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Abstract
Purpose We sought to exploit the heterogeneity afforded by patient-derived tumor xenografts (PDX) to first, optimize and 
identify robust radiomic features to predict response to therapy in subtype-matched triple negative breast cancer (TNBC) 
PDX, and second, to implement PDX-optimized image features in a TNBC co-clinical study to predict response to therapy 
using machine learning (ML) algorithms.
Methods TNBC patients and subtype-matched PDX were recruited into a co-clinical FDG-PET imaging trial to predict 
response to therapy. One hundred thirty-one imaging features were extracted from PDX and human-segmented tumors. Robust 
image features were identified based on reproducibility, cross-correlation, and volume independence. A rank importance of 
predictors using ReliefF was used to identify predictive radiomic features in the preclinical PDX trial in conjunction with 
ML algorithms: classification and regression tree (CART), Naïve Bayes (NB), and support vector machines (SVM). The 
top four PDX-optimized image features, defined as radiomic signatures (RadSig), from each task were then used to predict 
or assess response to therapy. Performance of RadSig in predicting/assessing response was compared to  SUVmean,  SUVmax, 
and lean body mass-normalized  SULpeak measures.
Results Sixty-four out of 131 preclinical imaging features were identified as robust. NB-RadSig performed highest in predict-
ing and assessing response to therapy in the preclinical PDX trial. In the clinical study, the performance of SVM-RadSig and 
NB-RadSig to predict and assess response was practically identical and superior to  SUVmean,  SUVmax, and  SULpeak measures.
Conclusions We optimized robust FDG-PET radiomic signatures (RadSig) to predict and assess response to therapy in the 
context of a co-clinical imaging trial.

Keywords Triple-negative breast cancer (TNBC) · FDG-PET · Radiomics · Co-clinical imaging · Quantitative imaging · 
Machine learning

Introduction

Triple-negative breast cancer (TNBC) is a highly hetero-
geneous and aggressive cancer characterized by poor out-
come and higher relapse rates compared to other subtypes 
of breast cancer. Pathological complete response (pCR) is 
often used as a critical endpoint in the treatment of TNBC 
following neoadjuvant chemotherapy (NAC) as it is often 
associated with favorable long-term outcome. Therefore, 
it is critical to identify patients who will respond to NAC 
therapy to avoid the use of ineffective treatments. Intra-
tumoral heterogeneity is regarded as a major factor in 
tumor progression and resistance to NAC [1]. Towards 
that end, advanced quantitative imaging (QI) strategies, 
including extraction of image features, or radiomics, have 
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been employed to characterize tumor heterogeneity and to 
predict/assess response to therapy [2, 3].

We designed a co-clinical trial to assess the efficacy of 
docetaxel/carboplatin therapy in patients with TNBC and 
patient-derived tumor xenografts (PDX) generated from 
TNBC patient biopsies. Co-clinical trials are an emerging 
area of investigation in which a clinical trial is coupled 
with a corresponding (subtype-matched or patient-spe-
cific) preclinical trial to inform the corresponding clinical 
trial [4–10]. The emergence of PDXs as co-clinical plat-
forms is largely motivated by the realization that estab-
lished cell lines do not recapitulate the heterogeneity of 
human tumors and the diversity of tumor phenotypes [11]. 
Indeed, numerous investigations have demonstrated that 
PDX accurately reflect patients’ tumors in terms of the 
histomorphology, gene expression profiles, and gene copy 
number alterations [12–16], as well as the ability to pre-
dict therapeutic response in patients, especially when a 
clinically relevant drug dosage is used [17–19]. To that 
end, the National Cancer Institute’s (NCI) Patient-Derived 
Models Repository (https:// pdmr. cancer. gov), EuroPDX 
(https:// www. europ dx. eu), academic institutions, and 
numerous commercial entities have launched wide-ranging 

PDX repositories to advance the use of PDX in precision 
medicine.

One of the objectives of the co-clinical trial, which is 
still underway, is to predict response to therapy using  [18F]
fluorodeoxyglucose (FDG) with positron emission tomog-
raphy (PET). We previously identified six TNBC subtypes 
including 2 basal-like (BL1 and BL2), an immunomodula-
tory (IM), a mesenchymal (M), a mesenchymal stem-like 
(MSL), and a luminal androgen receptor (LAR) subtype 
through molecular signatures of TNBC subtypes [20]. 
The use of PDX in preclinical imaging offers numerous 
advantages in translational imaging research, chief among 
them is retention of human tumor heterogeneity [12, 16, 
21], which can be exploited to develop image metrics of 
response to therapy. Thus, the objective of this work was 
to first, optimize and identify robust radiomic features to 
predict response to therapy in subtype-matched TNBC PDX, 
and second, implement PDX-optimized image features in the 
TNBC co-clinical study to predict response to therapy using 
machine learning (ML) algorithms.

The scheme outlined in Fig. 1 highlights the paradigm 
we undertook in this effort. We used the co-clinical imag-
ing trial to define, for the first time, parallels in radiomic 

Fig. 1  Overview of methodol-
ogy in optimizing radiomic 
features in the co-clinical trial. 
TNBC PDX were generated 
from human tumor biopsies. 
Tumors were segmented fol-
lowing co-clinical imaging to 
extract radiomic features. Radi-
omic features were extracted per 
IBSI guidelines. Repeatability, 
cross-correlation, and volume 
dependency were performed 
to identify the robust features. 
ReliefF and then ML were used 
to predict/assess the response to 
therapy in PDX and to identify 
radiomic signatures (RadSig). 
RadSig was implemented in the 
clinical trial to predict/assess 
response to therapy
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features between preclinical and clinical imaging. To address 
the primary objective, we characterized the reproducibility, 
cross-correlation (auto-correlation), and volume dependency 
of FDG-PET radiomic features in PDX. Optimal radiomic 
features were then used in ML algorithms to define radiomic 
signatures (RadSig) of response to therapy in the preclini-
cal PDX trial. With the RadSig at hand, we used RadSig to 
predict response to therapy in the preclinical arm. To address 
the secondary objective, we performed an interim analysis to 
implement radiomic signatures optimized in the preclinical 
PDX trial to predict response to therapy in the clinical arm. 
Our findings suggest that RadSig performed significantly 
better than SUV measures to predict (using baseline metrics) 
and assess (difference in image metrics) response to therapy 
in both preclinical and clinical arms.

Methods

Co‑clinical protocol

The co-clinical design is outlined in the scheme of Fig. 2A 
and described below. Twenty newly diagnosed stage II or III 
TNBC patients were recruited into an ongoing co-clinical 
trial. Patient inclusion and exclusion selection criteria are 
detailed in ClinicalTrial.gov ID # NCT02124902. A second-
ary goal of the co-clinical trial was to assess the performance 
of FDG-PET in predicting/assessing response to therapy. 
TNBC PDX were generated as previously described [22] 
from TNBC patient tumor repository. Briefly, 6- to 10-week-
old female NOD scid gamma (NSG) mice were obtained 
from The Jacksons Laboratory (https:// www. jax. org). Mice 
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cycles of docetaxel/carboplatin therapy. Imaging timepoints are indi-
cated on the timeline. PDX are generated from patient tumor biop-

sies to assess response to therapy with imaging at baseline and 4 
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were anesthetized with isoflurane and an inverted Y-shaped 
incision was made along the thoracic-inguinal region to 
expose the  4th inguinal mammary fat pad. Two to four mil-
lion tumor cells mixed with Matrigel in a volume of 30 µl 
were injected into the mammary fat pad. Following engraft-
ment, tumor growth in PDX mice was monitored for recruit-
ment into the preclinical trial. TNBC PDX subtypes were 
identified as described previously [23] based on molecular 
signature analysis of 93 TNBC PDX to identify TNBC sub-
types including basal-like (BL1 and BL2), an immunomodu-
latory (IM), a mesenchymal (M), and a luminal androgen 
receptor (LAR) subtype.

Preclinical imaging Small animal PET/CT was performed 
on the Inveon microPET/CT scanner as described previ-
ously [23]. Briefly, 4 h prior to imaging session, food was 
removed from cages while water was given ad libitum. Mice 
were anesthetized with 2–2.5% isoflurane by inhalation via 
an induction chamber. Anesthesia was maintained through-
out the imaging session by delivering 1–1.5% isoflurane 
via a custom-designed nose cone. A heat lamp was used to 
maintain body temperature. TNBC PDX were injected with 
18FDG (6.66–8.14 MBq) by tail vein immediately before a 
0–60-min dynamic small animal PET acquisition. Images 
were reconstructed with a 3D OSEM algorithm with a ramp 
filter at 0.5 cutoff and voxel size of ~ 0.8 mm isotropic.

Preclinical therapeutic studies TNBC PDX (N = 29) were 
imaged at baseline (BL) and 4 days (4D) following start 
of therapy (Fig. 2A). Docetaxel (20 mg/kg IP)/carboplatin 
(50 mg/kg IP) was administered following BL imaging and 
weekly for a period of 4 weeks. Tumor volumes were meas-
ured bi-weekly using the formula volume = 1/6*L*W2 where 
L and W represent the length and width of the tumor, respec-
tively. All animal experiments were conducted in compli-
ance with the Guidelines for the Care and Use of Research 
Animals established by Washington University’s Animal 
Studies Committee.

Clinical imaging Simultaneous FDG-PET and MR imaging 
protocol was implemented on the Siemens Biograph mMR. 
Subjects were imaged at baseline (BL) prior to therapy and 
between the first cycle (C1) and second cycle of docetaxel/
carboplatin for a total of 6 cycles (21 days per cycle). At 
each imaging time point, patients were fasted for ~ 4 h prior 
to injection of ~ 10 mCi of FDG. After an uptake period, 
patients were positioned prone on the PET/MR scanner. 
FDG-PET imaging was performed starting at 30 to 70 min 
post FDG administration for a total of 40 min acquisition 
to accommodate the simultaneous MR acquisition protocol. 
Default Dixon sequence was used for attenuation correction. 
Images were reconstructed to produce four 10-min frames. 

In parallel with FDG-PET acquisition, T1-weighted (T1w) 
and T2-weighted (T2w) MR acquisitions were performed.

Image analysis and extraction of radiomic features

Preclinical imaging Static 10-min PET/CT images obtained 
50-min post-administration of FDG (representative image in 
Fig. 2B) were processed in two steps. In the first step, co-
registered PET/CT images were analyzed using the Inveon 
Research Workplace (IRW) software (Siemens Healthcare). 
Volumes of interest (VOIs) were manually drawn on co-reg-
istered PET/CT images to include tumor(s). Second, VOIs 
and individual voxels were normalized to SUV in MAT-
LAB using the relation: SUV = [activity (Bq/mL)] × [animal 
weight (g)]/[injected dose (Bq)].

Clinical imaging Tumor VOIs were manually drawn on 
20-min static PET images obtained by averaging two 10-min 
frames 50–70-min post-administration of FDG (representa-
tive image in Fig. 2C). To ensure harmonization of preclini-
cal and clinical pipelines, IRW was used to segment tumors 
on PET/MR images. Mean SUV  (SUVmean) for the entire 
tumor was calculated as per above.  SUVmax was determined 
by identifying the maximum voxel activity in the tumor VOI. 
Peak SUV was normalized to lean body mass  (SULpeak) 
based on positron emission tomography response criteria in 
solid tumors (PERCIST) [24].

Extraction of imaging features One hundred thirty-one 
imaging features were extracted from preclinical and clini-
cal tumors. These include one hundred twenty radiomic 
features, tumor volume, metabolic tumor volume, and nine 
SUV metrics as tabulated in Supplemental Table S1. Radi-
omic features were determined per the image biomarker 
standardization initiative (IBSI) guidelines [25, 26]. Equal-
probability quantization algorithms to quantize raw data into 
gray level (Ng) were implemented using histeq MATLAB 
function. Resampling to isotropic voxel size in all three 
directions was applied to all higher order features. Thirty-
seven first-order features were extracted directly from raw 
data. All higher order features were extracted after applying 
fixed quantization of gray level Ng = 64.

Robustness of radiomic features

We evaluated the robustness of radiomic features in terms 
of reproducibility (test–retest), cross-correlation, and the 
dependency on tumor volume. Robust radiomic features 
were then used as predictors of response to therapy.

Test–retest A preclinical test–retest protocol was imple-
mented to optimize the reproducibility of radiomic features. 
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PDX (N = 40) were imaged on consecutive days (day 1 and 
day 2) in identical conditions.

Cross‑correlation The cross-correlation between features 
was determined using Spearman correlation. A threshold 
Spearman correlation of ρ ≥ 0.9 and significance value 
P < 0.001 were chosen to signify high correlation between 
features.

Volume‑dependent radiomic features Radiomic features 
were regressed against their corresponding tumor volumes. 
Linear or nonlinear functional forms were used to fit all sig-
nificant volume-dependent features.

Prediction and assessment of response to therapy

Prediction vs. assessment of response to therapy We make 
a distinction between predicting and assessing response to 
therapy. In predicting response to therapy, BL imaging fea-
tures were used to predict response to therapy in either the 
preclinical or the clinical arm. In assessing response to ther-
apy, the change (Δ) in image feature between on-treatment 
(4 days post baseline imaging in preclinical and post-C1 in 
clinical) and BL was used to predict response to therapy in 
the preclinical or the clinical arms.

Classification of response to therapy In preclinical studies, 
endpoint caliper volume change from start of treatment was 
considered as surrogate of response to therapy with response 
to therapy corresponding to > 20% decrease in volume, par-
tial response corresponding to ≤|20|% change in volume, 
and no response corresponding to > 20% increase in volume. 
Baseline radiomic features and change in radiomic features 
between 4d post-treatment and baseline scans were used as 
the predictive criterion for ML algorithms. In clinical stud-
ies, pCR was used to determine response to therapy. pCR 
was defined as no histological evidence of invasive tumor 
cells in the surgical breast specimen and sentinel or axillary 
lymph nodes.

Feature selection In preclinical studies, the relief-based 
algorithm (RBA) [27] was used to select a subset of fea-
tures as inputs to the ML algorithms. A relevance threshold 
(τ = 0.05) [28] was used to select most relevant weighted fea-
tures to facilitate in expansive modeling, reduce overfitting, 
and make the task tractable for inputs in ML algorithms. 
These optimal features were used to predict response or 
assess response to therapy using BL and difference between 
on-treatment and BL optimal features, respectively.

Machine learning for outcome prediction The ML algo-
rithms used in this study include CART [29], SVM [30], 

and NB [31]. In implementing CART, Gini index was used 
at each partition to determine splitting criteria with a binary 
threshold of CART. In implementing SVM, radial basis 
function (RBF) kernel was used to make the hyperplane 
decision boundary between the classes. Objective function 
L2-norm regularization was used to overcome overfitting 
problem. CART, SVM, and NB work well with datasets as 
low as N = 20 [32]. Ten-fold cross-validation was used to 
avoid overfitting the ML model [33].

Statistical analyses

Robustness of features Lin’s concordance correlation coef-
ficient (LCC) [34] was used to assess reproducibility using 
Stata version 12.1. LCC ≥ 0.7 was considered as a thresh-
old of reproducible radiomic feature [35, 36]. As indicated 
above, cross-correlation between features was evaluated 
using the Spearman correlation ρ ≥ 0.9 at significance value 
P < 0.001. To display clusters of correlations, hierarchical 
clustering of the Spearman correlation heatmap was per-
formed. In evaluating volume dependency of features, the 
Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC) were calculated for each functional 
form, and the appropriate model was selected based on the 
minimum value of AIC and BIC. The Spearman correlation 
(ρ) was used to determine the correlation between each fea-
ture and tumor volume.

Performance metrics of response to therapy predic‑
tion Common performance metrics including accuracy, 
F-score, sensitivity, specificity, precision, and negative 
predictive value (NPV) were used to assess performance of 
response to therapy [20]. The performance of the radiomic 
features was additionally compared with  SUVmean,  SUVmax, 
and  SULpeak based on PERCIST [24].

Results

Reproducibility of preclinical radiomic features

Test–retest was performed to assess the reproducibility of 
radiomic features using LCC as a measure of reproduc-
ibility. Ninety-four out of 129 radiomic features (72.9%) 
were identified as reproducible with LCC ≥ 0.7. The fre-
quency of correlations along with the cumulative percent 
is displayed in Fig. 3A. Approximately 22% of features 
were highly reproducible with LCC ≥ 0.9. The reproduc-
ibility by class of features is depicted in Fig. 3B. Fig-
ure 3C depicts the LCC values of all reproducible radiomic 

554 European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:550–562

1 3



features. Supplemental Table S1 summarizes the reproduc-
ibility of all 131 features.

Cross‑correlation between features (preclinical 
and clinical)

We ascertained the cross-correlation between features using 
the Spearman correlation (ρ). Highly correlated features 
(ρ ≥ 0.9) were removed and reduced to 94 features from 129 
features. Hierarchical clustering of the Spearman correlation 
heatmap is shown Fig. 4. Twenty-one clusters were identi-
fied in the preclinical heatmap (Fig. 4A) and similarly 21 
clusters were identified in the clinical cross-correlation heat-
map (Fig. 4B). Membership of features to clusters is avail-
able in Supplemental Table S2. The distribution of Spear-
man correlations is available in Fig. 4C and D for preclinical 
and clinical cross-correlations, respectively.

Volume‑dependent radiomic features (preclinical 
and clinical)

In total, 10 radiomic features were highly correlated to vol-
ume (ρ > 0.9; P < 0.001). The functional form of the volume 
dependency and corresponding goodness-of-fit measures for 
preclinical and corresponding clinical images is shown in 
Fig. 5, which was similar for both preclinical and clinical 

features. Supplemental Table S3 summarizes the statistical 
analyses for the correlations.

Prediction and assessment of response to therapy

At the intersection of robustness analyses, 62 of the 129 
(48.06%) features were found to be optimal and were passed 
to ReliefF feature selection followed by ML. ReliefF rank 
importance identified top performing 15 features for pre-
diction (based on BL features) and assessment (based on 
4D-BL features) of response to therapy (Fig. 6B and C, 
respectively). The rank importance of radiomic features is 
given in Supplemental Table S4.

Preclinical PDX studies

The accuracy of ML in predicting/assessing response to 
therapy as a function of the number of radiomic features 
is depicted in Fig. 6D and E for BL and 4D-BL, respec-
tively. The number of radiomic features to maximize pre-
diction accuracy saturated at 4 features (Fig.  6D) with 
NB exhibiting the highest accuracy at 86.21%, followed 
by SVM and CART. In contrast, the accuracy of assess-
ing response to therapy (4D-BL) increased with increas-
ing number of radiomic features; the accuracy of NB is 
86.9% followed by SVM and CART (Fig. 6E). We opted to 
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compare performance between prediction and assessment 
(i.e., BL vs. 4D-BL) using the least number of robust fea-
tures. For this reason, Table 1 tabulates the performance of 
ML algorithms to predict/assess response prior to and fol-
lowing optimization for robust features using only the top 
4 radiomic features for each classification (prediction vs. 
assessment of response). The set of 4 radiomic features from 
each task (prediction and assessment of response) make up 
the radiomics signature (RadSig). As tabulated in Table 1, 
RadSig performs as well as, or marginally better than, non-
optimized features (all features) in predicting response. The 
performance of prediction/assessment of response to therapy 
stratified by TNBC subtype is tabulated in Supplemental 
Table S5 and highlights differences in prediction by TNBC 
subtype.

The performance of RadSig in comparison to  SUVmean, 
 SUVmax, and  SULpeak for the top two performing ML algo-
rithms (NB and SVM) is summarized in Fig. 7. NB per-
formed marginally better than SVM in predicting/assess-
ing response to therapy (Fig. 7A) in the preclinical PDX 
trial. The percent increase in predicting/assessing response 

to therapy relative to  SUVmean,  SUVmax, and  SULpeak is 
depicted in Fig. 7B for NB. NB-RadSig improved predic-
tion of response by over 60% in all performance measures. 
In assessing response to therapy, RadSig performed better 
than  SUVmean in most performance criteria and marginally 
better than  SULpeak and  SUVmax (Fig. 7B). Thus, RadSig has 
greater impact in predicting response to therapy than assess-
ing response to therapy. Full performance data is available 
in Supplemental Table S6. We then performed an interim 
analysis of the ongoing clinical trial to assess the feasibility 
of implementing PDX-optimized RadSig to predict/assess 
response to therapy using ML.

Table 2 summarizes patient characteristics, pathological 
response, SUV metrics at BL, and percent change in SUV 
metrics between on-treatment (post C1) and BL for the interim 
analyses (Supplemental Table S7 contains SUV values at base-
line and on-treatment). Of the twenty patients, ten patients 
exhibited pCR; however, all patients exhibited reduction in 
SUV. Average percent (± 1SD) reduction in the non-pCR group 
was − 46.94 ± 21.56, − 53.20 ± 19.91, and − 51.33 ± 19.78 for 
 SUVmean,  SULpeak, and  SUVmax, respectively, and − 57.70 ± 14.
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83, − 60.32 ± 16.47, and − 66.16 ± 13.74 for  SUVmean,  SULpeak, 
and  SUVmax, respectively, in the pCR group. Figure 7 also 
depicts the performance of the ML algorithms in predicting 
and assessing response to therapy in the clinical arm (Fig. 7C). 
The performance of SVM and NB with RadSig as a predic-
tor was marginally similar, although overall SVM performed 
better than NB when using SUV metrics as predictors (Sup-
plemental Table S6). SVM-RadSig exhibited higher prediction 
rates of response to therapy relative to  SUVmax,  SUVmean, and 
 SULpeak in all performance measures (20–40% higher), as well 
as in assessing response to therapy (15–75% higher) (Fig. 7D). 
Overall, RadSig performed better than SUV metrics in predict-
ing and assessing response to therapy.

Discussion

The emergence of co-clinical models is largely motivated 
by the realization that established cell lines do not reca-
pitulate the heterogeneity of human tumors and the diver-
sity of tumor phenotypes [11] and that better oncology 
models are needed to support high-impact translational 
cancer research [12, 16, 21]. An underlying premise in 
the co-clinical study design is that the heterogeneity of the 
human tumor is retained in PDX. Indeed, tumor genomic 
and pathological investigations have confirmed that PDX 
recapitulate the heterogeneity of human tumors [12–16] 
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and that these can be used to better inform cancer biol-
ogy, therapeutic design [17–19], and therefore by exten-
sion imaging studies, albeit with some limitations [21]. 
With that in mind, in this this work, we exploited the het-
erogeneity of TNBC PDX subtypes to (1) identify robust 
radiomic features in preclinical TNBC PDX; (2) optimize 
RadSig-ML algorithms to predict response to therapy in 
PDX; and (3) implement PDX-optimized RadSig to pre-
dict/assess response to therapy in the clinical trial.

To our knowledge, this study represents the first such 
effort to optimize radiomic features in preclinical PET imag-
ing to predict/assess response to therapy in TNBC PDX. 
We recently characterized the dependency of preclinical MR 
radiomic features on tumor volume [37]. In this work, we 
confirmed dependency of preclinical PET radiomic features 
on tumor volume with strikingly similar clinical parallels. 
This is particularly relevant in longitudinal studies during 
which tumor volumes will change with the course of the 

disease or following therapy. Ideally, volume-independent 
features should be used as to not bias image features longi-
tudinally. We further evaluated the cross-correlation of pre-
clinical and clinical radiomic features with the goal of reduc-
ing the dimensionality of features. Finally, we evaluated the 
repeatability of radiomic features in preclinical PET imag-
ing to identify robust features for inclusion in ML-based 
prediction of response to therapy. At the thresholds defined 
within to screen for volume dependency, repeatability, and 
cross-correlation, we identified 62 optimal features to pre-
dict/assess response to therapy.

RBF [27] was used to rank image features using three 
ML algorithms as to their relevance in predicting/assessing 
response to therapy. Our data suggests that overall SVM 
performed better than NB and CART in predicting response 
to therapy. We used the top four ML-RBF-optimized radi-
omic features—referred to as radiomic signature (RadSig)—
from each task (prediction vs. assessment) to either predict 
or assess response to therapy. In the preclinical arm, RadSig 
performed significantly better in predicting response to ther-
apy relative to standard SUV measures. Importantly, RadSig 
also performed better in predicting and assessing response 
to therapy in the clinical arm. Antunovic et al. [38] reported 
the utility of FDG-PET radiomic features to assess response 
to therapy using four different models in 79 patients with 
heterogenous breast cancer subtypes. The reported area 
under the curve of an ROC analysis ranged from 0.70 to 
0.73. Li et al. [39] recently assessed the utility of both PET 
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Fig. 6  ML-based selection of radiomic features. A At the thresholds 
defined within to screen for volume dependency, repeatability, and 
cross-correlation, we identified 62 optimal features. Implementation 
of relief-based algorithm (RBA) to identify a subset of features as 

inputs to ML-based prediction (B) and assessment (C) of response to 
therapy. Accuracy of ML algorithms CART, SVM, and Naïve Bayes 
to predict (D) or assess (E) response to therapy as a function of num-
ber of radiomic features in PDX

Table 1  Accuracy of predicting (BL) and assessing (4D-BL) 
response to therapy using top 4 radiomic features

All features RadSig

Methods Prediction Assessment Prediction Assessment

CART 80.34 74.86 78.48 72.57
Naïve Bayes 82.62 82.76 86.21 78.26
SVM 78.48 78.45 81.14 75.13
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and CT radiomic features to predict response to therapy in 
a retrospective study that included 100 heterogenous breast 
cancer patients. The PET/CT radiomic predictors achieved a 
prediction accuracy of 87% on the training split set and 77% 
on the independent validation set.

In this small, albeit homogenous, dataset of TNBC patients 
where PDX-optimized radiomic features were implemented 
in the clinical imaging arm, we observed an impressive accu-
racy of 72% and 71% when predicting and assessing response, 
respectively, compared to SUV metrics. We were unable to 
perform a validation test on an independent dataset. However, 
the primary objective was to compare the performance of pre-
dictive metrics in the training phase relative to standard SUV 
measures. Prediction of response to therapy can be further 
enhanced through integration of MR image features [40]. At 
this stage, we did not include MR radiomic features due to 
increased dimensionality with added MR image features and 
a limited number of patients. Other technologies that could 
be integrated with imaging to enhance therapeutic predic-
tion include liquid biopsies such as circulating tumor DNA 
(ctDNA) analyses [41] and molecular/genomic features of 

tumors [42], both of which are an active area of investigation. 
Finally, numerous recent studies have documented that pCR 
rates varied with breast cancer molecular subtypes. TNBC 
and HER2-positive molecular subtypes have shown to have 
higher pCR rates after NAC [43]. Importantly, several studies 
have demonstrated an association between imaging features 
and molecular phenotypes, risk of recurrence, and prognosis 
[44–46]. Interestingly, our PDX studies similarly suggest that 
response to therapy (and prediction thereof) is a function of the 
TNBC subtype; however, further studies are needed to support 
this hypothesis and the utility of radiomic features in classify-
ing TNBC subtypes. With that in mind, one of the most critical 
aspects in practical implementation of radiomics is a consen-
sus on the most effective features and their standardization.

Conclusions

We identified robust FDG-PET radiomic features in 
terms of volume dependency, reproducibility, and cross-
correlation to predict and assess response to therapy in a 
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preclinical PDX trial. The number of radiomic features 
to maximize accuracy was further optimized to yield 
ML radiomic signatures (RadSig) of response to therapy. 
RadSig improved prediction of response to therapy in the 
preclinical arm. Given that PDX recapitulate the hetero-
geneity of human tumors, we then assessed the feasibil-
ity of implementing PDX-optimized RadSig in an interim 
analysis of the clinical trial to predict response to therapy. 
The performance of SVM-RadSig in predicting/assessing 
response to therapy was superior to  SUVmax,  SUVmean, and 
 SULpeak metrics in the clinical setting; however, given the 
small sample size, additional studies are warranted to fur-
ther validate the utility of PDX-optimized features, such as 
RadSig, and potentially integrate with multi-scale features 
to enhance prediction/assessment of response to therapy.
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