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Abstract: Since neurodevelopmental disorders (NDDs) influence more than 3% of children world-
wide, there has been intense investigation to understand the etiology of disorders and develop
treatments. Although there are drugs such as aripiprazole, risperidone, and lurasidone, these medica-
tions are not cures for the disorders and can only help people feel better or alleviate their symptoms.
Thus, it is required to discover therapeutic targets in order to find the ultimate treatments of neurode-
velopmental disorders. It is suggested that abnormal neuronal morphology in the neurodevelopment
process is a main cause of NDDs, in which the serotonergic system is emerging as playing a crucial
role. From this point of view, we noticed the correlation between serotonin receptor subtype 7
(5-HT7R) and NDDs including autism spectrum disorder (ASD), fragile X syndrome (FXS), and Rett
syndrome (RTT). 5-HT7R modulators improved altered behaviors in animal models and also affected
neuronal morphology via the 5-HT7R/G12 signaling pathway. Through the investigation of recent
studies, it is suggested that 5-HT7R could be a potential therapeutic target for the treatment of NDDs.

Keywords: serotonin receptor; 5-HT7R; neurodevelopmental disorders; autism spectrum disorder;
fragile X syndrome; Rett syndrome

1. Introduction

Neurodevelopmental disorders (NDDs) are a group of disorders characterized by
abnormal brain developmental processes which affect emotion, learning, cognition, and
memory [1]. NDDs contain a wide range of disorders such as autism spectrum disorder
(ASD), attention deficit hyperactivity disorder (ADHD), intellectual disabilities (IDs), and
neurogenetic disorders [2–4]. Commonly, patients who are suffering NDDs have a comor-
bidity of two or more disorders. For instance, the majority of children with ADHD have
language disabilities and considerable overlap exists in autism spectrum disorder and
ADHD [5]. Although there are multiple causes of NDDs, which are social deprivation,
genetic and metabolic diseases, nutrition, and infection, NDDs are typically associated
with gene vulnerability, mutation, and environmental factors that influence the pheno-
type [6,7]. Besides, it has been proposed that environmental and genetic factors contribute
to neuronal impairment and accordingly result in the occurrence of NDDs [8]. Neuronal
processes, including outgrowth of dendrites and axons, are critical steps during early
development [9] and alterations in the dendritic structure were found in multiple ani-
mal models of NDDs [10–13], which demonstrates a close relationship between neuronal
morphology defects and NDDs. Despite efforts to recognize the fundamental etiology of
NDDs, there are no cures for these disorders. Only a few FDA-approved drugs such as
aripiprazole [14–16], risperidone [17,18], and lurasidone [19] have been applied to mitigate
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the symptoms. Several studies suggests that serotonin, one of the most studied neurotrans-
mitters in our brain, plays a crucial role in the early neurodevelopmental stage [20]. We
investigate the relationship between serotonin receptor subtype 7 (5-HT7R) as a therapeutic
target and various NDDs including autism spectrum disorder (ASD), Rett syndrome (RTT),
and fragile X syndrome (FXS).

5-HT7R is one of the serotonin receptor (5-HTR) subtypes and belongs to a family of G
protein-coupled receptors (GPCRs) [21]. 5-HT7Rs are distributed in the various areas of the
central nervous systems (CNS) such as the thalamus, hypothalamus, hippocampus, and
cortex, and are involved in the regulation of sleep, circadian rhythm, learning, and memory
and cognition [22,23]. It has been reported that 5-HT7R is coupled to Gs protein, resulting
in an increase in intracellular cAMP, and also interacts with G12 protein which is one of the
Gα subunits [24]. G12 protein interacts with various members of mammalian RhoGEFs,
which activate Rho GTPases constituted with RhoA, Cdc42, and Rac1 [25]. Through the
diverse studies, it is suggested that these Rho GTPases have an essential role in regulating
cell morphology, actin cytoskeleton, neural branch dynamics, dendritic arbor, and neurite
outgrowth [26,27]. It is identified that 5-HT7R mediated activation of G12 caused stimula-
tion of RhoA and Cdc42 among the Rho GTPases, which resulted in activation of serum
response element (SRE) regardless of Gs protein-induced activation of protein kinase A
(PKA). In particular, RhoA and Cdc42 promote cell rounding and filopodia formation in
the cell morphology. Accordingly, the stimulation of 5-HT7R in hippocampal neurons
leads to an increase in neurite length, dendritic protrusions, and synaptic density, which is
suppressed by SB269970, a selective 5-HT7R antagonist [24,28]. Also, it is suggested that
cyclin-dependent kinase 5 (Cdk5), a signaling molecule known to regulate actin dynamic
and stabilization in neurons, and Cdc42 are required to maintain 5-HT7R mediated spine
formation, acting as downstream effectors of 5-HT7R. The inhibitors of Cdk5 and Cdc42
blocked or reduced dendritic spine formation and the number of dendritic spines, which
are increased by 5-HT7R agonist [29]. There is another signaling pathway related to synap-
tic remodeling which includes 5-HT7R-mediated activation of matrix metalloproteinase 9
(MMP-9), which induces Cdc42 activation related to G12 signaling via hyaluronan receptor
CD44 cleavage, resulting in neuronal outgrowth and dendritic spine elongation [30]. Inter-
estingly, it has been reported that the expression of 5-HT7R and G12 were downregulated
during later development, which restricted effects of 5-HT7R/G12 signaling on neuronal
morphology to the early postnatal development stage [28]. These data are of great signifi-
cance in that NDDs are primarily disorders of early development. Thus, the activation of
the 5-HT7R/G12 signaling pathway appears to become an attractive therapeutic target for
the treatment of NDDs.

The use of 5-HT7R agonists has been attempted in the treatment of several NDDs.
Various 5-HT7R agonists exhibited the relief of hyperactivity, anxiety, and stereotypy and
refined social ability in the ASD animal models [31] and, interestingly, FDA-approved
antipsychotic drugs for ASD showed antagonistic activity against 5-HT7R [14–19]. Usually,
agonists and antagonists of a receptor show opposite effects in in vivo study, while, in
some case of 5-HT7R, agonists and antagonists have both positive effects on ASD, as well
as antiamnestic effects in memory. The reason for the paradoxical effect is not revealed
yet [32]. Meanwhile, though many studies suggest that various genetic mutations in
a specific gene are represented as a major cause of RTT, there is no treatment for the
RTT [33–35]. Current studies demonstrate the involvement of multiple factors for the
manifestation of RTT, which are dysregulations of Rho GTPases and the serotonergic
system [36,37]. Systemic administration of a 5-HT7R selective agonist improved anxiety
profiles, environment-related exploratory behavior, and motor learning ability in the RTT
animal model, in which the authors claimed that inactivation of Rho GTPases downstream
effectors is reversed by the application of the 5-HT7R agonist [38–41]. FXS also occurs
due to a genetic mutation, especially in the Fmr1 gene, which is responsible for Fragile
X mental retardation protein (FMRP) production, which leads to the overactivation of
the signaling pathways via mGluR5 receptors and an increase in long-term depression
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(LTD) [42]. Additionally, it is reported that the stimulation of 5-HT7R not only corrected
mGluR-mediated LTD but also improved repetitive behavior and social activity in the FXS
animal model [43,44].

2. 5-HT7R/G12 Signaling Pathway

Among Gα subunits in heterotrimeric G proteins, the G12 subfamily consists of the
G12 and G13 proteins, which were defined as the fourth class of Gα subunits [45,46]. G12
and G13 have been reported to bind to GPCRs that interact with various effectors such as
Rho, p115RhoGEF, PDZ-RhoGEF, and leukemia-associated RhoGEF (LARG), which are
known as the members of the mammalian RhoGEF proteins that activate small GTPase
RhoA [47,48]. The Rho family of GTPases belongs to a subfamily of the Ras superfamily and
contains 20 members in mammals [49]. The major members of the Rho family are Cdc42,
Rac1, and RhoA, which are involved in regulating cell morphology, the actin cytoskeleton,
neurite extension/retraction, and neurite outgrowth [50,51] (Figure 1). Li and co-workers
investigated the involvement of Rho GTPases for neuronal branch dynamics and dendritic
arbor growth in living Xenopus tadpoles [26]. The authors found that each of the three
Rho GTPases had distinct effects on dendritic arbor development. RhoA activated by
lysophosphatidic acid (LPA) inhibited dendritic branch extension, reducing dendritic arbor
growth rate. Additionally, the growth rate of cells expressing negative RhoA treated with
LPA was similar to that of the control neuron, which indicates that RhoA is responsible
for the regulation of branch elongation. Conversely, Rac and Cdc42 did not affect the
dendritic growth rate. Ruchhoeft and co-workers examined the effects of Rho GTPases
on dendrite formation and growth cone morphology using Xenopus retinal ganglion cells
(RGCs) expressed with wild-type, mutant RhoA, Rac1, and Cdc42 [27]. A loss of activities
in Rac1 and Cdc42 lead to negative effects on dendrite formation in vivo. In the analysis of
growth cone morphology, growth cones overexpressed with wt-Cdc42 had more filopodia
and had larger back branches than controls, while RGCs expressing mutant Cdc42 showed
the opposite effect. Interestingly, overexpressing wt-RhoA induced a decrease in the
growth cone area. These findings that the diverse effectors of G12 manipulate neuronal
morphology imply that the G12 signaling pathway plays an important role in regulating
abnormal neuronal connectivity associated with neurodevelopmental disorders.
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Recently, it has been reported that 5-HT7R is coupled not only to the Gs protein but
also to the G12 protein [24]. Kvachnina and co-workers discovered the interactions be-
tween G12 protein and 5-HT7R by using [35S]GTPγS binding assay which determines the
exchange of GDP-GTP for Gα subunits. Since it has been demonstrated that G12 protein
regulated gene expression through transcriptional activation of serum response element
(SRE) known as transcriptional control element [52,53], the authors investigated whether
the 5-HT7R is involved in the activity of SRE, and identified that 5-HT7R-mediated activa-
tion of SRE occurred independently of Gs protein-induced activation of protein kinase A
(PKA) Moreover, the researchers found that the Rho GTPases are engaged in SRE stimu-
lation induced by 5-HT7R, of which RhoA and Cdc42, except for Rac1, were found to be
activated by 5-HT7R, which are disclosed through the experiments measuring the ability of
dominant-negative mutant of Rho GTPases to inhibit receptor-mediated SRE activation
(Figure 1). Given that the Rho GTPases family is responsible for modulating neuronal
morphology [26,27,50,51], the authors analyzed the morphology of NIH3T3 cells which
were transiently transfected with 5-HT7R and found the expression of 5-HT7R lead to
an increase of rounded and filopodia-bearing cells [24]. Also, the researchers discovered
that RhoA regulates cell rounding, whereas Cdc42 regulates filopodia formation in cells
transfected with RhoA and Cdc42 mutants and expressing 5-HT7R (Figure 1). To examine
the role of the 5-HT7R in the regulation of neuronal morphology, the authors used dis-
sociated hippocampal neurons and applied 5-HT7R agonist 5-CT to the neurons, which
significantly increased the length of neurites; this effect was abolished when SB269970, a se-
lective 5-HT7R antagonist, was administered, indicating that the activation of 5-HT7R/G12
signaling pathway contributes to neurite outgrowth. The group reported other results
about the correlation of the 5-HT7R/G12 signaling pathway with neuronal morphology
and function. Kobe and co-workers discovered that treatment of 5-CT, a 5-HT7R agonist,
increased the number of dendritic protrusions and presynaptic marker synaptophysin
which detects synaptic density [28]. The effects were diminished by the introduction of
SB269970, implying that neuronal morphology is dependent on 5-HT7R. Additionally, the
authors scrutinized the number of dendritic protrusions and the density of synapse in Gα12
knockout (KO) neurons to analyze whether these morphogenic effects are mediated by
5-HT7R/G12. Both parameters in Gα12 KO neurons were reduced compared with them
in wild type, and the knockdown of 5-HT7R using siRNAs also decreased the number of
dendritic protrusions and synaptic density. Speranza and co-workers reported that the
application of 5-HT7R selective agonist LP-211 to striatal and cortical neurons increased
neurite length, the number of dendritic protrusions, and the number of synaptic contacts,
which is restrained by SB269970; these results are similar to the effects of treatment of
5-CT [29]. Furthermore, the authors revealed that cyclin-dependent kinase 5 (Cdk5) and
Cdc42 have properties in the modulation of dendritic morphology and could be engaged in
5-HT7R mediated dendritic spine formation by analyzing the spine density of striatal neu-
rons treated with Cdk5 inhibitor roscovitine and Cdc42 inhibitor ZCL 278. Both inhibitors
abolished the effect induced by LP-211, which might suggest that Cdk5 and Cdc42 affect 5-
HT7R mediated spine formation as downstream effectors. However, further studies will be
needed to prove the contribution of 5-HT7R/Cdk5 to the receptor-mediated development
of dendritic spines.

Bijata and co-workers reported that synaptic remodeling is associated with extracellu-
lar matrix (ECM) remodeling, which is uncovered through a signaling pathway including
the 5-HT7R, matrix metalloproteinase 9 (MMP-9), the hyaluronan receptor CD44, and
Cdc42 [30]. The authors discovered that stimulation of 5-HT7R by 5-CT and application of
auto-activating MMP-9 (aaMMP-9) significantly increased the length of dendritic spines
while no spine elongation was observed in cultures from MMP-9 KO and 5-HT7R KO mice.
The researchers also found that the activation of 5-HT7R increased the activity of MMP-9,
which is abolished by pretreatment of SB269970. These data suggest the involvement
of 5-HT7R/MMP-9 signaling in dendritic spine alteration. To confirm the link between
ECM and the above signaling, the authors focused on CD44, a receptor for a major ECM
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component, which connects the ECM to the intracellular signaling pathway related to the
activation of the Cdc42. Silencing of CD44 leads to abrogation of 5-CT-induced increase in
dendritic spines, and direct interaction and co-localization between 5-HT7R and CD44 have
been identified with a fluorescence resonance energy transfer (FRET) based approach. Inter-
estingly, the use of the Cdc42 inhibitor ZCL278, as well as CD44 KO, leads to suppression of
dendritic spine elongation caused by the stimulation of 5-HT7R or treatment of aaMMP-9.
These results suggest that an interaction between 5-HT7R and CD44 plays an important
role in regulating Cdc42 activity concerning the spine morphology. In addition to these
observations, the authors identified that MMP-9 can cleave the extracellular domain of
CD44 in neurons, which is accomplished by the stimulation of 5-HT7R. Taken together,
activated 5-HT7R results in the activation of MMP-9, which cleaves the extracellular do-
main of CD44, and then this cleavage, in turn, promotes morphological changes elicited
5-HT7R/Cdc42 signaling pathway (Figure 1).

It is important that the morphogenic effects of serotonin during developmental stages
can control functions behaviorally related to neuronal networks in adulthood because
NDDs mainly occur early in the development process [54]. Particularly, it has been re-
ported that the 5-HT7R/G12 signaling pathway has effects on the regulation of various
neuronal morphology during early development. The expression level of 5-HT7R and
G12 protein in the mouse hippocampus at different postnatal developmental stages was
examined by using quantitative RT-PCR, in which transcripts of 5-HT7R and G12 protein
were highly expressed in the early stage and substantially diminished by almost up to
ninefold in the later stage, but Gs protein was not affected during the development process.
These expression patterns allow the effects of 5-HT7R/G12 signaling including dendritic
morphogenesis, synaptogenesis, and functional plasticity of hippocampal networks to be
applied only in the early stages of development [28]. Therefore, 5-HT7R/G12 signaling
pathways may play an important role in regulating the onset of NDD, which occurs in the
early development.

3. Autism Spectrum Disorder

Autism spectrum disorder (ASD) is the complex of neurodevelopmental conditions
determined by several principal symptoms comprising stereotyped repetitive behavior
patterns and restricted social interactions. Although a plethora of studies have been con-
ducted since the ASD was discovered, the etiology and precise pathological mechanisms
are still obscure. Current evidence suggests the involvement of both genetic and envi-
ronmental factors in the occurrence and the course of the disorder. Gene polymorphism,
epigenetic factors, perinatal complications, viral infections, exposure to toxic chemicals, and
other aspects may participate in the onset and manifestation of autism in patients [55,56].
The major cause or consequence of ASD development is metabolic abnormalities and
dysfunction of the various neurotransmitter systems in the brain including glutamate,
gamma-aminobutyric acid (GABA), dopamine, acetylcholine, and serotonin [57]. In partic-
ular, at the beginning of the ASD investigation, the elevated serotonin levels in plasma and
platelets were detected and considered to implicate the general pathophysiology [58,59].
Along with this, changes in densities of the serotonin receptors and transporters in the
different brain areas were reported in autistic individuals [60,61]. Regarding 5-HT7R, one
research using transmission disequilibrium test demonstrated an absence of correlation
between HTR7 gene polymorphism and ASD [62]. However, even though the dysfunction
of 5-HT7R was not reported in patients with autism, this type of receptor has some indirect
connections to be a plausible target for the treatment of ASD or at least improving symp-
toms and behavioral condition [63]. Wu and co-workers reported that the application of
deep brain stimulation with the administration of 8-OH DPAT, a 5-HT1AR/5-HT7R agonist,
remarkably alleviated hyperactivity and anxiety profiles and refined sociability in the val-
proate (VPA)-induced rat ASD model [31] (Table 1). Moreover, the authors observed that
the expression of N-methyl-D-aspartate receptor (NMDA) and GABA receptor subunits
were reduced, resulting in normalized excitatory and inhibitory processes in neural circuits.
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Wang and co-workers revealed that 8-OH DPAT treatment consistently rescued social be-
havior and fear memory in VPA-induced rats and, besides, improved presynaptic excitatory
transduction [64]. However, the authors fail to claim whether these mechanisms are regu-
lated by 5-HT1AR or 5-HT7R. Canal and co-workers reported that amino tetralin derivative
(+)-5-FPT showed high affinity and partial agonism against 5-HT7/5-HT1ARs and reduced
stereotypy in three heterogeneous mouse models as well as increased social interaction [65]
(Table 1). Moreover, based on thorough pharmacokinetic studies, the authors claimed that
(+)-5-FPT appears to be a potent lead to treat ASD and related symptoms. Besides (+)-5-FPT,
several chemical drugs are good examples in proving the possible involvement of 5-HT7Rs
in the modulation of ASD. Aripiprazole, an FDA-approved antipsychotic drug for autism,
demonstrates notable affinity to different dopamine and serotonin receptors, including
antagonistic effects on 5-HT7R as well. This therapeutic agent efficiently targets irritability
in patients diagnosed with autism, Asperger’s syndrome, schizophrenia, and other neu-
rodevelopmental disorders [14–16,66]. Consistently, other pharmacological treatments for
ASD, such as risperidone and lurasidone, which are used to alleviate aggressive behavior
in patients, show antagonistic activity against 5-HT7Rs [17–19,66] (Table 1). Lacivita and
co-workers recently reported the development of several arylpiperazine derivatives, 1,
2, and 3, which demonstrated double 5-HT7R/5-HT1AR agonistic activity or combined
5-HT7R/5-HT1AR activating/5-HT2AR antagonistic properties [67] (Table 1). Few of these
molecules showed high metabolic stability, drug-like properties, and functional activ-
ity for corresponding signaling pathways, potentially modulating the ASD etiology and
progress, revealing a novel approach in the drug discovery for this disorder. Apart from
that, many researchers have suggested that changes in neurodevelopmental patterns such
as increased neuronal proliferation, defects in neuronal migration, abnormal neurite out-
growth, and dysregulation of synaptic plasticity could be responsible for ASD [68–70]. Lin
and co-workers recently surveyed the involvement of small GTPases and their downstream
effectors’ pathways in the mechanisms of neurodevelopmental disorders [71]. These spe-
cific signaling pathways have direct interconnections with other factors, responsible for
cell proliferation, motility, migration, and, subsequently, for the maintenance of normal
neuronal morphology [72]. Notably, a widely used ASD-like Shank3-deficient mouse model
displayed impaired Rac1/PAK/cofilin signaling and decreased F-actin expression in the
cortex, while inhibition of cofilin rescued actin filament levels and markedly improved
behavioral patterns in ASD-like mice [73]. Another study performed on TAOK2-knockout
mice, which demonstrate cognitive dysfunction, revealed aberrant dendritic morphology
and synapse formation through dysregulation of RhoA signaling in this animal model [74].
Moreover, the connectivity between 5-HT7R and G12 signaling networks and modulation of
neurite growth and synapse plasticity has been recently studied [24,28]. Consequently, as
well as RhoA-mediated signaling pathways modulate the regulation of the actin cytoskele-
ton reorganization, impairments in this network may lead to aberrant neurite architecture,
resulting in dysfunction of synaptic signal transmission. Apart from that, few studies have
reported possible molecular mechanisms involved in the regulation of neuron connectivity
upon the developmental process. Speranza and co-workers demonstrated that the treat-
ment of neuron cell cultures with 5-HT7R selective agonist LP-211 promoted neurite growth
via cell division cycle 42 (Cdc42), mammalian target of rapamycin (mTOR), cyclin-dependent
kinase 5 (Cdk5), and extracellular signal-regulated kinase (ERK) molecular network [75,76]
(Table 1). The research group further showed that continuous application of LP-211 leads to
a prominent increase in the number of dendritic spines density and synaptic contacts [29].
Taken together, 5-HT7R may play a crucial role in further investigation of mechanisms and
the development of treatment strategies for ASD and other disorders.



Molecules 2021, 26, 3348 7 of 16

Table 1. Pharmacological agents which have potential effects on ASD and neurodevelopmental disorders treatment.

Names Structures Targets Effects

8-OH DPAT
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4. Fragile X Syndrome (FXS)

Fragile X syndrome (FXS) is a common neurodevelopmental disorder characterized
by strong intellectual disability, and usually associated with autism spectrum disorder [79].
People affected with this syndrome bear a genetic mutation in the Fragile X mental re-
tardation 1 (Fmr1) gene, which is responsible for Fragile X mental retardation protein
(FMRP) production [79]. FMRP is an mRNA-binding protein that plays an important
role in the negative regulation of protein synthesis, and specifically in brain changes in
the levels of FMRP that contribute to cognitive dysfunction. In particular, along with
the available evidence, the metabotropic glutamate receptors (mGluR) theory of FXS has
been developed. According to this notion, the loss of Fmr1 causes abnormal protein syn-
thesis as well as overactivation of signaling via mGluR5 receptors, increases long-term
depression (LTD) and, subsequently, induces aberrant synaptic plasticity [42,80]. Recent
studies demonstrated that the stimulation of serotonin receptors, utilizing agonist agents,
may modulate the mGluR signaling pathway and rescue impaired features in Fragile
X syndrome models. Lim and co-workers reported that the activation of the 5-HT2BR
boosted Ras-phosphoinositide 3-kinases-RAC-alpha serine/threonine-protein kinase (Ras–
PI3K/Akt) signaling pathway improved glutamate receptor 1(GluA1)-mediated synaptic
plasticity, and showed beneficial effects on the learning ability of FXS mice model [81].
Besides, Costa and coauthors reported that the stimulation of 5-HT7R by non-selective
agonists, such as serotonin and 8-OH DPAT, decreased mGluR-mediated LTD and pre-
vented internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors in the hippocampal tissue slices [82] (Table 1). Since Fmr1-knock out mice ex-
hibit sustained upregulation of mGluR-mediated LTD and a reduced density of AMPA
receptors, the administration of 8-OH DPAT consistently reversed this pathological condi-
tion to the normal level [82]. Furthermore, the authors scrutinized the effects of LP-211,
a 5-HT7R selective agonist, on LTD and confirmed their previous results [43] (Table 1).
The further study was aimed at designing novel 5-HT7R selective agonist compounds
with improved pharmacokinetic parameters and higher efficacy. Based on the LP-211
chemical structure, Costa and co-workers developed a BA-10 compound that showed
greater metabolic stability and higher affinity to 5-HT7R [44] (Table 2). Both LP-211 and
BA-10 displayed effective correction of mGluR-LTD in wild-type and Fmr1-deficient mice,
demonstrating the potential to modulate the impairment in synaptic plasticity in FXS.
As far as 5-HT7Rs are coupled with Gs subunit, which activates adenylate cyclase, and
several studies [83,84] reported an aberrant cAMP metabolism in patients with FXS, it was
suggested that an impaired cAMP-mediated signaling pathway may be involved in the
exaggerated generation of LTD. Costa and co-workers further discovered that treatment
with forskolin and pituitary adenylate cyclase-activating polypeptide (PACAP), which are
supposed to be stimulators of adenylate cyclase, completely replicated the effects of LP-211
as expected, while simultaneous application of the 5-HT7R agonist with adenylate cyclase
or protein kinase A (PKA) blockers prevented the LTD reversal to the normal rate [82]
(Table 2). However, there is controversial evidence claiming that impairment in cAMP
metabolism may be resulted not from aberrations in the signaling via 5-HT7R, but D1
dopamine receptors [83]. Nevertheless, in vivo administration of LP-211 to young Fmr1-
knock out mice significantly improved stereotypic behavior and recognition memory [83].
Taking all the following evidence into consideration, there is a strong demand for the
development of novel 5-HT7R agonists with improved pharmacokinetic properties and ac-
tivity. Armstrong and co-workers recently reported that treatment with the orally operative
aminotetraline compound (+)-5-FPT [65], which is a partial agonist of 5-HT1A, 5-HT2C,
and 5-HT7 receptors, leads to significant improvement in the phenotypic condition [78]
(Table 1). In particular, it considerably mitigated repetitive behavior, markedly reduced
the occurrence of lethal audiogenic seizures, which are typical for Fmr1-KO condition, and
elevated the social activity both in wild-type and FXS transgenic mice [78]. As well as
5-HT1AR, 5-HT2CR was shown to be involved in the activation of phospholipase C beta
(PLCβ), protein kinase C (PKC), and, as a consequence, the mitogen-activated protein
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kinase/extracellular signal-regulated kinase (ERK/MAPK) signaling pathway, which is
essential for normal cell functioning, and its alteration is detected in various neurological
disorders [85–87]. Another research group also suggested that this pathway may be modu-
lated by 5-HT2CR coupling with G12/13 subunits, which explains the beneficial effects of
5-HT2CR activation [88]. However, the design and trials of compounds selective to several
receptors just alleviate the condition but cannot elicit the precise molecular mechanisms of
particular disorders. By exploiting validated scaffolds in bioactive compounds, Lacivita
and co-workers synthesized and examined a variety of long-chain arylpiperazine com-
pounds with biased selectivity to 5-HT7R. Among all developed compounds, the authors
claimed that a compound especially showed drug-like properties, manifesting high affinity,
distinctive selectivity to 5-HT7 receptor type, upgraded metabolic stability, and, besides, it
significantly mitigated stereotypic behavior of FXS model mice [89] (Table 2).

Table 2. Pharmacological agents which have potential effects on FXS treatment.

Names Structures Targets Effects
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5. Rett Syndrome

Rett syndrome (RTT) is a severe neurodevelopmental disorder, the second most
common cause of mental retardation in females, which is usually indicated by such symp-
toms as breathing dysfunction, loss of coordination, abnormal eye and hand movements,
seizures, aberrant sleeping behavior, and cognitive disabilities [90,91]. The prime cause of
the syndrome is various genetic mutations in methyl CpG binding protein 2 gene (MeCP2)
on the X chromosome that commonly lead to more than 90% of overall cases, depending
on the locus to the maintenance of phenotypic variability of the RTT [33]. Other atypical
disorder occurrences are connected to abnormalities in other genes such as cyclin-dependent
kinase-like 5 (CDKL5), forkhead box G1 (FOXG1), WD repeat domain 45 (WDR45), or syntaxin
binding protein 1 (STXBP1) [34,35]. Currently, there is no known drug for the RTT, therefore
the amelioration of symptoms and particular conditions can become a solution for patients
diagnosed with RTT. Although Collins and co-workers demonstrated that restoring the
MECP2 function can normalize function in MeCP2-null mice, manipulating the MECP2
gene as potential gene therapy may lead to undesirable consequences, since it was shown
that overexpression of this gene led to neurological defects [92]. Thus, targeting for MeCP2
downstream effectors and other signaling pathways may be taken into consideration. Re-
cent studies have shown the involvement of different factors, including brain-derived
neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), RhoA family of GTPases,
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and neurotransmitter systems, in the maintenance of the major clinical manifestations of
RTT. Additionally, some research groups focused on the dysregulation and participation
of the serotonergic system in animal models of RTT [37–40,93–98]. Especially, Abdala and
coauthors surveyed recent studies of 5-HT1AR agonists for the syndrome and addressed
that selective 5-HT1AR agonists could be a potential breakthrough to cure the disorder [94].
The group also found that the administration of 8-OH DPAT, a 5-HT1AR agonist, decreased
the number of apneas and reduced the irregularity of the respiratory cycle in MeCP2-
deficient mice, the model of RTT, even though the authors failed to address its mode of
action [77] (Table 1). Further, Levitt and co-workers tested 5-HT1AR selective agonist F15599
in MeCP2-deficient mice and MeCP2-null mice, and displayed that F15599 helps to improve
respiration via the activation of G-protein coupled inwardly, rectifying potassium channels
(GIRK) without influencing glutamate release [93] (Table 3). Abdala and co-workers con-
veyed their previous concept with clinically approved saritozan, a 5-HT1AR agonist and a
dopamine D2-like agonist/partial agonist, and confirmed the positive impact of 5-HT1AR
activation on the alleviation of respiratory dysfunction in RTT established model mice [95]
(Table 3). The mechanism of 5-HT1AR agonists for the disorder is still unclear but a study
with F15599 helps to consider that the activation of GIRK by F15599 leads to discouraging
the overactivation of the expiratory neurons, resulting in improved respiration [93]. It is
noteworthy that within the aforementioned disorders and other reviewed topics relevant
to brain functioning, an interplay between 5-HT1AR and 5-HT7R was observed [99,100].
These serotonin receptor types belong to different GPCR classes and canonically couple to
diverse Gα subunits with opposite effects, such as Gi in the case of 5-HT1AR and Gs for
5-HT7R, resulting in adverse modulation of adenylate cyclase and affecting antagonistically
cAMP concentration in the cell [101,102]. The recent studies showed that established facts
about 5-HT1AR signaling pathways are actually ambiguous and that it also may control
other downstream effectors, including ERK/MAPK, Pi3K-Akt signaling pathways, and
cation channels, as well as 5-HT7R [103–105]. Besides, the effects of the 5-HT1AR activation
on PLC were demonstrated that triggered subsequent modulation of PKC and caused
positive effects on synaptogenesis [106]. Aforesaid networks are known to be implicated
in the regulation of the actin cytoskeleton reorganization and, thus, various cell functions
and synaptic plasticity [104]. Moreover, it was demonstrated that, in the hippocampus,
5-HT1AR targets highly expressed adenylate cyclase II which leads to the increase of the
cAMP cellular level, showing that consequences of this receptor activation depend on the
particular agonist and brain structure where it was affected [107,108]. Apart from that,
in vitro and in vivo studies revealed specific interactions between 5-HT1AR and 5-HT7R,
resulting in heterodimers formation and suggesting that 5-HT7R plays a dominant role in
the complex and inhibits Gi activation via 5-HT1AR and, subsequently, regulates its down-
stream pathways [109]. As a result, all mentioned evidence may shed light on a complex
interplay between these serotonin receptors and, to a certain extent, explain controversial
findings of their involvement in the alleviation of neurodevelopmental pathological condi-
tions. Apart from 5-HT1AR, Vogelgesang and co-workers reported that expression levels of
the 5-HT5bR were markedly elevated in MeCP2-knockout mice [97]. Subsequent research
revealed that additional knockout of 5-HT5bR significantly improved respiratory pattern
and slightly increased the lifespan of mice with RTT phenotype [98]. This phenomenon
may be explained by the hypothesis that intracellular 5-HT5b receptors via coupling with
the Gi subunit decreases the total level of cAMP and, thus, impairs the whole signaling
network in the cell [97]. Interestingly, 8-OH DPAT known as a 5-HT1AR agonist showed
activating effects on another kind of serotonin receptor family 5-HT7R, so the effects of
treatment may be relevant to this receptor-type stimulation as well [96]. In addition, recent
studies indicated 5-HT7R and corresponding coupled sgnaling pathways are linked to the
course of the RTT [36–41]. De Filippis and co-workers observed that the density of 5-HT7R
in cortical and hippocampal areas was lowered in Mecp2-308 male mice; an RTT model and
systemic administration of 5-HT7R selective agonist LP-211 was able to relieve RTT-related
defective symptoms including anxiety profiles, environment-related exploratory behavior,
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and motor learning ability [38] (Table 1). The authors also demonstrated that inactivation
of Rho GTPases downstream effectors, such as cofilin and the p21-activated kinase family,
which regulate actin cytoskeleton polymerization, is increased in RTT mice, and the intro-
duction of LP-211 restored their activities via inhibiting the phosphorylation. In addition,
LP-211 rescued the phosphorylation levels of ribosomal S6 protein, which is crucial in the
regulation of translation in model animals (Table 1). The results were further evaluated by
pursuing the same experiments on Mecp2-308 heterozygous female mice, a female-based
Rett syndrome model [39]. After seven-day treatment with LP-211, these RTT mice ex-
hibited refined phenotypic alterations, locomotor response, and synapse potentiation in
comparison with vehicle-treated mutant animals, and also data supporting that 5-HT7R
agonist treatment increases levels of phosphorylated S6 protein is consistent with previous
research. It is noteworthy that the seven-day administration of LP-211 demonstrates a
long-lasting effect in Mecp2-308 heterozygous female mice [39] (Table 1). Apart from that,
Valenti and co-workers postulated that the activation of RhoGTPases via 5-HT7R recovers
mitochondrial dysfunction in Mecp2-308 and MeCP2-Bird mice. Notably, complete rescue
of electron transport chain (ETC) complexes activity and whole-brain ATP levels restoration
was achieved in both RTT mice models after LP-211 systemic administration. Furthermore,
LP-211 treatment also prevented the overproduction of reactive oxygen species in brain
tissue, which was detected in MeCP2-deficient mice [40] (Table 1). As aforementioned,
rare cases of RTT can be caused not by MECP2 gene mutations, but other ones such as
cyclin-dependent kinase-like 5 genes (CDKL5). Vigli and co-workers pursued experiments
on CDKL5-knockout mice that represent the set of the symptoms specific for CDKL5 defi-
ciency disorder (CDD), which has a high similarity to the classical RTT [41]. Stimulation of
5-HT7R by selective agonist LP-211 slightly reversed the pathological condition to wild
type level resulting in decreased pre-pulsed inhibition, normalized activation of ribosomal
S6 protein, and rescued mitochondrial function [41] (Table 1). All the observed findings
lead us to consider 5-HT7 receptors as potential targets to relieve symptoms in patients di-
agnosed with the RTT. However, further investigations are compulsory to clarify molecular
mechanisms of particular disorders more specifically and to find new therapeutic agents.

Table 3. Pharmacological agents which have potential effects on RTT treatment.

Names Structures Targets Effects

F15599
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6. Conclusions

In this review, we focused on the association of NDDs and 5-HT7R as a therapeutic
drug target for the treatment of NDDs, and have explored ASD, RTT, and FXS, which are
the most representative of various NDDs. 78Though several therapeutic agents for ASD
including aripiprazole, risperidone, and lurasidone showed antagonism toward 5-HT7R,
8-OH-DPAT, (+)-5-FPT, and the most recently developed arylpiperazine derivatives which
acted as agonists against 5-HT7R rescued social behavior, fear memory, and stereotypy
in ASD mice model. Furthermore, it is observed that small Rho GTPases have a direct or
indirect connection with neuronal morphology in ASD mice. 5-HT7R agonists displayed
beneficial effects such as correction of mGluR-LTD, improved stereotypy, recognition
memory, reduced the occurrence of lethal audiogenic seizures, and elevated social activity
in various FXS mice models. Some studies demonstrated the potential to regulate the
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impairment in synaptic plasticity in FXS. Since it is reported that the serotonergic system is
one of the manifestations of RTT, many research groups pay attention to 5-HTRs. Among
them, a correlation has recently been reported between 5-HT7R and RTT, which is a lower
density of 5-HT7R in RTT mice and refined phenotypic conditions by 5-HT7R agonist in
RTT mice. Through the studies regarding 5-HT7R/G12 signaling pathways, it is identified
that activation of 5-HT7R by diverse agonists leads to alterations of neuronal morphology
such as length of neurites, dendritic protrusions, and density of synapse, which affect
neurodevelopment. Also, it is revealed that the small Rho GTPases are responsible for
modulating neuronal morphology in the 5-HT7R/G12 signaling pathways. Taken together,
these findings that the stimulation of 5-HT7R via G12 signaling has direct or indirect
neuromorphological effects on various NDDs indicate that modulators of 5-HT7R/G12 can
be promising therapeutic agents for multiple NDDs.
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