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Many drugs can be metabolized by human microbes; the drug metabolites would
significantly alter pharmacological effects and result in low therapeutic efficacy for
patients. Hence, it is crucial to identify potential drug–microbe associations (DMAs)
before the drug administrations. Nevertheless, traditional DMA determination cannot be
applied in a wide range due to the tremendous number of microbe species, high costs,
and the fact that it is time-consuming. Thus, predicting possible DMAs in computer
technology is an essential topic. Inspired by other issues addressed by deep learning,
we designed a deep learning-based model named Nearest Neighbor Attention Network
(NNAN). The proposed model consists of four components, namely, a similarity network
constructor, a nearest-neighbor aggregator, a feature attention block, and a predictor.
In brief, the similarity block contains a microbe similarity network and a drug similarity
network. The nearest-neighbor aggregator generates the embedding representations
of drug–microbe pairs by integrating drug neighbors and microbe neighbors of each
drug–microbe pair in the network. The feature attention block evaluates the importance
of each dimension of drug–microbe pair embedding by a set of ordinary multi-layer
neural networks. The predictor is an ordinary fully-connected deep neural network that
functions as a binary classifier to distinguish potential DMAs among unlabeled drug–
microbe pairs. Several experiments on two benchmark databases are performed to
evaluate the performance of NNAN. First, the comparison with state-of-the-art baseline
approaches demonstrates the superiority of NNAN under cross-validation in terms of
predicting performance. Moreover, the interpretability inspection reveals that a drug
tends to associate with a microbe if it finds its top-l most similar neighbors that associate
with the microbe.

Keywords: deep learning, bipartite graph network, link prediction, drug–microbe association, attention matrix

INTRODUCTION

The human microbiome refers to all the microbes associated with a human body, including
bacteriophages, archaea, bacteria, eukaryotes, and fungi (Lynch and Pedersen, 2016). To assess the
diversity and functions of the human microbiome, the Human Microbiome Project (HMP) was
supported by the National Institutes of Health (NIH) from 2007 to 2016 (Turnbaugh et al., 2007).
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HMP provided a complete description of the microbiome in
five tissues of the human body, including skin, gut, nostrils,
vagina, and mouth (Aagaard et al., 2013). Human microbes
have been verified for their close associations with human
health by cell experiments, animal experiments, epidemiological
studies, clinical case studies (Schwabe and Jobin, 2013; Lynch
and Pedersen, 2016), etc. Previous works have revealed that
abnormal microbe communities lead to metabolic disorders
[e.g., non-alcoholic fatty liver disease (Younossi et al., 2016),
obesity, and diabetes mellitus (Jaacks et al., 2019; Zheng et al.,
2018)]. Oral drug administration is a typical treatment. Many
drugs, however, can be metabolized by human microbes, and
the drug metabolites would significantly alter pharmacological
effects and result in low therapeutic efficacy for patients. For
example, after being modified by gut microbes, the compounds
can lead to their activation [e.g., salicylazosulfapyridine (Sousa
et al., 2014)] or inactivation [e.g., inactivation of the cardiac drug
digoxin by the intestinal actinomycete Eggerthella lenta (Haiser
et al., 2013)], or induce toxicity [e.g., 70% toxicity of Brivudine
may be attributed to intestinal microorganisms (Zimmermann
et al., 2019b)]. The persistent findings of microbiome-induced
individual pathogenesis, phenotypes, and treatment responses
boost the microbiome to be an integral part of precision medicine
(Kashyap et al., 2017). Therefore, drug–microbe association
(DMA) prediction is of great significance for therapy and
medicine development. However, the acquisition of DMAs needs
a large scale of assays with high costs, low efficiency, and culturing
limitations, and that are time-consuming. To identify DMAs
rapidly and effectively, machine learning methods, especially
deep learning-based methods, have attracted many scientists due
to their inspiring applications in other areas [e.g., predicting
microbe–disease associations (He et al., 2018; Peng et al.,
2018), drug–drug interactions (Yu et al., 2021a), lncRNA–
miRNA interactions (Zhang L. et al., 2021), and lncRNA–protein
interactions (Lihong et al., 2021; Zhou et al., 2021)].

In recent years, researchers have applied Graph Attention
Network [GAT (Velickovic et al., 2018)] to bioinformatics with
remarkable results. For instance, Zhang Z. et al. (2021) used
fragments containing functional groups to represent molecular
maps for molecular property prediction through a fragment-
oriented multi-scale graph attention model. Bang et al. (2021)
made the prediction of polypharmacy side effects with enhanced
interpretability based on graph feature attention network.
Constructing a bipartite network is the most popular approach
to represent associations between two types of nodes. The
prediction problem of DMA can then be transformed into a
link prediction problem in a bipartite graph network. However,
few models predict DMAs through bipartite graph networks.
For example, EGATMDA (Long et al., 2020b) used the drug–
disease–microbe perspective to predict the DMAs, which does
not show a direct relationship between drugs and microbes and
may contain noise. HMDAKATZ (Zhu et al., 2019) predicted
the interactions between drugs and microbes based on the Katz
(1953); the disadvantage of this method in the node’s information
transmission (i.e., a node with a high central value transmits its
high influence to all its neighbors) may not be appropriate in
real life. GCNMDA (Long et al., 2020a) used GCN, random walk

with restart, and GAT to learn node features, which relies on
the parameter “step size” when using the restart random walk
algorithm. HNERMDA (Long and Luo, 2020) learned the drug–
microbe heterogeneous network information by metapath2vec
measure, which considered the type of nodes in the meta-path-
based random walk but the skip-gram does not treat them
differently during training.

In the field of drug–target interaction prediction, there is
a widely accepted assumption that structurally similar drugs
tend to interact with the same target (Khalili et al., 2012).
Analogously, we anticipate that if a drug (dx) can associate
with a microbe (bp), the other drugs associated with the same
microbe (bp) are usually the first l nearest neighbors of the drug
(dx). Therefore, we propose a new model, Nearest Neighbor
Attention Network (NNAN), which aggregates the information
from nodes’ neighbors according to their entity types and maps
them into a unified embedding space for further predicting
potential DMAs. The comparison with state-of-the-art methods
on two different databases demonstrates the superiority of our
NNAN. Moreover, its interpretability is illustrated and validates
our assumption. Finally, the case study assesses its ability to find
potential associations between drugs and microbes. In general,
our contribution is as follows:

• We make use of three networks: drug–drug similarity
network, microbe–microbe similarity network, and a drug–
microbe bipartite graph network. Imitate the idea of KNN
[K-Nearest-Neighbor (Cover and Hart, 1967)] to learn the
substructures of the bipartite graph network, which can
promote the accuracy of link prediction.
• We follow the idea of GAT and use multiple DNNs to learn

the weights of embedding features to improve the screening
efficiency of potential associations.
• In a quantitative way, we verify the hypothesis that “If a

drug can associate with a microbe, the other drugs that
associate with the microbe are usually the first l nearest
neighbors to the drug.”

MATERIALS AND METHODS

In this section, we describe a model for predicting DMAs
in a bipartite graph network, named NNAN as shown in
Figure 1. It consists of four components: a similarity network
constructor, a nearest-neighbor aggregator, a feature attention
block, and a predictor. Firstly, the similarity network constructor
is mainly used to build a drug similarity network and a
microbe similarity network (section “Similarity Networks” for
details). Secondly, the nearest-neighbor aggregator generates the
embedding representations of drug–microbe pairs by integrating
drug neighbors and microbe neighbors of each drug–microbe
pair in the network (section “Nearest-Neighbor Aggregator for
Drug–Microbe Pair Embeddings” for details). Thirdly, the feature
attention block evaluates the importance of each dimension of
drug–microbe pair embedding by a set of ordinary multi-layer
neural networks (section “Feature Attention Block” for details).

Frontiers in Microbiology | www.frontiersin.org 2 April 2022 | Volume 13 | Article 846915

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-846915 May 27, 2022 Time: 11:21 # 3

Zhu et al. NNAN

FIGURE 1 | The overall framework of NNAN for drug–microbe association prediction.

FIGURE 2 | Nearest-Neighbor Aggregator block. (A) Microbe-specific drug neighbor aggregator (MsDNA); the embedding representation of the unidirectional edge,
which is from the drug dx to the microbe bp. (B) Drug-specific microbe neighbor aggregator (DsMNA); the embedding representation of the unidirectional edge,
which is from the microbe bp to the drug dx , where x

⊆ is a set of instantiated keywords, x denotes the neighbors of microbe bp in the Netb. Sb(bp, mj)

denotes the similarity of bp and mj . hj is the corresponding one-hot encoding vector of mj .

Finally, we make use of a fully-connected deep neural network as
a binary classifier to predict potential DMAs.

Similarity Networks
Drug Similarity Network
We calculate drug similarities by the following steps. First, drugs
are represented by Functional-Class Fingerprints [FCFPs (Rogers
and Hahn, 2010)], which is the generalized version of Extended-
Connectivity Fingerprints [ECFPs (Rogers and Hahn, 2010)] with
more attention to atom functions. The FCFPs is implemented by

RDKit (Landrum, 2010). Second, the similarity between drug di
and drug dj is calculated by the Tanimoto coefficient (Rogers and
Tanimoto, 1960) as follows:

S
(
di, dj

)
=

fdi · fdj

||fdi || + ||fdj || − fdi · fdj
(1)

where fdi and fdj represent the FCFPs vector of drug di and drug
dj, respectively, || · || indicates the norm of the vector.

Fingerprint similarity provides intuitive results: why the
two molecules have been determined to be similar, but
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FIGURE 3 | Feature attention block. Input the representation matrix Ek × g into a set of DNNs, then we obtain an attention matrix Mk × gof drug–microbe embedding
features. After the element-wise product operation of Mk × g and Ek × g, the final feature matrix F̃k × g of the drug–microbe pairs is obtained.

TABLE 1 | The statistics of two databases.

Drugs Microbes Associations

Database 1 999 133 1,708

Database 2 176 76 4,194

this transparency tends to vanish completely when molecular
fingerprints are used as input to machine learning models.
Inspired by the similarity maps (Riniker and Landrum, 2013),
we calculate the contribution of each atom to the similarity
between two molecules. To make it easier to distinguish the
drugs, we regard di as a reference drug, dj as a comparison
drug, and S

(
di, dj

)
as the base similarity of this drug pair. The

RDKit will automatically number each atom of the comparison
drug dj (K = {0, 1,..., t−1}). Then, we remove the atoms
of the comparison drug one by one in the order of the
atomic numbers to form multiple new comparing drugs (dkj , k ∈
K, K = {0, 1,..., t−1}). We calculate the new similarity between
the reference drug (di) and the new comparison drug (dkj ), and
regard the difference between the new similarity and the base
similarity as the weight (w k

j ) of each removed atom. The weight
w k

j is formulated as:

w k
j =

∣∣∣S (di, dj
)
− S

(
di, dkj

)∣∣∣ (2)

We set the dimension of the FCFPs vector to 1,024 bits, of
which the non-zero bits indicate the occurrences of drug feature
substructures. To obtain the weight of each non-zero bit, we
add up the weights of all the atoms contained in the feature
substructure:

wbitq = SUMq(wk
j ) (3)

where wbitq denotes the weight of the qth dimensional bit of
the FCFPs vector, and the function SUMq(·) denotes the sum
of all the atomic weights contained in the feature substructure
represented by the qth dimensional bit of the FCFPs.

Then, the weighted Tanimoto similarity (Ioffe, 2010) between
the reference drug and the comparison drug can be calculated as
follows:

Sd
(
di, dj

)
=

∑1024
q = 1 min (fqdi ,wbitq fqdj)∑1024
q = 1 max (fqdi ,wbitq fqdj)

(4)

where fqdi and fqdj denote the qth dimension of the FCFPs vectors
for the reference drug and the comparison drug.

Based on drug similarities, we can build a drug similarity
network Netd, where nodes are drugs. There are edges between
the drugs if these drugs associate with the same microbe; the
edges are weighted by drug similarities.

Microbe Similarity Network
To calculate microbe similarities, we use BLAST (Altschul
et al., 1990) to make pairwise alignments of microbial
genomes. Specifically, the main function of BLAST is to
discover local similarity regions between sequences and then
use the local sequence alignment algorithm (Smith and
Waterman, 1981) to calculate the similarity. For example,
GA = g1

Ag2
A...gnA and GB = g1

Bg2
B...gmB are the genome

sequences of microbe A and microbe B, where n and m are
the lengths of sequences GA and GB, respectively. BLAST
creates the scoring matrix H(n + 1) × (m + 1) and makes the first
row and column elements zero. The formula for the element
Hij (Hij ∈ H

(n + 1) × (m + 1)
, i = 1, 2, ..., n; j = 1, 2, ...,m) in

this scoring matrix is:

Hij = max


Hi−1,j−1 + Score

Hi−k,j − 2
Hi,j−k − 2

0

(g i
A = g j

B, Score = 1; g i
A 6=

g j
B, Score = − 1) (5)

the highest value in the matrix H(n+1) × (m+1) is chosen as
sw (GA, GB). The similarity between microbes A and B is adopted
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by the same definition as Yamanishi et al. (2008), as follows:

Sb(A, B) =
sw(GA,GB)

√
sw(GA,GA) × sw(GB,GB)

(6)

Based on microbe similarities, we can build a microbe similarity
network Netb, where nodes are microbes. There are edges
between the microbes if these microbes associate with the same
drug; the edges are weighted by microbe similarities.

Nearest-Neighbor Aggregator for
Drug–Microbe Pair Embeddings
In this section, inspired by the idea of KNN [K-Nearest-Neighbor
(Cover and Hart, 1967)], we learn the substructures of the
bipartite graph network to obtain the embedding representations
of drug–microbe pairs.

First, we construct the drug–microbe bipartite graph network,
G = (D, B, E), where D = {d1, d2, ..., dm} represents m drugs,
B = {b1, b2, ..., bn} represents n microbes, and each edge (eij)
in edge set E connects two nodes that belong to two different
sets of vertexes (i.e., i in D, j in B). We regard the DMAs as
bidirectional links. That is, edx→bp denotes the edge pointing
from the drug dx to the microbe bp, and ebp→dx denotes the edge
pointing from the microbe bp to the drug dx. Correspondingly,
the nearest-neighbor aggregator contains two blocks (Figure 2),
the microbe-specific drug neighbor aggregator (MsDNA), and
the drug-specific microbe neighbor aggregator (DsMNA). Due to
their architectures being similar, we only illustrate the MsDNA
block in this section.

Microbe-specific drug neighbor aggregator (Figure 2A)
contains a virtual key dictionary; N = {n1, n2, ..., nm} indicates
all the drugs. In the dictionary, we imitate the idea of KNN to
learn the substructures of the bipartite graph network, where
virtual keys are sorted by their semantic nearest neighbors.
In simple terms, n1 denotes dx itself, its nearest neighbor is
the second key, and the farthest neighbor is the last key. The
embedding representation of the edge, which is from drug dx to
microbe bp, is formulated as follows:

a
(
dx, bp

)
=

|N |∑
i

Sd
(
dx, ni

)
vi (if ni /∈ N p, Sd

(
dx, ni

)
= 0)

(7)
where N p

⊆ N is a set of instantiated keywords, and N p denotes
the neighbors of dx in the Netd. Sd

(
dx, ni

)
denotes the similarity

of dx and ni, and vi is the corresponding one-hot encoding vector
of ni (i.e., the one-hot encoding has a non-zero value only in the
ith element, and all other position elements are zero).

Similarly, DsMNA (Figure 2B) makes the single directional
embedding representation from bp to dx as a(bp, dx). Then, the
representation of drug–microbe pair could be encoded as

e
(
dx, bp

)
=

[
a(dx, bp) ‖ a(bp, dx)

]
(8)

where e
(
dx, bp

)
is generated via the concatenation of

bidirectional embedding, and ‖ is the concatenation operation.
All the embedding representations of drug–microbe pairs
could stack as a matrix Ek × g , where k is the number of

all the drug–microbe pairs and g is the dimension of each
embedding. The nearest-neighbor aggregator effectively learns
the bipartite graph substructures, and Ek × g will be input into a
feature attention block to select crucial features for achieving a
better DMA prediction.

Feature Attention Block
To improve the performance of the prediction, we build the
feature attention block (Figure 3) for updating the embedding
of drug–microbe pairs.

Recall the equation of output feature representation in GAT
(Velickovic et al., 2018):

−→

h
′

i = σ(
∑
j∈Ki

αijW
−→
hj ) (9)

where σ is a nonlinear activation function, Ki is the first-order
neighbors of node i (including i), αij is the coefficients computed
by the attention mechanism, and W is a weight matrix. To make
equation (9) easier to understand. We compute the coefficients
as: ∑

j∈Ki

αij = Ã�M (10)

where Ã = A+ I is the adjacency matrix of the undirected graph
G with added self-connections (Kipf and Welling, 2017),� is the
element-wise product operation, and M is the attention matrix.
Then, the layer-wise propagation rules in GAT can be formulated
as:

H(l+1)
= σ(

(
Ã�M

)
H(l)W(l)) (11)

where σ is a nonlinear activation function, and W(l) is the weight
matrix of the lth neural network layer.

Inspired by the conception of the layer-wise propagation rules
in GAT, we calculate the augmented representation matrix F̃k × g
by

F̃k × g = Ek × g �Mk × g (12)

where Ek × g is the representation matrix of the drug–microbe
pairs obtained from the nearest-neighbor aggregator, Mk × g
is an attention matrix of Ek × g , and � is the element-wise
product operation. We take the representation matrix Ek × g as
a feature matrix F (F = {f1, f2, ..., fg}), which is composed of g
column vectors (fi(i = 1, 2, ..., g)). The feature attention block
mainly uses Mk × g to indicate the importance of features in the
Ek × g . Each feature dimension fi can be labeled as “selected” or
“discarded” in a hard way, or be associated with a probability to
be selected in a soft way; we employ DNNs to model the mapping
by

mi = DNNs[fi] (13)

the DNN contains an input layer for each element of the
feature dimension fi and an output layer with sigmoid as its
activation function.

In total, we build k × g DNNs to obtain Mk × g . The
final feature matrix F̃k × g of the drug–microbe pairs is
obtained after the element-wise product operation of Mk × g and
Ek × g . F̃k × g is further fed into a predictor to achieve better
predictive performance.
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TABLE 2 | The performance comparison of DMA prediction.

Method Database 1 Database 2

AUROC AUPRC Time (s/epoch) AUROC AUPRC Time (s/epoch)

LAGCN 0.861 0.323 0.201 0.944 0.721 0.021

NIMCGCN 0.778 0.156 19.076 0.815 0.720 0.721

GCNMDA 0.894 0.042 0.341 0.821 0.177 0.127

NNAN 0.911 0.502 0.649 0.902 0.840 0.019

The highest value is indicated in bold, and the next highest value is underlined.

FIGURE 4 | Mensurable clues of embedding features to the association outcome. (A) The distribution of embedding features along with the sorted drug neighbor
keys. (B) The distribution of feature importance along with sorted node neighbor keys. (C) The predictive performance with top-l features concerning l in terms of
AUROC. (D) The predictive performance in terms of AUPRC.

Predictor
To implement the link prediction in the drug–microbe bipartite
graph network, an ordinary DNN is utilized as the binary
predictor that contains an input layer for the embedding
representation of drug–microbe pairs, a hidden layer with ReLU
as its activation function, and the two-neuron output layer with
Sigmoid as its activation function. The output layer generates a
probability that indicates the association likelihood of the drug
and the microbe. The probability is formulated as:

P = ϕ(F
(
ReLU[F

(̃
F
)
]
)
) (14)

where ϕ is the sigmoid activation function, and F(·) is the fully-
connected layer.

The entire network of NNAN with the nearest-neighbor
aggregator, feature attention weights, and DNN weights can

be jointly optimized through the binary cross-entropy loss as
follows:

loss = Ylog (D(̃F))+ (1− Y)log (1−D(̃F))+ λR(θ) (15)

where Y is the truth labels of drug–microbe pairs, D(·) is the
DNN, θ denotes the weight parameters in the entire network,
R(·) is an L2-norm, and λ is coefficient of the regularization item.

EXPERIMENTS AND RESULTS

Data
In our experiments, two databases are collected from MDAD
(Sun et al., 2018) and Zimmermann et al. (2019a), respectively.
The former work MDAD (Sun et al., 2018) investigated 5,505
clinically or experimentally DMAs between 1,388 drugs and
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TABLE 3 | The associations among Staphylococcus aureus and ten drugs.

Drug name Rank Association Drug name Rank Association

Octyl gallate 1 Yes Tannic acid 6 No

Butyl gallate 2 Yes Tea tree oil 7 Yes

Octadecyl gallate 3 Yes Pentagalloylglucose 8 Yes

Ethyl gallate 4 Yes 4-Ethylcatechol 9 No

Methyl gallate 5 Yes Hamamelitannin 10 Yes

These ten drugs are ranked in order of their similarity to Hexyl gallate.

TABLE 4 | Top 20 predicted drugs associated with Bacteroides fragilis.

Drug name Evidence Drug name Evidence

NATEGLINIDE PMID: 17253883 RAMIPRIL PMID: 31158845

BENAZEPRIL PMID: 20445573 DILTIAZEM unconfirmed

VORICONAZOLE PMID: 18034666 CLEMASTINE FUMARATE PMID: 31158845

FEBUXOSTAT PMID: 18421623 NAPROXEN (+) PMID: 15058617

LOPERAMIDE PMID: 18192961 ERGONOVINE MALEATE PMID: 17948937

DIGITOXIN PMID: 1944247 DROSPIRENONE PMID: 28986954

SOTALOL PMID: 27836712 DICYCLOMINE unconfirmed

EZETIMIBE PMID: 15871634 PROCARBAZINE PMID: 1316811

IRBESARTAN PMID: 12800253 RIZATRIPTAN BENZOATE unconfirmed

SUMATRIPTAN SUCCINATE PMID:19925626 SULPIRIDE PMID: 31158845

The first column records the top 10 drugs, while the third column records the top 10–20 drugs.

180 microbes. After removing redundant information, these
association entries are grouped into Database 1, which contains
999 drugs, 133 microbes, and 1,708 DMAs.

The latter work (Zimmermann et al., 2019a) originally studied
how 76 kinds of human gut bacteria metabolize 271 oral drugs,
and found that 176 out of 217 drugs are significantly consumed
by at least one bacteria strain. These associations are grouped
into Database 2, which includes 176 drugs, 76 bacteria, and 4,194
associations (These two databases are shown in Table 1).

Comparison
Since there are few existing approaches for predicting DMAs, we
compare NNAN with three state-of-the-art methods, which were
raised for bipartite link prediction.

• LAGCN (Yu et al., 2021b): A layer attention
graph convolutional network for the drug–disease
association prediction.

• NIMCGCN (Li et al., 2020): A neural inductive matrix
completion with graph convolutional networks for
miRNA–disease association prediction.

• GCNMDA (Long et al., 2020a): Predicting human
microbe–drug associations via graph convolutional
network with conditional random field.

To evaluate the performance of these methods, we regard
the known DMA pairs as positive samples and unlabeled DMA
pairs as negative samples (Peng et al., 2020; Li et al., 2022). We
set up a 5-fold cross-validation scenario in which we randomly
divide positive samples and negative samples into five groups,

respectively. One group of positive samples and one group of
negative samples are treated as test samples in turn for each
round. The remaining groups are used for training purposes.
Our model is trained by Gradient Descent Optimizer (Cauchy,
2009), with batch size 3,000 for 2,000 epochs, the initial learning
rate is set to 0.9, and the regularization rate is set to 2e-4. We
use AUROC (area under the receiver operating characteristic
curve) and AUPRC (area under the precision-recall curve) as
metrics to measure the DMA prediction performance. Moreover,
we investigate the running time in terms of per epoch.

The comparison (Table 2) shows that NNAN obtains the best
AUROC value (0.911) and the best AUPRC value (0.502) in
Database 1. NNAN attains the next-highest AUROC value (0.902)
and the best AUPRC value (0.840) in Database 2. To further
present the performance of NNAN, we calculate the running
time for one epoch of the baselines and NNAN, respectively. As
presented, with the same computing equipment, NNAN takes
the third-shortest running time in Database 1 and the shortest
running time in Database 2. In general, we can see that NNAN
are comparable in terms of AUROC, AUPRC, and computation
time. It demonstrates that NNAN is superior to other methods on
the databases we collected.

Interpretability of Nearest Neighbor
Attention Network
How does the NNAN interpret the hypothesis that “If a drug can
associate with a microbe, the other drugs that associate with the
microbe are usually the first l nearest neighbors to the drug.”

The model has two significant advantages to enhance
interpretability. First, each column vector mi of Mk × g indicates
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the global importance of each feature dimension fi. Moreover, the
element-wise product between Ek × g and Mk × g generates the
importance map of embedding features.

We first use the MsDNA in the nearest-neighbor aggregator
block to show how the representation of drug–microbe pairs
can provide intuitive hints, on which embedding features lead
to the association. For the queried drug dx to the microbe bp
of associated, non-zero cells in the embedding representation of
a(dx, bp) stand for its attention values derived from the drugs
commonly linking bp. Since the keys are sorted in descending
order from the drug itself (n1) to the farthest neighbor (nm), the
positions of non-zero cells are crucial to the final association.

Take Database 1 as an example. By calculating two average
embedding vectors for approved DMAs and unlabeled drug–
microbe pairs, we obtained a distribution along with the drug
key dictionary from n1 to n66(Figure 4A). As illustrated, the
significantly high values of embedding features occurring among
the first l nearest neighbors reveal that a drug (dx) associated with
a specific microbe (bp) can always find its top-l nearest neighbors
among other drugs that associate with the same microbe. This
observation demonstrates that a drug is possibly associated with
the microbe if it has more non-zero value cells on the positions of
the first l feature dimensions. This phenomenon could be caused
by the fact that over 80% of approved drugs are of “follow-on”
or “me-too” drugs. Due to high cost and high risk, the design
of novel drugs, except for pioneer drugs, always starts from
the structures of one or several existing drugs and then slightly
modify them until meeting pharmacological needs (DiMasi and
Faden, 2011). Analogously, the results of the DsMNA block along
the microbe neighbor aggregator keys reveal that a microbe
associated with a specific drug usually finds its near neighbors
associated with the same drug.

Moreover, we illustrate how the feature attention matrix
Mk × g can provide data-driven hints on which embedding
features lead to the association. Since a high-value cell in
Mk × g stands for a crucial feature dimension contributing
to determine the association between a queried drug and a
microbe, the importance m(i, :) of each feature fi can be
measured by the average of value entries in the ith column
of Mk × g (Figure 4B). The importance distribution along
with the sorted drug neighbor keys illustrates that highly
important features are usually located among the first l nearest
neighbors. In addition, the predictive performance with top-
l features concerning l is investigated (Figures 4C,D). The
number of top features is tuned in the list {1, 6, 11, 16,...,
66}. As l is increasing to 16, the performance increases
sharply in the top-l features. When l keeps increasing, the
performance increases slowly, then even decreases at the
greater value of l. Again, this illustration demonstrates that the
selection of crucial features is significantly better than the set
of all features.

In summary, both embedding feature matrix Ek × g , which
is generated by the nearest-neighbor aggregator, and its feature
attention matrix Mk × g provide mensurable clues to the
association outcome.

To complement the verification of the interpretability of
NNAN, we selected one microbe (i.e., Staphylococcus aureus,

which is a common causative agent of food poisoning) and one
drug (i.e., Hexyl gallate, which has strong antimalarial activity
against Plasmodium falciparum) from Database 1, and there was
an association between them (de Lima Pimenta et al., 2013).
We calculated the similarities between drugs using Hexyl gallate
as the reference molecule and sorted the drugs in order of
their similarity to Hexyl gallate. Then, we picked the top 10
drugs and checked whether these drugs were associated with
S. aureus in Database 1. Finally, we found out that 8 out of
the top 10 ranked drugs for Hexyl gallate are associated with
S. aureus (Table 3).

From Table 3, it is clear that a drug tends to associate with
a microbe if it finds its top-l near neighbors associate with
the same microbe. Moreover, the higher the ranks of its top-
l near neighbors are, the more possible it is to associate with
the microbe. This conclusion would be helpful to screen drug-
like molecules.

CASE STUDY OF NOVEL PREDICTION

To further confirm the effectiveness of NNAN, we apply our
model on one microbe (i.e., Bacteroides fragilis) in Database 2 as a
case study. Bacteroides are the major human colonic commensal
microbes (Kuwahara et al., 2004). Although B. fragilis is rare in
comparison to other Bacteroides species, it is the most prevalent
clinical isolation of the genus (Salyers, 1984). Thus, we select
B. fragilis for the case study experiment.

Nearest neighbor attention network predicts potential
associations between drugs and B. fragilis by scoring drug–
microbe pairs (probability). The higher the score, the more
likely the association between the drugs and B. fragilis exists.
In the case study, we verified whether NNAN could find out
potential linkages between B. fragilis and drugs. According
to the ranking of potential DMAs, we validated the top 10,
20, and 50 predicted candidate drugs by a literature search.
Eventually, the validation indicates that 10, 17, and 38 out
of the top 10, 20, and 50 predicted drugs associated with
B. fragilis were found by previously published literature. For
example, 85% out of the top 20 predicted candidate drugs for
B. fragilis are validated (Table 4); more details can be found
in the Supplementary Material. These results of prediction
demonstrate the ability of NNAN for predicting potential
DMAs in practice.

CONCLUSION

This work has introduced NNAN, a deep learning-based bipartite
graph network model to predict potential associations between
drugs and microbes. NNAN calculates drug similarities using
the weights of feature substructures. It provides an embedding
representation based on the near neighbor aggregation for drug–
microbe pairs, to enhance the explanation of DMAs. In addition,
the model provides a crucial feature selection attention matrix
for achieving more accurate predictions. These three components
of NNAN jointly reveal that a drug associated with a specific
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microbe can always find its top-l near neighbors among other
drugs that associate with the same microbe. Moreover, they
uncover that the higher the ranks of its top-l near neighbors are,
the more possible it is to associate with the microbe. Under both a
cross-validation setting and a realistic potential linkage discovery
setting, the empirical comparison of the proposed framework
with three state-of-the-art baselines demonstrates that NNAN
has significant competitive performance in predicting DMA. In
addition, the framework of our model can also be evaluated in
more similar biological issues (e.g., miRNA–disease, drug–target,
and compound–protein associations prediction). Furthermore,
there is still room to improve the model. We can set new
experimental scenarios, which identify the DMAs for new
drugs or new microbes, and can also integrate more biological
databases to enrich the information of DMAs to improve the
predictive ability.
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