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DNA N4-methylcytosine (4mC) being a significant genetic modification holds a dominant role in
controlling different biological functions, i.e., DNA replication, DNA repair, gene regulations and gene
expression levels. The identification of 4mC sites is important to get insight information regarding differ-
ent organics mechanisms. However, getting modification prediction from experimental methods is a
challenging task due to high expenses and time-consuming techniques. Therefore, computational tools
can be a great option for modification identification. Various computational tools are proposed in litera-
ture but their generalization and prediction performance require improvement. For this motive, we have
proposed a neural network based tool named DCNN-4mC for identifying 4mC sites. The proposed model
involves a set of neural network layers with a skip connection which allows to share the shallow features
with dense layers. Skip connection have allowed to gather crucial information regarding 4mC sites. In lit-
erature, different models are employed on different species hence in many cases different datasets are
available for a single species. In this research, we have combined all available datasets to create a single
benchmark dataset for every species. To the best of our knowledge, no model in literature is employed on
more than six different species. To ensure the generalizability of DCNN-4mC we have used 12 different
species for performance evaluation. The DCNN-4mC tool has attained 2% to 14% higher accuracy than
state-of-the-art tools on all available datasets of different species. Furthermore, independent test datasets
are also engaged and DCNN-4mC have overall yielded high performance in them as well.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Epigenetic modification is the heritable alteration that occurs in
the gene expression keeping the original DNA sequence unchanged
[1]. DNA methylation has been demonstrated in several studies to
alter chromatin structure, DNA orientation, DNA integrity, and
genetic code interactions [2,3]. Furthermore, changes in DNA
methylation pattern are considered to be a biological complication
mechanism [4], leading to tumour formation [5] and other
disorders [6].
N6-methyladenine (6 mA), 5-methylcytosine (5mC), and
N4-methylcytosine (4mC) are all common forms of DNA methyla-
tion in genomics [7]. In both prokaryotes and eukaryotic genomes,
these kinds of DNA methylation are predominantly found [8,9].
5mC is the most frequent DNA alteration in eukaryotes, and it is
required for cell growth, transposon elimination, and gene imprint-
ing [10–12]. Given their tiny size, 6 mA and 4mC can only be iden-
tified in eukaryotes using high sensitivity methods. 6 mA and 4mC
are the most common in prokaryotes, and are primarily utilized to
differentiate host DNA from foreign pathogenic DNA[13] and also
4mC regulates the replication process and fixes abnormalities in
DNA replication [14]. Furthermore, as a segment of the
restriction-modification system, 4mC inhibits restriction enzymes
from damaging host DNA. 4mC is more prominent in mesophilic
bacteria and is extremely hard to identify in eukaryotic genomes
using conventional methods [15,14].
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Based on next-generation sequencing (NGS), bisulphite
sequencing is a widely used method for detecting DNA methyla-
tion sites across the entire genome [16]. This experimental
approach, however, is costly and prolonged method [17], and it
can only detect 5mC [18]. Single-molecule real-time (SMRT)
sequencing is a common method for detecting 4mC, 5mC and
6 mA sites from unknown DNA sequences [17]. However, the
library preparation required in SMRT makes it a more expensive
and time-consuming technique [19]. Furthermore, distinguishing
4mC from 5mC continues to be a significant problem for traditional
experimental approaches. To overcome these issues, 4mC-Tet-
assisted bisulfite-sequencing (4mC-TAB-seq), a 4mC-specific
NGS-based technique for properly distinguishing 4mC from 5mC,
has been suggested [19]. Another group recently used synthetic
transcription activator-like effectors to differentiate between
4mC and 5mC sites [1]. Undoubtedly these experimental methods
aid in the identification of 4mC sites, but they are too time-
consuming and pricey techniques to be used for wide-range gen-
ome scanning. As a result, computational approaches for predicting
DNA methylation sites are a valuable and compatible tool for high-
throughput identification of DNA methylation sites, and they can
tremendously aid experimental research.

Computational techniques, particularly machine-learning (ML)
based approaches, have recently been successfully applied to a
variety medical related issues [20], including 4mC site identifica-
tion [21]. Chen et al. created first computational model iDNA4mC,
for 4mC sites identification [21]. The iDNA4mC tool employs
nucleotide chemical properties (NCP) and frequencies as features
to create support vector machine (SVM) based prediction tool. In
total six species which are Caenorhabditis elegans (C.elegans), Dro-
sophila melanogaster (D.melanogaster), Arabidopsis thaliana (A.
thaliana), Escherichia coli (E. coli), Geoalkalibacter subterraneus
(G.subterraneus) and Geobacter pickeringii (G.pickeringii) were used
to train and validate the iDNA4mC tool, and the results suggests
that the tool is effective for differentiating 4mC sites from non-
4mC sites. After iDNA4mC several other machine learning based
tools were proposed like 4mCPred [22], 4mcPred-SVM [14] and
4mcPred-IFL [23] which improved the performance on same six
species. Later a deep learning based approach, DeepTorrent was
introduced which increased the performance and contributed
more dataset for the similar species [24]. Some other deep learning
based tools like 4mCCNN [25] were also proposed which provide
improvement in performance for identification of 4mC site in these
species. Further Rao et al. contributed an additional datatset for C.
elegans, D.melanogaster and A.thaliana [26]. Subsequently Zeng
et al. collected an additional dataset for C.elegans [27].

Recently an ensemble learning framework, 4mCpred-EL was
proposed for Mus musculus [28]. Later a tool i4mC-ROSE was pre-
sented for 4mC identification in rosaceae genome [29]. The
i4mC-ROSE was suggested for two species which are Fragaria vesca
(F.vesca) and Rosa chinensis (R.chinensis). Another tool iDNA-MS
was put forward for four species out of which one is F.vesca and
other are Casuarina equisetifolia (C.equisetifolia), Saccharomyces
cerevisiae (S.cerevisiae) and Tolypocladium sp. Sup5 [30]. Even
though the aforementioned methods regularly perform efficiently,
but they may lack generalizability, necessitating the creation of a
new predictor for successful 4mC site detection with dependable
transferability.

Machine learning based approaches have had a lot of success in
predicting 4mC sites, and they have helped to speed up 4mC iden-
tification studies. The success of Machine learning based tech-
niques (i.e., their predictive power) in differentiating 4mC sites
from non-4mC sites, on the other hand, is highly dependent on
the quality of features. Due to a paucity of research on 4mC,
extracting useful characteristics with a significant discriminative
capacity to forecast 4mC sites is difficult [1]. While on other side
6010
deep learning has emerged as a solution to such a problem with
a capability of automatically learning deep features using several
neural network layers [31]. Very few deep learning based tech-
niques for 4mC sites identification have been proposed in literature
while many hidden wonders of deep learning are still not explored
for detecting 4mC sites. Further, the previously proposed deep
learning based techniques still lack generalizability as none of
the technique is proposed for more than six species.

In this work, we are proposing Densely Connected Neural Net-
work Based N4-methylcytosine Site Prediction (DCNN-4mC), a
general framework for twelve different species proposed in differ-
ent studies. Further, in this study, we have combined all available
datasets in literature and bring them under one umbrella, so that
the research on computational models for 4mC can be carried
out on common benchmark datasets, which will help in carrying
out better comparative analysis. The proposed DCNN-4mC tool is
a neural network based tool which employs multiple layers with
a skip connection. The skip connection allows sharing the shallow
features with the deeper layers, which results in great performance
improvement. When compared to state-of-the-art techniques,
extensive benchmarking studies on twelve distinct species indicate
that DCNN-4mC obtains the greatest performance for 4mC site
identification in all species. To facilitate the experts of the field,
DCNN-4mC can be accessed freely at: http://nsclbio.jbnu.ac.
kr/tools/DCNN-4mC/.
2. Materials and methods

2.1. Overall framework of DCNN-4mC

The overall framework of DCNN-4mC is depicted in Fig. 1. The
development of the DCNN-4mC predictor consists of the following
five major steps: Dataset Preparation; Sequence Encoding; CNN
Model Training; Model Evaluation; (iv) WebServer Generation. In
the first step, we collected all available datasets for different spe-
cies from the literature after having an extensive literature review.
Further, a single dataset for every species is prepared with the help
of available datasets. At the second step, we carried out One-hot
encoding for the input sequences. The third step involves the
CNNmodel training from the encoded sequences. In the fourth step
we evaluated the trained model using 10-fold cross-validation and
by using an independent test dataset. The model evaluation is car-
ried out based on the different figure of merits. The fifth step
includes the construction of a webserver for the medical and bioin-
formatics experts.
2.2. Dataset preparation

In literature, two databases are used for constructing datasets
for different species. These databases are MDR database [32] and
MethSMRT database [10]. To the best of our knowledge, there are
12 different species for which the datasets are constructed in liter-
ature. Chen et al. constructed the dataset from MethSMRT for six
species which are: C.elegans; D.melanogaster; A.thaliana; E. coli;
G.subterraneus; G.pickeringii [21]. Liu et al. continued the work
and collected more datasets for the aforementioned species from
the MethSMRT database [24]. Rao et al. went on to further collect
the dataset from MethSMRT for C.elegans, D.melanogaster and A.
thaliana [27]. Zeng et al. further utilized the MethSMRT database
to gather a dataset for C.elegans [27]. Hao et al. used SMRT and
MDR databases to construct the dataset for four species which
are: C.equisetifolia; S.cerevisiae; Tolypocladium sp. Sup5 [30]. In
[28] authors collected a dataset for Mus musculus from the
MethSMRT database. Further, Hasan et al. collected the dataset
for F.vesca and R.chinensis from the MDR database [29].



Fig. 1. The overall framework of DCNN-4mC. It entails the following steps: (i) Dataset Preparation; (ii) Sequence Encoding; (iii) CNN Model Training; (iv) Model Evaluation;
(v) WebServer Generation.
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All of the constructed datasets followed a similar procedure.
The positive and negative sample sequences in the collection were
all 41 bp long with cytosine (”C”) nucleotide at the centre. Positive
samples that have been experimentally validated are confirmed
using a relevant modification score (ModQV). In positive samples,
the related cytosine is considered to be modified if the ModQV
score >= 20. The CD-HIT software was used to remove the redun-
dant sequences, which solves the bias problem in the curated
sequences.

As for many species, there is more than one dataset, there-
fore, we combined them into a single dataset for every species,
so that a single benchmark can be used by us and by future
researchers. For all species, their training datasets are combined
into one single benchmark dataset and the same is done with
the testing dataset. As the origin of the datasets is the same
which is either MethSMRT or MDR database, therefore redun-
dant sequences are removed from benchmark training and test-
ing datasets. It is also being ensured that there should be no
similar sequence present in the training and testing dataset.
Table 1 shows the statistical details regarding the dataset of
every species.
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2.3. Sequence encoding

The input sequence to the proposed computational tool looks as
follows,

S ¼ N1;N2;N3;N4; . . . ;N41

where sequence ‘S’ is of length 41 and ’N’ represents the nucleotide
and can be represented as, N 2 A;C;G; T. The four nucleotides in a
DNA sequence are adenine (A), cytosine (C), guanine (G) and thy-
mine (T). For embedding these sequences to the neural network
model. they first need to be represented as appropriate numerical
data. As the neural networks extract the features from the numeri-
cal data only. For this reason, we have utilized a One-hot encoding
scheme.

The one-hot encoding scheme is the simplest and efficient
encoding algorithm used frequently in the field of bioinformatics
[33–36]. In this encoding scheme each nucleotide is mapped to
integer values and further this integer value is assigned with a
unique binary vector that includes all ‘0’ values apart from the
index of the integer, which is kept as ‘1’. The one-hot encoding
scheme is considered to be more expressive than the simple



Table 1
Dataset Statistics.

Species Available Train
Dataset

Train Dataset
Size

Test Dataset
Size

Updated
TrainDataset

Updated Test Dataset

Caenorhabditis elegans
(C. elegans)

iDNA4mC (chen
et al. [21])

4mC = 1554 4mC = 0 4mC = 7939 Non-
4mC = 82033

4mC = 2352 Non-4mc
= 2660

Non-4mC
= 1554

Non-4mC = 0

DeepTorrent (Liu
et al. [24])

4mC = 55729 4mC = 2667

Non-4mC
= 55729

Non-4mC = 2667

Zeng et al. [27] 4mC = 11173 4mC = 0
Non-4mC
= 6635

Non-4mC = 0

Rao et al. [26] 4mC = 20000 4mC = 0
Non-4mC
= 20000

Non-4mC = 0

Drosophila melanogaster
(D. melanogaster)

iDNA4mC (chen
et al. [21])

4mC = 1769 4mC = 0 4mC = 72127 Non-
4mC = 75460

4mC = 3332 Non-4mC
= 3521

Non-4mC
= 1769

Non-4mC = 0

DeepTorrent (Liu
et al. [24])

4mC = 53970 4mC = 3684

Non-4mC
= 53970

Non-4mC = 3684

Rao et al. [26] 4mC = 20000 4mC = 0
Non-4mC
= 20000

Non-4mC = 0

Arabidopsis thaliana
(A. thaliana)

iDNA4mC (chen
et al. [21])

4mC = 1978 4mC = 0 4mC = 81143 Non-
4mC = 85456

4mC = 10388 Non-
4mC = 11172

Non-4mC
= 1978

Non-4mC = 0

DeepTorrent (Liu
et al. [24])

4mC = 63720 4mC = 11 307

Non-4mC
= 63720

Non-4mC = 11 307

Rao et al. [26] 4mC = 20000 4mC = 0
Non-4mC
= 20000

Non-4mC = 0

Escherichia coli (E. coli) iDNA4mC (chen
et al. [21])

4mC = 388 4mC = 0 4mC = 1959 Non-
4mC = 2156

4mC = 126 Non-
4mC = 126

Non-4mC = 388 Non-4mC = 0
DeepTorrent (Liu
et al. [24])

4mC = 1941 4mC = 126

Non-4mC
= 1941

Non-4mC = 126

Geoalkalibacter subterraneus
(G. subterraneus)

iDNA4mC(chen
et al. [21])

4mC = 905 4mC = 0 4mC = 10583 Non-
4mC = 10780

4mC = 5263 Non-4mC
= 5263

Non-4mC = 905 Non-4mC = 0
DeepTorrent (Liu
et al. [24])

4mC = 9934 4mC = 5263

Non-4mC
= 9934

Non-4mC = 5263

Geobacter pickeringii
(G. pickeringii)

iDNA4mC (chen
et al. [21])

4mC = 569 4mC = 0 4mC = 4703 Non-
4mC = 4900

4mC = 1210 Non-4mC
= 1210

Non-4mC = 569 Non-4mC = 0
DeepTorrent (Liu
et al. [24])

4mC = 4514 4mC = 1210

Non-4mC
= 4514

Non-4mC = 1210

Mus musculus 4mCpred-EL [28] 4mC = 800 4mC = 180 4mC = 800 Non-4mC
= 800

4mC = 180 Non-4mC
= 180

Non-4mC = 800 Non-4mC = 180

Casuarina equisetifolia
(C. equisetifolia)

iDNA-MS [30] 4mC = 183 4mC = 183 4mC = 183 Non-
4mC = 183

4mC = 183 Non-
4mC = 183

Non-4mC = 183 Non-4mC = 183

Saccharomyces cerevisiae
(S. cerevisiae)

iDNA-MS [30] 4mC = 990 4mC = 989 4mC = 990 Non-
4mC = 990

4mC = 989 Non-4mC
= 989

Non-4mC = 990 Non-4mC = 989

Tolypocladium sp SUP5-1
(Tolypocladium)

iDNA-MS [30] 4mC = 7664 4mC = 7663 4mC = 7664 Non-
4mC = 7664

4mC = 7663 Non-4mC
= 7663

Non-4mC
= 7664

Non-4mC = 7663
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Table 1 (continued)

Species Available Train
Dataset

Train Dataset
Size

Test Dataset
Size

Updated
TrainDataset

Updated Test Dataset

Fragaria vesca (F. vesca) i4mC-ROSE [29] 4mC = 4854 4mC = 1617 4mC = 12298 Non-
4mC = 12152

4mC = 8819 Non-
4mC = 9015

Non-4mC
= 4854

Non-4mC = 1617

iDNA-MS [30] 4mC = 7899 4mC = 7898
Non-4mC
= 7899

Non-4mC = 7898

Rosa chinensis (R. chinensis) i4mC-ROSE [29] 4mC = 2337 4mC = 779 4mC = 2337 Non-
4mC = 2337

4mC = 779 Non-4mC
= 779

Non-4mC
= 2337

Non-4mC = 779

Table 3
Selected parameters for DCNN-4mC model.

Parameters Selected Values

Number of Filters (Block 1) 64
Filter Size (Block 1) 11

Number of Filters (Block 2) 32
Filter Size (Block 2) 7

Number of Filters (Block 3) 32
Filter Size (Block 3) 5
MaxPooling Pool-size 4

Dropout Ratio 0.3
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encoding scheme. The one-hot vector for four nucleotides present
in a DNA sequence is represented as follows,

A ! ð1;0;0;0Þ

C ! ð0;1;0;0Þ

G ! ð0;0;1;0Þ

T ! ð0;0;0;1Þ
After one-hot encoding, the resultant matrix for a length ‘l’ input
DNA sequence would be l� 4.

2.4. CNN model

The complete network architecture is illustrated at the bottom
of Fig. 1. The network consists of single-dimensional (1-D) convo-
lutional, max pooling, dropout and fully connected layers. After
preprocessing the data is first passed through 1-D convolutional
layers to extract robust and meaningful features for further pro-
cessing. Each 1-D convolution layer is followed by a batch normal-
ization (BN) layer and an activation layer unless specified
explicitly. We use the rectified linear unit (ReLU) as an activation
function throughout the network except for the last layer.

ReLUðxÞ ¼ maxð0; xÞ ð1Þ
We further enhance the representational power of our network by
incorporating skip connections. The skip connections follow the
concept of identity mapping [37], which helps in the more efficient
training of the network. In contrast to the original skip connections,
instead of adding the input to the output of the convolutional layer,
we concatenate both features and then pass them to the next con-
volutional layer for further processing. Concatenation operation is
performed to combine the shallow features with the deeper fea-
tures. As it allows the network to give importance to each feature
map adaptively depending upon the input sequence, without dis-
torting the extracted features of previous layers. Hyper-parameter
tuning is done for the selection of finer parameters for the whole
network. The hyper-parameters for tuning purposes are presented
in Table 2. Whereas Table 3 shows the selected parameters for
Table 2
Hyper-parameter tuning values.

Parameters Experiment Values

Number of Blocks/ Convolution Layers [1,2,3,4,5]
Filters in convolution Layer [8, 12, 16, 32, 64, 128]

Filter size [1, 3, 5, 7, 11, 15]
MaxPooling Pool-size [2, 4]

Dropout Ratio [0.1, 0.2, 0.3, 0.4]
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the CNN model. After performing three consecutive skip 1-D convo-
lutions we perform max pooling operation followed by dropout
layer to avoid overfitting and to increase the generalization of the
network on unseen sequences. Finally, the features extracted from
convolutional layers are flattened and passed on to the fully con-
nected layers for the classification of the sequence into 4mC and
Non-4mC. Sigmoid is used as an activation function for the output
layer of the network.

SigmoidðxÞ ¼ 1
1þ e�x

ð2Þ

The L2 regularization which is also known as ridge regression is
used to prevent the network from over-fitting on training
sequences. The loss function for L2 regularization is as follows,

Loss ¼ Errorðl;pÞ þ k
XN

j¼1

w2
j ð3Þ

where l is the true value and p is the predicted value. Errorðl;pÞ rep-
resents the loss of the model in which L2 regularization term
(k
PN

j¼1w
2
j ) is added to prevent over-fitting. While k is the regulariza-

tion parameter which is tuned manually and must be greater than
0. Stochastic Gradient Descent (SGD) is used as an optimizer for
training the network with the momentum of 0.8 and the initial
learning is set to be 0.003. Loss function plays an important role
in optimizing the neural network model. A single loss function
sometimes is not capable enough to optimize the network at its
best. Therefore we used a customized loss function for back-
propagating errors and updating the network’s weights. The cus-
tomized loss function is the sum of the Dice Loss Coefficient (DLC)
and Weight Cross-Entropy (WCE). The formulation for these loss
functions is as follows,

WCE ¼ �
Xl

L

wLlLlogðPLÞ ð4Þ
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DLC ¼ 1� 2

Xl

L

wLlLPL

Xl

L

wLðlL þ PLÞ
ð5Þ

where Q is the total number of labels which in our case is 2 and 0L0 is
the label. The PL represents the Predicted class of the sequence,wL is
the allotted weight and lc is the ground truth class of the pixel. The
total loss function can be represented as,

Ltotal ¼ WCEþ DLC ð6Þ
2.5. CNN model utilization for different datasets

The dataset of different species has different sizes. Therefore
to go with 3 block architecture for all species generates the
problem of over-fitting due to the limited dataset. The species
with a good amount of data like C.elegans, D.melanogaster, A.
thaliana, G.subterraneus and F.vesca uses all three blocks. While
in the case of E.coli, G.pickeringii, Mus musculus, Tolypocladium
and R.chinensis the block 1 is removed from the architecture
due to the limited data and the encoded sequence is directly
given to block2. The remaining architecture remains the same
in this case. The dataset for C.equisetifolia is too small and for
this purpose only block 3 is used in its architecture. The encoded
sequence of C.equisetifolia species is directly given to block 3.
This subtraction of blocks is performed due to the limitation of
the dataset size used for training.

2.6. Figure of merits

We utilized four frequently used measures to assess the new
method’s and existing techniques’ performance, including Sensitiv-
ity (also known as true positive rate), Specificity (also known as
true negative rate), Accuracy (ACC), Precision (also known as pos-
itive predictive value), F1 score and Matthews correlation coeffi-
cient (MCC). Following are the mathematical expressions for
these figure of merits,

Sensitiv ity ¼ TP
TP þ FN

ð7Þ

Specificity ¼ TN
TN þ FP

ð8Þ

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð9Þ

Precision ¼ TP
TP þ FP

ð10Þ

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞp ð11Þ

F1score ¼ 2TP
2TP þ FP þ FN

ð12Þ

where acronyms are,
TP: True Positive.
TN: True Negative.
FP: False Positive.
FN: False Negative.
Accuracy and MCC are two measures that assess the overall pre-

diction performance of the prediction model. The ROC curve was
also utilized to intuitively assess the overall performance of the
6014
model. The Area Under the ROC curve (AUC) is used to quantita-
tively validate the model’s overall prediction performance.
3. Results and discussion

In this part, we go through the DCNN-4mC tool performance
evaluation results in depth. We ran performance assessment
experiments on both the existing datasets and updated datasets
in particular.

3.1. Performance comparison with the existing methods

To have the comparison with the existing models it is important
to have similar datasets to get the quantitative results. For this pur-
pose, we computed results on different existing datasets to have
comparative analysis with the existing dataset-specific state-of-
the-art techniques. Table 4 shows the performance comparison
of DCNN-4mC on existing databases with state-of-the-art tech-
niques of each database. All the results are computed using a 10-
fold cross-validation process. For C.elegans results are computed
on three different datasets, where the proposed model has
achieved the highest performance concerning all metrics for all
datasets. The results for species A.thaliana, D.melanogaster and F.
vesca are calculated on two individual datasets for every specie
while for the remaining species the results are evaluated on a sin-
gle dataset for every species. The DCNN-4mC tool has outper-
formed in all datasets regardless of the species.

Liu et al. evaluated the DeepTorrent model on 6 different spe-
cies whereas Lv et al. assess the iDNA-MS tool on 4 different spe-
cies for 4mC identification. The proposed DCNN-4mC performed
better than the DeepTorrent tool and iDNA-MS tool. To efficiently
train higher-order feature representations, the DeepTorrent uses
a multi-layer CNN model with an inception module coupled with
bidirectional long short-term memory and four distinct feature
encoding techniques to encode the sequence. The iDNA-MS tool
uses multiple combinations of three encoding schemes to train a
random forest classifier for the prediction. Another deep
learning-based model Deep4mCPred uses multiple CNN layers to
achieve high performing results on three species. While on other
hand the proposed DCNN-4mC model uses a single and simple
encoding scheme to train the densely connected neural network
which uses skip connections to keep the track of the shallow fea-
tures. An analysis from this comparison can be driven that the rea-
son for the DCNN-4mC tool to perform higher than the other model
is the skip connection. We have even tried to add a few processing
units at the skip connections however that didn’t achieve better
results. Therefore, this conceptualizes that the raw shallow infor-
mation on the deeper layers of CNN plays an important role in
the modification prediction.

3.2. Performance evaluation on updated datasets

As this research presents the updated dataset for all the species
taken into consideration, therefore, it is mandatory to evaluate the
model for the updated training and independent dataset. This will
help future researchers to use the updated benchmark dataset and
have better comparative analysis with DCNN-4mC. Fig. 2 gives the
graphical illustration of 10-fold cross-validation results achieved
by the proposed architecture on 12 different species. Further Sup-
plementary Table S1 shows the quantitative results in terms of
sensitivity, specificity, ACC, MCC, AUC, precision and F1-score
obtained by the proposed model. The results show that DCNN-
4mC has attained good performance on the updated dataset for
10-fold cross-validation. The proposed tool attained accuracy of
0.954574, 0.921147, 0.922222, 0.954461, 0.945561, 0.928955,



Table 4
Performance Comparison of DCNN-4mC on existing databases with state-of-the-art techniques of each database. The bold values in the table shows high performance achieved
for the particular database.

Species Dataset Model Sensitivity Specificity Accuracy MCC AUC

Caenorhabditis elegans (C. elegans) Liu et al. [24] DeepTorrent 0.930 0.910 0.920 0.840 0.976
DCNN-4mC 0.971 0.968 0.969 0.938 0.992

Zeng et al. [27] 4mcDeep-CBI 0.949 0.894 0.930 0.850 0.924
DCNN-4mC 0.970 0.942 0.959 0.913 0.986

Rao et al. [26] Deep4mCPred 0.915 0.872 0.893 0.787 –
DCNN-4mC 0.955 0.951 0.953 0.906 0.982

Drosophila melanogaster (D. melanogaster) Liu et al. [24] DeepTorrent 0.939 0.899 0.919 0.838 0.971
DCNN-4mC 0.968 0.960 0.964 0.927 0.988

Rao et al. [26] Deep4mCPred 0.876 0.866 0.871 0.742 –
DCNN-4mC 0.952 0.939 0.945 0.890 0.977

Arabidopsis thaliana (A. thaliana) Liu et al. [24] DeepTorrent 0.879 0.844 0.862 0.723 0.929
DCNN-4mC 0.937 0.930 0.933 0.866 0.967

Rao et al. [26] Deep4mCPred 0.860 0.829 0.844 0.689 –
DCNN-4mC 0.934 0.928 0.931 0.863 0.967

Escherichia coli (E. coli) Liu et al. [24] DeepTorrent 0.937 0.878 0.908 0.816 0.967
DCNN-4mC 0.960 0.941 0.951 0.902 0.983

Geoalkalibacter subterraneus (G. subterraneus) Liu et al. [24] DeepTorrent 0.857 0.701 0.779 0.565 0.866
DCNN-4mC 0.920 0.917 0.919 0.837 0.967

Geobacter pickeringii (G. pickeringii) Liu et al. [24] DeepTorrent 0.895 0.788 0.842 0.687 0.923
DCNN-4mC 0.924 0.916 0.920 0.841 0.967

Mus musculus Manavalan et al. [28] 4mCpred-EL 0.804 0.787 0.795 0.591 0.874
DCNN-4mC 0.893 0.912 0.903 0.807 0.958

Saccharomyces cerevisiae (S. cerevisiae) Lv et al. [30] iDNA-MS 0.701 0.707 0.704 0.408 0.771
DCNN-4mC 0.877 0.896 0.886 0.774 0.947

Casuarina equisetifolia (C. equisetifolia) Lv et al. [30] iDNA-MS 0.717 0.705 0.711 0.422 0.780
DCNN-4mC 0.913 0.931 0.922 0.848 0.971

Tolypocladium sp SUP5-1 (Tolypocladium) Lv et al. [30] iDNA-MS 0.716 0.708 0.712 0.423 0.780
DCNN-4mC 0.850 0.858 0.854 0.708 0.915

Fragaria vesca (F. vesca) Lv et al. [30] iDNA-MS 0.830 0.818 0.824 0.648 0.900
DCNN-4mC 0.916 0.902 0.909 0.846 0.963

Hasan et al. [29] i4mC-ROSE 0.635 0.899 0.767 0.545 0.883
DCNN-4mC 0.951 0.939 0.945 0.860 0.978

Rosa chinensis (R. chinensis) Hasan et al. [29] i4mC-ROSE 0.668 0.900 0.784 0.563 0.889
DCNN-4mC 0.900 0.905 0.902 0.806 0.953
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0.917746, 0.911669, 0.903125, 0.902906, 0.886363 and 0.854032
for C.elegans, A.thaliana, C.equisetifolia, D.melanogaster, E.coli, F.
vesca, G.pickeringii, G.subterraneus,Mus musculus, R.chinensis, S.cere-
visiae and Tolypocladium, respectively. For all the species the
obtained accuracy remained more than 85%. As suggested in liter-
ature the binary classification evaluation is better carried out by
MCC rather than other [38,39]. The MCC measurement suggests
that the model is not biased towards one class. The high MCC
values achieved by the proposed model suggests the high-quality
prediction by it. Further ROC curve and AUC also represents the
quality of the model. Therefore, Supplementary Figs. S1–S12 repre-
sents the ROC curves for all 10 folds for every species individually
along with the computed AUC on every fold as well as the average.
The AUC values achieved by the model are 0.984338, 0.957957,
0.970799, 0.981456, 0.983691, 0.970450, 0.966007, 0.956868,
0.958437, 0.953251, 0.946710 and 0.914519 for C.elegans, A.thali-
ana, C.equisetifolia, D.melanogaster, E.coli, F.vesca, G.pickeringii, G.-
subterraneus, Mus musculus, R.chinensis, S.cerevisiae and
Tolypocladium, respectively.

The proposed model is also assessed on the updated indepen-
dent dataset. Fig. 3 shows the visual representation of the proposed
model on an updated independent dataset while Supplementary
Table S2 shows the numerical results of the same. The achieved
F1-scores by the tool are 0.896252, 0.868546, 0.774721,
0.909667, 0.917293, 0.846171, 0.872471, 0.902786, 0.825847,
0.793190, 0.748015 and 0.779483 for C.elegans, A.thaliana, C.equi-
6015
setifolia, D.melanogaster, E.coli, F.vesca, G.pickeringii, G.subterraneus,
Mus musculus, R.chinensis, S.cerevisiae and Tolypocladium respec-
tively. The DCNN-4mc tool exhibited good performance in this
experiment as well.

For the further experimental purpose we utilized t-SNE plots
[40] to visualize the learned features by the proposed model.
Fig. 4 represents the t-SNE plot for three different species which
are C.elegans, D.melanogaster and A.thaliana. Each t-SNE plot illus-
trates the feature representation of 4mC and Non-4mC sites after
the flattening layer. As showcased in the plots, the proposed
framework is capable of learning distinct features which can effi-
ciently discriminate 4mC sites from Non-4mC sites.
3.3. Cross-species validation

In bioinformatics, it is considered to be important that any arti-
ficial intelligence-based model should learn the genetic informa-
tion rather than just learning the dataset. Therefore to evaluate
the model in that perception, we have carried out cross-species
validation. The computed cross-validation is compared with the
phylogenetic tree which represents evolutionary relationships
between numerous biological species. If any neural network based
model learns the genetic information of the species so it would be
an easy task for the network to perform the prediction of the clo-
sely related species.



Fig. 2. The graphical illustration of 10-fold cross validation results on updated benchmark dataset of different species.

Fig. 3. The graphical illustration of results achieved on updated independent dataset of different species.

Mobeen Ur Rehman, H. Tayara and Kil To Chong Computational and Structural Biotechnology Journal 19 (2021) 6009–6019
In our case, we have some closely related biological species
which can validate the model learning. Fig. 5 shows the cross-
species validation heat map generated using the ACC values. The
diagonal values of the heatmap show the result of species being
trained and tested on the same dataset. While the neighbouring
6016
values represent the values of cross-species validation. The species
A.thaliana, C.elegans, D.melanogaster, S.cerevisiae and Mus musculus
are closely related species that belong to the same main branch
of the phylogenetic tree. As can be seen in the heat map that the
cross-species results are better in these species when compared



Fig. 4. t-SNE plots of three different species, illustrating the feature representation after flattening layer.

Fig. 5. Cross-species validation heat map.
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to their results on other species. For instance, the model trained on
A.thaliana gives good results when tested on C.elegans, D.melanoga-
ster, Mus musculus and S.cerevisiae while the other species the
model performance is not good. This shows that the proposed tool
holds the capability to learn the insight genetic information of the
biological species. Similarly, R.chinensis and F.vesca belong to the
Rosace genome, which means they are highly related to each other.
When the model is trained on F.vesca and tested on
R.chinensis so the achieved accuracy is 0.79 and when the model
is trained on R.chinensis and tested on F.vesca the achieved accu-
racy is 0.85. The model cross-species prediction results demon-
strate that the proposed architecture is competent to be relied on.
4. Webserver

The proposed DCNN-4mC predictor has been implemented on
PHP based user-friendly webserver, can be accessed freely at:
http://nsclbio.jbnu.ac.kr/tools/DCNN-4mC/. The following is a set
of instructions to use the webserver. Users can type FASTA format
sequences into the text area or click the upload icon to upload a file
containing FASTA format sequences. The sequences should be of
length 41nt. Further in a single cycle maximum of 1000 sequences
can be processed. By selecting the ‘Example’ button, an example of
FASTA format sequences can be seen. Further, choosing the species
6017
must be specified during the process. The chosen species must be
the same as that of the sequence belonging species, in order to
achieve the expected prediction accuracy. Lastly, pressing the ’Sub-
mit sequences’ button will appear the anticipated outcomes.
5. Challenges and future work

The proposed tool has undoubtedly achieved good results on
numerous biological species and holds the capability to be used
by experts. But still, a gap of improvement in 4mC sites classifica-
tion is there. Here we have discussed some of the challenges that
can be addressed in future work. Dataset is considered to be the
backbone of any artificial intelligence model. The same is the case
with this research problem. Some of the species have a very limited
amount of datasets that restricts the artificial intelligence experts
to propose an effective model. The same case happened in this
research, due to the limited amount of datasets, we reduced the
number of blocks for few species as discussed in the methodology
section. The increase in dataset size will allow the researchers to
have complex computational models which can give good classifi-
cation performance. In this research, we have tried to cover all
available species datasets. Still, the authors hold an opinion that
the dataset for new species needs to be explored. This will allow
the tools to learn distinct insight information from different spe-

http://nsclbio.jbnu.ac.kr/tools/DCNN-4mC/
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cies. Moreover, the techniques of neural networks need to be
explored which are not yet used for the purpose of DNA modifica-
tion identification. One such effort is made in this research where
the role of skip connection in the neural networks is explored for
the said research problem.

6. Conclusion

In this research, a neural network based tool known as DCNN-
4mC is proposed for 4mC site prediction. This tool is a CNN-
based framework with skip connections which uses a one-hot
encoding scheme to encode the raw DNA sequence. The DCNN-
4mC tool has contributed towards addressing the issue of general-
izability that lacks in the previously proposed frameworks. In this
study, we collected all the available datasets of different species
under a single umbrella. Where different datasets for similar spe-
cies are efficiently combined into a single dataset so that future
researchers can have a single benchmark dataset. So far, in bio-
informatics dataset for 12 different species are explored for 4mC
site classification. The proposed model has exhibited state-of-
the-art results and has outperformed all existing architectures.
The skip connection in the proposed tool helped to learn the
insight genomics features of different species and the results of
cross-species validation prove that. The proposed approach not
only achieved high results on existing databases but also per-
formed well on the updated dataset. For the ease of the research
community, we have made a freely accessible webserver of this
powerful tool for high-throughput 4mC site classification from
DNA sequences.
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