latency reduction. DE can be used in combination
with PCMP for further latency reduction. Finally, we also show the advantages of the
proposed methods in improving the number of spikes required to reach a steady-state
of the performance in SNNs for energy-efficient computing.

Keywords: spiking neural networks, low-latency, fast inference, pre-charged membrane potential, delayed
evaluation

INTRODUCTION

In recent years, analog-valued neural network (ANN) has achieved the great success in various
fields such as image recognition, natural language processing, autonomous vehicle, etc. (LeCun
et al., 2015; Schmidhuber, 2015; Li et al., 2015; Chen et al., 2015; Krizhevsky et al., 2017).
Nevertheless, due to the enormous power consumption required for inference, interests in new
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types of neural networks have been developed (Han et al., 2015;
Hubara et al., 2016; Yang et al., 2017; Cao et al., 2015; Hubara
et al., 2017). Spiking neural network (SNN) based on more
biologically plausible neuron models has been considered as
the third generation of artificial neural network (Maass, 1997;
Ghosh-Dastidar and Adeli, 2009; Paugam-Moisy and Bohte,
2012). Since SNN is an event-driven system where a neuron
updates its state only when there is a spike, it is promising
especially when implementing in neuromorphic hardware due
to its high energy-efficiency (Indiveri et al., 2015; Merolla
et al., 2014; Seo et al., 2011); however, SNN has not been
widely used because of the lack of learning algorithms that
can achieve high performance comparable to ANN (O’Connor
and Welling, 2016; Tavanaei et al., 2018; Ponulak and Kasiński,
2011; Iakymchuk et al., 2015). Recently, many studies on
spiking neural networks (SNNs) have achieved almost the same
performance as ANNs by mapping the trained weight from
ANNs to SNNs (Diehl et al., 2015; Rueckauer et al., 2017).
In evaluating the performance of SNNs, not only accuracy
but also latency is of great importance (Diehl et al., 2015;
Rueckauer and Liu, 2018; Hu et al., 2018; Sengupta et al.,
2019). Unlike ANN where outputs are obtained as soon as
inputs are applied, there is the latency for SNN to achieve the
best performance because a signal is transmitted only when
a spike is generated (Webb and Scutt, 2000; Diehl et al.,
2015; Stromatias et al., 2015; Rueckauer et al., 2017 Amir
et al., 2017). That is, in order for a neuron in a certain
layer to fire, synaptic integration and spike generation must be
carried out sequentially in all the preceding layers, resulting
in the latency. One more thing causing the latency is that
information is encoded by rate-based coding in most SNN
models. Thus, it takes time for spikes to represent the equivalent
precision to ANN’s activations. The latency of SNN models
where information is encoded by other than rate-based coding
such as temporal coding, phase coding, and etc., may be short
compared with that of models using rate-based coding (Gütig
and Sompolinsky, 2006; Ponulak and Kasiński, 2010; Zhang
et al., 2018; Zenke and Ganguli, 2018). However, the latency is
inevitable in SNN regardless of the spike encoding method, and
it can be worse as the scale of network increases. Performing
inference operations over sufficiently long time will result in
high accuracy, but it entails large power consumption and
slow inference speed. In order to utilize SNNs in practical
applications, therefore, it is important to achieve high accuracy
within a short time. Neil et al. (2016) have reported algorithms
for low-latency SNNs using on rate-based coding, but it was
an applicable method at training-level. For SNNs using rate-
based coding, latency reduction method at inference-level has
not been reported.

In this paper, we propose a pre-charged membrane potential
(PCMP) for fast inference in SNN by which a membrane
potential is charged to a certain level prior to the beginning
of the inference operation. PCMP reduces an SNN error
at the early timesteps by inducing the earlier firing of the
first spike, so it can improve the latency until the best
performance is achieved. We also introduce a technique to
achieve additional latency reduction by discarding some spikes

occurring at the initial timesteps, referred as a delayed evaluation
(DE). Spikes that occur at the initial timesteps are likely
to contain inaccurate information; therefore, paradoxically,
adding a deliberate delay in the inference operation results
in the latency reduction. The feasibility of the proposed
methods is verified by model equations of SNNs. Then, we
demonstrate the effect of the proposed methods using classifiers
and autoencoder for image compression and decompression.
Moreover, the reduction of the latency can lead to a less
synaptic operation required to reach the steady-state of
the performance. We show the energy efficiency of the
proposed methods in the neural network applications. All
the SNN simulations in this work are conducted by PyTorch
(ver. 1.0.0).

MATERIALS AND METHODS

Overview of the Proposed Methods
In the conventional analog-valued neural network (ANN),
a neuron corresponding to an activation function performs
summation of signals multiplied by weights from synapses
connected in parallel, which denotes spatial integration
(Rosenblatt, 1958). Since the concept of time is excluded
in ANN, the output is obtained as soon as the input is
applied. On the contrary, there is the latency to achieve
the best performance in SNN caused by the following two
reasons: (1) neuron carries out temporal integration as well
as spatial integration, so the synaptic integration and spike
generation must be carried out sequentially in all preceding
layers to get the output spikes, and (2) unlike ANN where
the value of activation represents information, the value is
represented by the number of spikes per given timespan
in SNN models using rate-based coding, so that it takes
time to obtain a precision comparable to that of the ANN
activation (Cardarilli et al., 2013; Rullen and Thorpe, 2001;
Thorpe et al., 2001).

The latency is an inherent issue of SNNs, so it can
occur regardless of the implementation method; In order to
demonstrate the effectiveness of this work, however, we utilize
an ANN-to-SNN conversion method since it is one of the
most effective way to implement high-performance SNNs.
The ANN-to-SNN conversion method is based on one-to-one
correspondence between an ANN neuron and a spiking neuron,
so a ReLU activation can approximate a firing rate of a spiking
neuron (Rueckauer et al., 2017; Hu et al., 2018). The ReLU
activation of ANN for i-th neuron in layer l is defined as,

al
i = max

0,

Ml−1∑
j=1

wl
ija

l−1
j + bl

i

 , (1)

where Ml is the number of neuron in layer l, wl
ij is weight

from j-th neuron in layer l− 1 to i-th neuron in layer l, and
bl

i is bias. For layer l = 0, a0
i corresponds to the input. Based

on the model equations of SNN using rate-based coding in the
previous studies, the firing rate rl

i of the i-th neuron in layer l
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can be expressed as a function of time t and the initial membrane
potential V l

i (0)(Hwang et al., 2020).
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i (0)
)
=

N l
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(
t, V l

i (0)
)
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j

(
t, V l

i (0)
)
+

rmaxbl
i −

V l
i (t)− V l

i (0)

t

]
. (2)

The definitions of symbols are summarized in Table 1. Setting
Vth to 1 for simplicity, the firing rate of a spiking neuron in the
input layer (l = 0) is related with the ANN inputs a0

i , which can
be expressed as,

r0
i

(
t, V0

i (0)

)
= a0

i −
V0

i (t)− V0
i (0)

t
. (3)

For consistency, we assume that the input spikes are generated by
the same method as in the other neural network layers. Starting
with Eq. (3), we can recursively expand Eq. (2) as,

rl
i

(
t, V l

i (0)
)
= al

i + εl
i +

Ml−1∑
il−1=1
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ilil−1
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+ · · · +
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Here, if
∑Ml−1

j=1 wl
ijr

l−1
j

(
t, V l

i (0)
)
+ rmaxbl

i > 0, a partial error εl
i

is −V l
i (t)−V l

i (0)
t ; otherwise, it is zero since the neuron does not

generate any spike. From Eq. (4), we can define an SNN error
as,

El
i

(
t, V l

i (0)
)
= rl
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− al
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Eq. (5) says that the SNN error of layer l is the sum of the partial
error generated in that layer and the partial errors generated at
and propagated through the previous layers.

Up to the present, it has been customary to set all initial
membrane potentials, V l

i (0), to zero before the inference starts.
If V l

i (0) = 0, however, the partial error, εl
i, is always negative,

resulting in the inherent latency of SNN. If we set V l
i (0) to some

positive value, Vpc (< Vth), it corresponds to PCMP. Since Vpc
t

will compensate the negative value of the term, V l
i (t)
t , it can have

a strong impact on the SNN error during the initial transient.
Some studies have reported that the method of lowering Vth to

reduce the latency by increasing the firing rate (Diehl et al., 2015;
Park et al., 2019). As shown in Eq. (2), the decrease of Vth without
considering the threshold balancing leads to the increase of the

TABLE 1 | Definition of symbols.

Symbol Definition

t Time

l Layer index

i Neuron index

wl
ij Weight

bl
i Bias

al
i ReLU activation

V l
i (t) Membrane potential

rl
i

(
t, V l

i (0)
)

Firing rate

Nl
i

(
t, V l

i (0)
)

The total number of spikes during t

rmax Maximum firing rate

Ml Number of neurons in layer l

Vth Threshold of a neuron

εl
i Partial SNN error

E l
i

(
t, V l

i (0)
)

SNN error

Vpc Pre-charged membrane potential

steady-state firing rate, resulting in a large error propagating to
the subsequent layers. Thus, the degradation in the steady-state of
performance can occur. However, from Eq. (4), we can notice that
PCMP does not alter the steady-state firing rate because εl

i decays
to zero as the inference time increases. In other words, PCMP
only induces an earlier firing of the first spike. If the integration
starts from Vpc, the potential required to reach the threshold of
a neuron (Vth) is reduced to Vth −Vpc, resulting in earlier firing
of the first spike. After the first spike, the membrane potential
is reset by subtraction so that the neuron starts to generate
spikes with almost regular time interval (Rueckauer et al., 2017).
Therefore, PCMP is powerful in that it only can reduce the latency
without violating the equivalence condition between the ANN
activations and the firing rates of SNN.

On the other hands, the firing rate rl
i

(
t, V l

i (0)
)

generates
low-precision information and contains a considerable error at
the early timesteps based on Eq. (4). As mentioned in Eq. (5),
the error propagates to the subsequent layers multiplied by the
weights, so it becomes significantly large in the output layer. Of
course, the first few spikes play a significant role in biological
nerve systems, and other spike coding methods such as temporal
or first-time-to-spike coding are actively studied (Rullen and
Thorpe, 2001; Park et al., 2020); however, it is likely that the initial
few spikes occurring in the output neurons entail inaccurate
information when rate-based coding is used. Thus, we try to
discard the error spikes at the early timesteps by giving deliberate
delay in the output neurons, referred as a DE. This method
can be utilized in combination with PCMP to achieve further
latency reduction.

Network Architecture
Firstly, we train a network composed of 3C20-5C50-FC50-FC10
for MNIST classification, referred as Net 1. nCm(s) represents
n × n convolution operation with m filters and stride s, and
FCn means a fully connected layer with n neurons. Dropout
technique is employed with the probability of 50%, and the
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adaptive learning rate by multiplying 0.1 after 60, 120, and 180
epochs with the initial value of 1 × 10−3 is applied. Weights are
optimized by Adam with L2 decay parameter of 1 × 10−4. After
training, a test accuracy of 99.35% is achieved.

Net 2 is an all convolutional network consisting of 3C96-
3C96(2)-3C192-3C192-3C192(2)-3C192-1C192-1C10-GAP
where GAP denotes for global average pooling (Springenberg
et al., 2014). Some nodes are randomly dropped out with the
probability of 50% for generalization, and the adaptive learning
rate by multiplying 0.5 after 50, 100, and 200 epochs with the
initial value of 1 × 10−3 is applied. Stochastic gradient descent
(SGD) algorithm is utilized for optimization. The classification
accuracy of 91.77% is obtained for test dataset.

In order to demonstrate the effect of the proposed methods
on general SNN applications, Net 3 is trained as an autoencoder.
The structure is 3C96-3C96(2)-3C32(2)-3C16(2)-3CT32(2)-
3CT96(2)-3CT96(2)-3CT3 where nCTm(s) represents m
transposed convolution filters of size n × n. CIFAR-10 dataset
is employ to train the network with Adam optimizer and the
adaptive learning rate by multiplying 0.1 after 120, 240, and 360
epochs with the initial value of 1× 10−3. Lena image (512× 512)
split into 256 of 32 × 32 patches is used as a test sample for
inference. Detailed training method and hyper parameters are
based on the previous work (Hwang et al., 2020).

The trained weights are normalized by “Data-based
Normalization” and transferred to SNNs (Diehl et al., 2015). We
employ the rate-based coding to represent ANN input activations
by applying constant current inputs to the integrate-and-fire
neurons. The simulation timestep is divided to simulate the
SNNs most efficiently in the aspect of the computing complexity
so that a neuron with the highest firing rate generates spikes in
every timestep. The ANN-to-SNN conversion used in this work
is based on the previous work (Rueckauer et al., 2017).

RESULTS

Latency of SNNs
The classification accuracy and MSE of SNNs according to the
simulation timestep for Net 1 ∼ 3 are shown in Figures 1A,B,
respectively. As the simulation time increases, the performance
of SNNs increases as well, and it converges to the ANN’s

performance. As shown in Figure 1A, for Net 1, which represents
a relatively simple network, it reaches ANN’s accuracy within a
small number of timesteps; however, in a much deeper network,
such as Net 2, the latency becomes severely worse resulting in a
longer convergence time. We also extract MSE of Net 3 between
the SNN firing rate and ANN’s activation in the output layer,
so zero MSE means that the SNN’s output equals to the ANN’s
output. As illustrated in Figure 1B, MSE of Net 3 gradually
decreases with respect to the number of timesteps, but MSE does
not reach ANN’s performance within 255th timestep.

The latency of SNN can be observed in < fSNN >norm,
the averaged firing rate over all test samples normalized by
ANN’s activation. < fSNN >norm of Net 1 ∼ 3 in the input and
output layers according to the simulation timestep are shown in
Figures 2A–C, respectively. If < fSNN >norm converges to one, it
indicates that the performance of SNNs becomes equivalent to
that of ANNs. We can see that even < fSNN >norm of the input
layer has some latency until it converges to one (it is quite small
in Net 1, but very conspicuous in Net 2 and 3). < fSNN >norm of
the output layer is lagging behind that of the input layer due to
the latency, and it is worse in the deep and complex network like
Net 2 and 3.

Pre-charged Membrane Potential
Firstly, we have simulated the effect of PCMP by applying the
global PCMP (the same initial membrane potential, Vpc, to all
neurons in the network). Figure 3A illustrates the classification
accuracy as a function of simulation time for Net 1, while varying
Vpc from 0.0 to 0.5 with 0.1 steps. As Vpc increases, there seems
fast convergence to the ANN’s accuracy in that the accuracy vs.
time curve shifts to the left. In order to precisely estimate the
latency reduction, the number of timesteps to reach 99.0, 99.5,
and 99.9% of the ANN’s accuracy (denoted as t99.0, t99.5, and
t99.9%) are extracted, as shown in Figure 3B. The timestep to
reach 99.0 and 99.5% of the ANN’s accuracy is decreased with
the increase of Vpc from 0.0 to 0.5. If the criterion of latency
is raised to 99.9% of the ANN’s accuracy, PCMP up to 0.3
reduces the latency while too much PCMP increases it. PCMP
can substantially improve the convergence time so that we can
obtain the best latency reduced by 59% for t99.0% (@Vpc of 0.5),
43% for t99.5% (@Vpc of 0.5) and 25% for t99.9% (@Vpc of 0.3)
compared with the case without PCMP (@Vpc of 0.0). Figure 3C

FIGURE 1 | (A) Accuracy of Net 1, 2 and (B) MSE of Net 3 according to the simulation timestep. Time to reach ANN’s performance is required because of the
latency of SNN.
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FIGURE 2 | < fSNN >norm, the averaged firing rate over all the test samples normalized by ANN’s activation in the input and output layers according to the simulation
timestep for (A) Net 1, (B) Net 2, and (C) Net 3. < fSNN >norm of the output layer suffers from the latency compared with that of the input layer.

FIGURE 3 | (A) Result of accuracy-timestep for Net 1 with the global Vpc varying from 0.0 to 0.5 with 0.1 steps. (B) Extracted timesteps (t99.0%, t99.0%, and t99.9%)
with respect to the amount of the global Vpc. (C) The average firing rate in the output layer with the different levels of the global Vpc according to the simulation
timestep.

shows < fSNN >norm of Net 1 in the output layer with respect to
the different levels of Vpc. The point of the rapid rise in < fSNN
>norm moves to the left as Vpc increases, but too much Vpc
induces over-firing during the early timesteps, which can rather
degrade the latency.

In addition, correlation diagrams which reveal that Vpc
facilitates the rapid inference in SNNs by reducing inherent delay
are extracted in Figure 4. How precisely the firing rates of SNNs
reproduce the ANN activations can be analyzed through the
correlation diagram, where an ANN activation of a neuron is on
x-axis while its SNN firing rate is on y-axis (Rueckauer et al., 2017;
Hwang et al., 2020). If the SNN firing rate is perfectly reproduce
the ANN activation for all neurons, all points in the correlation
diagram are on line

(
y = x

)
; however, when there is the latency,

the firing rate of SNNs falls behind the activation of ANNs; thus,
the points on the correlation diagram are positioned below the
line of perfect correlation

(
y = x

)
. The correlation diagrams are

extracted from all neurons in the network using test dataset at
50, 100, and 150th timesteps with Vpc of 0.0 and 0.5, as shown
in Figures 4A,B, respectively. In both cases, the firing rates of
the neurons close to the input layer correlate quite well with the
ANN activations even at the early time. As the simulation time
increases, the firing rates of the neurons close to the output layer
converges to the ANN activations, so that the points tend to be on
the line

(
y = x

)
; however, the increase of the slope is much faster

for Vpc of 0.5. The slope of the correlation diagram of the output
layer for Vpc of 0.0 is still less than one at the 150th timestep,
showing that there still remains some delay.

For Net 2, Figure 5A shows the changes of the classification
accuracy according to the inference time with the different levels
of Vpc. The time-accuracy curve prominently shifts to the left
with the increase of Vpc from 0.0 to 0.3 while it goes back to
the right when Vpc above 0.3 is applied. The timestep when the

accuracy reaches to 99.0, 99.5, and 99.9% of the ANN’s accuracy
is extracted with respect to the changes of Vpc in Figure 5B.
Compared with the case without Vpc, the best latency is reduced
by 19% for t99.0% (@Vpc of 0.3), 13% for t99.5% (@Vpc of 0.2), and
13% for t99.9% (@Vpc of 0.3). The convergence time is increased
when Vpc above a certain value is applied. < fSNN >norm in the
output layer for Net 2 with respect to the different levels of
PCMP from 0.0 to 0.5 is illustrated in Figure 5C. The early rising
of < fSNN >norm is observed as Vpc increases; however, for the
case with Vpc above 0.3, there occurs a fluctuation by over- and
under-firing caused by too much PCMP, which is the cause of the
increase in the latency.

The correlation diagrams of Net 2 show the effect of the
latency reduction more clearly than that for Net 1. Figures 6A,B
represent the correlation diagrams of all neurons at the 100,
250, and 750th timesteps using all test data with Vpc of 0.0 and
0.3, respectively. In deep SNNs, as expected, the latency appears
more pronounced for the neurons closer to the output layer, as
illustrated in Figure 6A. The firing rates gradually increases so
that it approaches the ANN activations, but it takes more time
compared with the case of Net 1. The slope quickly reaches to one
for Vpc of 0.3 compared with the case for Vpc of 0.0. Eventually,
all the points are well-correlated to the ANN’s activations for the
case using Vpc of 0.3 at the 750th timestep, while the latency still
remains in the case of Vpc of 0.0 at the same timestep.

Pre-charged membrane potential is effective to reduce the
latency as well not only for a classification problem but also for
an autoencoder as Net 3. In particular, unlike the classification
problems in which the relative number of output spikes matters,
the absolute firing rate itself is of importance in autoencoder.
Figure 7A shows the changes of MSE as a function of the
inference time in the output layer with Vpc varying from 0.0
to 0.5. MSE gradually decreases as a function of the inference
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FIGURE 4 | Correlation plots of Net 1 at 50, 100, and 150th timesteps for the global Vpc of (A) 0.0 and (B) 0.5. The latency occurs in early timestep, and its effect
gradually disappears along with the simulation time. Latency reduction effect is more noticeable when the global Vpc of 0.5 is applied.

FIGURE 5 | (A) Accuracy-timestep result for Net 2 with the global Vpc changing from 0.0 to 0.5 with 0.1 steps. (B) Extracted timestep to reach 99.0, 99.5, and
99.9% of the ANN’s accuracy according to the changes of the global Vpc . (C) The average firing rate in the output layer with different level of the global Vpc

according to the simulation timestep. It is noticeable that the point of timestep in which the firing rate rises becomes earlier.

time, but it converges much faster when the amount of PCMP
increases. The early firing of spikes and fast convergence are also
observed by < fSNN >norm with respect to the inference time for
the output layer with the different levels of PCMP, as shown in
Figure 7B. The changes of a decompressed image in the output
layer at the 50, 100, 150, 200, and 255th timesteps for Vpc of 0.0
and 0.5 are shown in Figures 7C,D, respectively. In both cases,
the images at the 255th timestep are successfully restored close to
the original image; however, compared with the images using Vpc
of 0.0, the images using Vpc of 0.5 become similar to the original
image more quickly.

Optimization of Pre-charged Membrane
Potential
The global PCMP that applies the same amount of Vpc to all
neurons in the network is a practical approach because of its
simplicity, but we may optimize the amount of PCMP layer

by layer. Brute-force layer-wise optimization, however, requires
extraordinary computational power. For example, if there are 10
layers and 10 possible Vpc values for each layer, we have to check
1010 cases, each of which would take at least 10 s with the help of
a powerful graphical processing unit (GPU). The total amount of
time we have to devote for this task would be more than 300 years.

Based on the observation that the SNN error, El
i

(
t, V l

i (0)
)

,

depends on the partial errors, εl
i, for l ∈ {0, ..., L}, we have

devised a sequential layer-wise optimization method. Here, we
assume that all the neurons in layer l have the same initial
membrane potential, so V l

i (0) can be denoted as V l. For layer-
wise optimization, we define the mean-squared SNN error
〈[El(t, V l)]2〉 in layer l for the training set, which is expressed as

〈[El(t, V l)]2〉 =

Ml∑
i=1
[El

i(t, V l)]2

Ml (6)
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FIGURE 6 | Correlation diagrams of Net 2 at 100, 250, and 750th timesteps for the global Vpc of (A) 0.0 and (B) 0.3. In a deep network, the latency is more clearly
seen compared with the case of Net 1.

As a first step, 〈[E0(t, V0)]2〉 is extracted by changing the initial
membrane potential V0 from 0.0 to 0.5 with 0.01 steps. Then, V0

which minimizes the time sum of 〈[E0(t, V0)]2〉 during 1-epoch
is determined as the optimal V0

pc. Here, 255th timestep is defined
as one-epoch because the precision of the input image is eight-bit,
so the input image is completely applied to the network at 255th
timestep. This procedure can be repeated sequentially from the
input to output layers. The point is that the optimization in layer l
must be performed with the all the optimal PCMP in the previous
layers (V0

pc, V1
pc, · · · , V l−1

pc ) applied. The layer-wise optimization
procedure is described in Algorithm 1.

Algorithm 1: Layer-Wise Optimization

〈[E l(t, V l)]2〉: mean-squared SNN error in layer l at time t
Vth: threshold of a neuron
for l = 0 to L do

V l
i ← 0

for i = 0 to N do B The step size is determined by N
V l

i = V l
i +

Vth
N

si← 0
for t = 0 to 255 do

si← si + 〈[E l(t, V l)]2〉

end
end
V l

pc = Varg min
i

si BV l
pc: the optimal PCMP in layer l

end

We conduct the layer-wise optimization, and the time sum
of 〈[El(t, V l)]2〉 for Net 1∼ 3 at l = 1, as an example, is
extracted according to PCMP in Figures 8A–C, respectively.
It can be seen that the time sum of 〈[El(t, V l)]2〉 decreases
and then increases, so there is the global minimum of
V l which is determined as the optimal V l

pc. Figures 9A–C
describe the changes of MSE between the SNN firing rates
and ANN activations in the output layer of Net 1∼ 3 over
the simulation time by applying the global PCMP and the
layer-wise optimization, respectively. It is confirmed that the
layer-wise optimization results in a fast decrease of MSE
compared with the case of the global PCMP. The latency
of Net 1 and 2 is summarized in Table 2, and the best
record is marked in bold with ∗. In classification problems,
it is found that a fast decrease in MSE does not necessarily
guarantee rapid convergence in the accuracy since the accuracy
is determined by comparing the relative number of spikes among
the output neurons.

Delayed Evaluation
There is a great fluctuation in the SNN error, El

i

(
t, V l

i (0)
)

,
during the initial timesteps. This is because the firing rate of
input spikes has not reached the steady-state value. That is, a
transient appears at the initial timesteps for SNNs. Spikes can
be under-fired or over-fired during the initial transient, which
contributes to the spike rate as significant errors. Therefore, if the

Frontiers in Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 629000

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-629000 February 12, 2021 Time: 18:49 # 8

Hwang et al. Low-Latency SNNs

FIGURE 7 | (A) Changes of MSE for Net 3 when increasing the amount of the global Vpc from 0.0 to 0.5 with 0.1 steps. MSE decreases more quickly as the global
Vpc increases. (B) The average firing rate in the output layer with the different levels of the global Vpc according to the simulation timestep. Restored sample image in
the output layer of Net 3 at 50, 100, 150, 200, and 255th timestep for the global Vpc of (C) 0.0 and (D) 0.5.

FIGURE 8 | Changes of the time sum of 〈[E l(t, V l)]2〉 in layer l = 1 when increasing the amount of PCMP, V l for (A) Net 1, (B) Net 2, and (C) Net 3. The optimization
process is conducted from the input to the output layer sequentially, and it also needs to keep the optimized PCMP applied to the previous layers when performing
the optimization for the subsequent layers.

inference operation is intentionally delayed in the output layer to
eliminate the errors in the spike rate during the initial transient,
fast and accurate inference operation can be achieved. We call
this inference method as a DE.

As an example, the classification accuracy according to the
simulation time for Net 2 with DE of 40-timestep and without
DE is illustrated in Figure 10A. During the intentional delay,
the inference is not performed, so the classification accuracy
cannot be extracted; however, it rapidly increases and converges
to the ANN’s accuracy after the intentional delay. It may

appear that the case with DE converges slower than that
without DE, but if we closely examine the accuracy curves
near the point where they cross each other, the accuracy with
DE rapidly surpasses that without DE, as shown in the inset
of Figure 10A. The effect of DE is also verified in Net 3.
Figure 10B illustrates the changes of MSE with DE of 50-
timestep and without DE. MSE remains constant during the
early timesteps. Once the evaluation starts, however, MSE
with DE decreases and approaches zero much faster than that
without DE.
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FIGURE 9 | Changes of MSE for (A) Net 1, (B) Net 2, and (C) Net 3 when increasing the amount of the global Vpc from 0.0 to 0.5 with 0.1 steps and the optimized
PCMP. Although the global PCMP is practical due to its simplicity, the layer-wise optimization is more effective in a fast decrease of MSE.

TABLE 2 | Latency of Global PCMP and Layer-Wise Optimization for Net 1, Net 2, and ResNet-20.

Network Amount of PCMP t99.0% t99.5% t99.9%

Net 1 Global PCMP 0.0 17 19 32

0.1 15 18 29

0.2 12 15 27

0.3 11 13 24

0.4 9 12 29

0.5 7 11 27

Layer-Wise Optimization 6* 10* 19*

Net 2 Global PCMP 0.0 161 216 337

0.1 139 207 311

0.2 135 188* 296*

0.3 132 205 460

0.4 150 245 516

0.5 176 267 762

Layer-Wise Optimization 131* 204 513

ResNet-20 Global PCMP 0.0 408 511 703

0.1 346 416 625

0.2 261 343 497

0.3 204 236 367

0.4 154 194 239

0.5 292 380 800

Layer-Wise Optimization 152* 191* 238*

The best records in each network are marked in bold with *.

FIGURE 10 | (A) Accuracy-timestep curve of Net 2 with- and without DE. Both cases converge to the ANN’s performance, but the accuracy with DE converges
faster than that without DE. (B) Changes of MSE with respect to the simulation timestep for Net 3 with- and without DE. MSE with DE decreases and approaches
zero much faster than that without DE.
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FIGURE 11 | Changes of timestep when 99.0% of the ANN’s accuracy is reached with respect to the intentional delay for (A) Net 1 and (B) Net 2. Changes of MSE
at 1-epoch (255th timestep) for (C) Net 3. Different levels of the global and the optimized PCMP are used for Net 1 ∼ 3. Delayed evaluation (DE) is effective to
achieve the further reduction of the latency, and it can be applicable simultaneously with PCMP.

FIGURE 12 | Effects of the proposed methods on ResNet-20. (A) Changes of the classification accuracy according to the global Vpc from 0.0 to 0.5. (B) Extracted
timesteps (t99.0%, t99.0%, and t99.9%) with respect to the amount of the global Vpc. (C) Changes of MSE for when increasing the amount of the global Vpc from 0.0 to
0.5 with 0.1 steps and the optimized PCMP. (D) Changes of timestep when 99.0% of the ANN’s accuracy is reached when using DE.

FIGURE 13 | The number of synaptic operations per image (SOPs/image) for (A) Net 1, (B) Net 2, and (C) Net 3. SOPs/image is extracted based on t99.0%, t99.0%,
and t99.9% in the classification problems and on the reference MSE (MSE @1-epoch without PCMP and DE). The effect of the proposed methods for energy-efficient
computing is remarkable.
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TABLE 3 | Comparison with prior work.

Dataset Spike encoding Architecture Accuracy [%] Latency [timestep]

MNIST Rate (Diehl et al., 2015) 12C5-P2-64C5-P2-FC10 99.10 200

Weighted spike (Kim et al., 2018) 12C5-P2-64C5-P2-FC10 99.20 8

Time-to-first-spike (Park et al., 2020) 99.33 40

Burst (Park et al., 2019) 99.25 87

Rate (our method, PCMP) Net 1 99.25 19

CIFAR-10 Rate (Rueckauer et al., 2017) 32C3-32C3-P2-64C3-64C3-P2-FC512-FC10 87.82 280

Weighted spike (Kim et al., 2018) 32C3-32C3-P2-64C3-64C3-P2-FC512-FC10 89.10 42

FS-coding (Stöckl and Maass, 2020) ResNet-20 91.45 200

Time-to-first-spike (Park et al., 2020) VGGNet-16 91.43 680

Burst (Park et al., 2019) VGGNet-16 91.41 793

Rate (our method, PCMP) Net 2 91.67 296

Rate (our method, PCMP + DE) Net 2 91.67 204

Rate (our method, PCMP) ResNet-20 91.72 238

Rate (our method, PCMP + DE) ResNet-20 91.72 198

CIFAR-10 (Autoencoder) Rate (our method, PCMP) Net 3 58

Rate (our method, PCMP + DE) Net 3 56

Bold values indicates the best records by our methods.

We have investigated the inference performance by varying
the intentional delay of DE. For example, Figure 11A shows
the changes of timestep to reach 99.0% of the ANN’s accuracy
(t99.0%) for Net 1 with global and optimized PCMP. Firstly,
t99.0% shows no change when the intentional delay is short.
In classification problems, the output neuron firing the most
is considered as the correct answer; there is a period of time
when no spike is generated in the output layer, so an intentional
delay shorter than this “no-spike” period will not change the
most-firing neuron; therefore, no change of accuracy is observed.
If the intentional delay increases, however, t99.0% increases as
if it is pushed up by the excessive intentional delay. Even if
the SNN is very close to the steady state, the evaluation time
should be sufficiently long to achieve high accuracy; otherwise,
the number of spikes corresponding to a low ANN activation
would be too small for accurate evaluation. We can call this
period of time “excessive intentional delay” period. The latency
reduction by DE does not appear since Net 1 has a short
latency due to the relatively simple network structure and
data to classify.

For Net 2 with global and optimized PCMP, t99.0% is extracted
with respect to the intentional delay, as shown in Figure 11B.
As mentioned above in Figure 11A, there occurs “no-spike”
period as well in Net 2. After the no-spike period, spikes start
to be generated in the output layer, but the spike rate is still
incorrect. By DE, we can remove errors in the spike rate, which
helps to decrease t99,0%. Thus, this period of time where t99.0%
decreases is referred as “error removal” period. Here, we can
notice that that the combined use of PCMP and DE is significantly
effective in reducing the latency. With large the intentional delay,
however, t99.0% suffers from “excessive intentional delay” period,
it is dominated by the intentional delay.

For Net 3 with global and optimized PCMP and MSE at 1-
epoch (255th timestep) is extracted by changing the intentional
delay, as illustrated in Figure 11C. Unlike the classification

problem, MSE decreases rapidly with the increase of DE. Since DE
excludes a chunk of “no-spike” period in evaluation, the output
spike rates get closer to the target spike rates rapidly. As DE
increases further, however, MSE remains more or less constant.
This is because the precision reduced by DE induces errors, but
there is also the error reduction due to the removal of the initial
transient. Those effects cancel each other out, resulting in little
changes of MSE. After that, MSE increases since it starts to be in
“excessive intentional delay” period.

Effects on ResNet-20
In order to demonstrate the effectiveness of the proposed
methods in much deeper and most generally used neural network
models, we train ResNet-20 using CIFAR-10 dataset (He et al.,
2016). Firstly, the network is trained by SGD algorithm with the
momentum of 0.9 and L2 weight decaying parameter of 1× 10−4.
Adaptive learning rate is employed with the initial learning rate
of 0.1, so it is multiplied by a factor of 0.1 after 82, 123, and
164 epochs. Also, 32 × 32 random cropping (padding = 4) and
the horizontal flipping are used for data augmentation. We can
obtain the accuracy of 91.82% for the test dataset. The trained
network is converted to SNN using the weight normalization
method of ResNet which has been already reported in the
previous research (Hu et al., 2018).

Figure 12A shows the accuracy of the spiking ResNet-20
according to the simulation timestep with the different value
of the global PCMP. When increasing the global PCMP from
0.0 to 0.4, the curve shifts to the left, and it goes back to
the right when the global PCMP of 0.5 is applied. We extract
t99.0, t99.5, and t99.9% with the different amount of the global
PCMP, as illustrated in Figure 12B. For all criteria, it is found
that the convergence time decreases with the increase of the
global PCMP up to 0.4 and increases again at the global
PCMP of 0.5. Figure 12C indicates the result of MSE in the
output layer when the layer-wise optimization is performed.
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MSE with the optimized PCMP appears smaller than that with
the global PCMP. The best records of the latency in ResNet-
20 with PCMP are summarized in Table 2. We also perform
the DE in ResNet-20, and t99.0% is extracted with respect to the
intentional delay, as shown in Figure 12D. It is confirmed that
the convergence time remains the same during “no-spike” period,
decreases during “error removal” period, and increases during
“excessive intentional delay” period. These results are consistent
with the results above; therefore, the effectiveness of the proposed
methods is successfully demonstrated in much deeper networks.

DISCUSSION

Reduction of Computational Cost
The one of the most powerful advantage in using SNN is
that energy-efficient inference is possible due to its event-
driven characteristic. SNN updates its state when there is spike;
therefore, the computational cost is proportional to the number
of synaptic operations, which can be approximated by the
number of spikes when performing the inference. Reducing
the latency of SNN can contribute to saving of the number of
synaptic operations required to determine the result. In order
to confirm the advantage of the proposed methods in terms
of the computation cost, we extract the number of synaptic
operations per image (SOPs/image) for Net 1 ∼ 3, as shown
in Figure 13. For classification problems such as Net 1 and
2, SOPs/image is extracted based on the latency to reach 99.0,
99.5, and 99.9% of the ANN’s accuracy (t99.0, t99.5, and t99.9%).
In the case of autoencoder, such as Net 3, MSE at 1-epoch
is set as a reference when neither PCMP nor DE is applied,
and SOPs/image is extracted based on the latency to reach the
reference MSE.

Because DE has no effect on the latency reduction in Net
1, Figure 13A shows SOPs/image for Net 1 only using the
global PCMP (0.0 ∼ 0.5) and optimized PCMP by the layer-
wise optimization. It is clearly confirmed that the latency
reduction by PCMP leads to the reduction of SOPs/image.
The best computational cost is obtained when the layer-wise
optimization of PCMP is performed, where it is reduced
by 46, 35, and 32% for t99.0, t99.5, and t99.9%, respectively,
compared with the case without PCMP and DE. For Net
2, as shown in Figure 13B, when only PCMP is applied,
the best SOPs/image is obtained at Vpc of 0.2 for t99.9 and
t99.5% and at the optimized Vpc for t99.0%, which are reduced
by 11, 11, and 12%, respectively, compared with the case
without PCMP. Moreover, it is obviously demonstrated that
the combination of PCMP and DE has a significant effect
on reducing the computation cost so that it helps to reduce
SOPs/image by 37, 36, and 38% for t99.0, t99.5, and t99.9%,
respectively, compared with the case without PCMP and DE. The
effect of PCMP and DE on the reduction of the computational
cost is verified as well in the autoencoder, Net 3, the best
SOPs/image to reach the reference MSE is reduced by 74%
when the optimized Vpc and DE are applied, as shown
in Figure 13C.

Comparison With Prior Work
Table 3 shows the comparison results with the prior work in
terms of dataset, spike encoding, accuracy, architecture, accuracy,
and the latency. In the previous research implementing CNN
through rate-based coding, the latency of 200-timestep was
required to achieve the accuracy of 99.10% for MNIST (Diehl
et al., 2015). However, it is possible to reach the accuracy of
99.25% for MNIST with the latency of 19-timestep based on the
same spike encoding method by using the proposed methods.
There also have been various studies implementing SNNs for
MNIST pattern recognition using a spike encoding method other
than rate-based coding (Kim et al., 2018; Park et al., 2019;
Park et al., 2020). Most of the studies showed sufficiently high
accuracy (above 99.00%), and, especially, the spike encoding
method called the weighted spike showed the best performance
with the latency of 8-timestep (Kim et al., 2018). The network
for CIFAR-10 classification has a more complex network than
that for MNIST, so it generally shows a longer latency. Net 2 in
this work shows better accuracy compared to the comparison
groups, and its latency is also generally the same or better than
other encoding methods. In addition, the proposed methods for
ResNet-20 is as effective as the previously reported method using
FS-coding on the same structure resulting in the comparable
latency (Stöckl and Maass, 2020). Among the previous studies
for CIFAR-10, the weighted spike scheme showed the shortest
latency of 42-timestep. In the case of autoencoder, the latency
is extracted based on the timestep to reach the reference MSE
as mentioned above. However, since most of the SNN-related
studies focus on implementing the classification problem, there
are not enough studies to compare. Comparing several aspects of
the performance with the prior studies may be somewhat unfair
because not all the networks have the same architecture. Even
so, the proposed methods in this work are applicable to any
architecture of SNN, and they still have an important meaning for
implementing low-latency SNN because they show comparable
or better performance compared with other methods in the
previous studies.

CONCLUSION

In this work, methods to reduce the inherent latency in SNN
are proposed, which is applicable at the inference stage. The
membrane potential of a neuron is charged to some extent prior
to inference operation, which is denoted as the pre-charged
membrane potential (PCMP). Also, we introduce a deliberate
delay in the output layer to discard some spikes occurring at the
initial timesteps, referred as a DE. It is demonstrated through the
model equations of SNNs that PCMP reduces the SNN error by
inducing the earlier firing of the first spike, and DE eliminates
the error spikes at the early timesteps so that low-latency SNN
can be achieved. In SNN applications, such as classification
and autoencoder, the proposed methods successfully reduce
the latency, the combined use of PCMP and DE can help
to achieve further latency reduction. Moreover, required the
synaptic operations are significantly improved by using the
proposed methods, which leads to energy-efficient computing.
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