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Abstract

This study investigates the volatility of daily Bitcoin returns and multifractal properties of the

Bitcoin market by employing the rolling window method and examines relationships

between the volatility asymmetry and market efficiency. Whilst we find an inverted asymme-

try in the volatility of Bitcoin, its magnitude changes over time, and recently, it has become

small. This asymmetric pattern of volatility also exists in higher frequency returns. Other

measurements, such as kurtosis, skewness, average, serial correlation, and multifractal

degree, also change over time. Thus, we argue that properties of the Bitcoin market are

mostly time dependent. We examine efficiency-related measures: the Hurst exponent, mul-

tifractal degree, and kurtosis. We find that when these measures represent that the market

is more efficient, the volatility asymmetry weakens. For the recent Bitcoin market, both effi-

ciency-related measures and the volatility asymmetry prove that the market becomes more

efficient.

1 Introduction

Bitcoin, advocated by Satoshi Nakamoto [1], was launched in 2009 as the first decentralized

cryptocurrency. Its system is based on a peer-to-peer network. Whilst many other cryptocur-

rencies have been created since its launch, and the cryptocurrency market has grown rapidly,

Bitcoin remains the dominant cryptocurrency in terms of market capitalization. Fig 1 repre-

sents the market capitalizations of the largest 10 cryptocurrencies. Bitcoin dominates about

70% of the total capitalization of 10 cryptocurrencies.

In recent years, Bitcoin has attracted interest of many researchers. Various aspects of Bit-

coin, including hedging capabilities [2], bubbles [3], liquidity and efficiency [4], Taylor effect

[5], structural breaks [6], transaction activity [7], complexity synchronization [8], long mem-

ory effects [9], price clustering [10], rough volatility [11] power-law cross-correlation [12],

market structure [13] have been investigated.

Similar to other assets, stylized facts [14, 15], such as volatility clustering, fat-tailed return

distribution, and long memory in absolute returns, are observed in Bitcoin (e.g., [16, 17]). An

aggregational Gaussianity that the fat-tailed return distributions change to the Gausian distri-

bution on large time scales is another stylized fact observed in various assets [14, 15]. This

aggregational Gaussianity is also observed in Bitcoin and a minimum time scale required to
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recover the Gaussianity is estimated to be two weeks [17]. The skewness is negative on a short

time scale, but it moves to zero on a larger time scale [17].

Despite the similar stylized facts in Bitcoin, researchers report a distinct property: inverted

volatility asymmetry. By using generalized autoregressive conditional heteroscedasticity

(GARCH) models [18–21], several studies report an “inverted asymmetry” in which volatility

reacts more to positive returns than negative ones [22–25]. This contrasts sharply with the

observation that the volatility of stocks reacts to negative returns more than positive ones

[26–28].

However, some studies report that there is no significant asymmetry in volatility [17, 29].

An opposite result to the inverted asymmetry, that is, the same volatility reaction as stocks, is

documented [30]. Moreover, whilst inverted asymmetry is also observed in other cryptocur-

rencies [31, 32], the asymmetry in Bitcoin is insignificant [31]. Therefore, a consistent picture

of volatility asymmetry in Bitcoin has not been obtained. We infer that the discrepancy

observed in the volatility asymmetry is caused, in part, by the time-varying property of volatil-

ity asymmetry. We attribute the differing conclusions to the various data periods used in

Fig 1. Market capitalization of the largest 10 cryptocurrencies (as of 31 August). The solid line represents a Pareto chart. The data are taken from

“https://coinmarketcap.com/”.

https://doi.org/10.1371/journal.pone.0246209.g001
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earlier studies. The possibility of time-varying asymmetry has been already noted [22], and it

has been reported that whilst inverted asymmetry is observed before 2014, no significant asym-

metry is observed after 2014.

This study aims to investigate time-varying properties of the Bitcoin market, especially

volatility asymmetry. In emprical finance, one of popular models to analyze volatility is the

GARCH model [18, 19] which can successfully capture some stylized facts such as volatility

clustring and fat-tailed distribution. There exist many variants of the GARCH model

designed to capture more properties of financial time series [33]. To assess the volatility

asymmetry, we use the threshold GARCH (TGARCH) model [21], which is widely accepted

in empirical finance and has been used in the previous studies on the Bitcoin volatility asym-

metry [17, 22, 25, 30–32, 34]. We estimate model parameters by employing the rolling win-

dow method, which enables us to see time variation. The rolling window method is

commonly used in econometrics or empirical finance for time-series analysis in a limited

amount of financial data. We also investigate the Hurst exponent and multifractality of the

Bitcoin market by the multifractal detrended fluctuation analysis (MF-DFA) method [35],

which is a powerful method to study multifractal properties and has been applied for various

assets in econophysics; see, for example, [36]. The Hurst exponent and multifractality of the

Bitcoin time series are examined intensively in connection with the market efficiency (e.g.,

[17, 37–45]). Here note that according to the efficient market hypothesis [46], there are

three types of market efficiencies: weak, semi-strong, and strong forms. Since we use the

time-series data only, the market efficiency in this study means the weak-form market

efficiency.

A remarkable feature that the Bitcoin time series exhibits is presence of anti-persistency,

that is, the Hurst exponent less than 1/2 [37]. The anti-persistency means that the time series

reverses its moving direction more often than a random time series. On the other hand, the

time series with the Hurst exponent greater than 1/2 persists the same moving direction

more than a random time series. This anti-persistency behavior, however, turns out to be

temporary. It is observed that the Hurst exponent and the multifractality degree vary over

time, and the anti-persistency appears repeatedly [40, 44]. Then, it seems that the Hurst expo-

nent approaches the value of 0.5, which might be an indication toward a maturity market

[37, 47].

Since the efficient market should be free from any type of volatility asymmetry that results

in predicting a certain market property to help gaining profits, the volatility asymmetry is

expected to induce some inefficiency and to relate with efficiency-related measures such as

multifractality. Thus, we also examine a possible relationship between volatility asymmetry

and efficiency-related measures. We find that efficiency-related measures are related to the

volatility asymmetry. When the efficiency-related measures indicate that the market is more

efficient, the volatility asymmetry weakens.

To fully understand the dynamics of Bitcoin time series, we need to investigate various

aspects of Bitcoin. This study investigates not only the volatility asymmetry but also the multi-

fractality, and combines them to advance the understanding of properties of the Bitcoin mar-

ket. Our results reveal that the Bitcoin market efficiency has improved in recent years. It has

been claimed that the market efficiency is related with market size and economic development

[48]. In accordance with this, our results suggest that the Bitcoin market is more mature than

ever.

The rest of this paper is organized as follows. Section 2 describes the methodology. In Sec-

tion 3, we describe the data, and in Section 4, we present the empirical results and discuss the

results. Finally, we conclude our study in Section 5.
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2 Methodology

Let pti ; ti ¼ iDt; i ¼ 0; 1; 2; . . . ;N be the Bitcoin price time series with sampling period Δt. We

define the return rtiþ1
by the logarithmic price difference:

rtiþ1
¼ 100� ðlog ptiþ1

� log ptiÞ: ð1Þ

Since in empirical finance the volatility analysis using the GARCH-type models mainly focuses

on daily volatility, here we also focus on daily returns, i.e. Δt = 1440 −min.

The TGARCH model [21] is used to investigate volatility asymmetry in the Bitcoin market;

the return rti and the volatility s2
ti

at ti are modelled as follows:

rti ¼ mþ c1rti� 1
þ �ti ; ð2Þ

s2

ti
¼ oþ a�ti� 1

þ bs2

ti� 1
þ g�2

ti� 1
Ið�ti� 1

Þ; ð3Þ

where �ti is defined by �ti ¼ sti
Zti , and Ið�ti� 1

Þ is an indicator function, implying that it is 1 if

�ti� 1
< 0 and 0 otherwise. Zti is an unobservable random variable from an independent and

identically distributed (IID) process. Here, we use the Student t distribution as an IID process.

To check the robustness on choice of distributions, we use the normal distribution and the

generalized error distribution [20].

It is empirically well-known that stock return volatility increases after negative returns

more than positive returns [26, 27]. This volatility asymmetry is called “the leverage effect” and

causes a negative correlation between stock returns and volatility. To capture the leverage

effect, various GARCH-type models with the volatility asymmetry are introduced, e.g. [20, 21,

49–51]. For the TGARCH model, the volatility asymmetry is measured by the γ parameter in

Eq (3), and when the leverage effect exists, the γ parameter takes a positive value. On the other

hand, for the inverted volatility asymmetry observed in the Bitcoin market the γ parameter

takes a negative value and volatility reacts more to positive returns than negative ones, leading

to the inverted volatility asymmetry. c1 is the coefficient of an autoregressive model of order 1

(AR(1)) that captures the serial correlation.

To investigate the time-varying properties of volatility asymmetry, we use the rolling win-

dow method to estimate the model parameters. For the parameter estimation, we use the

“urgarch” package of R. First, we set a window size of 548 days (� one and a half years). We

choose this window size because the smaller window size such as one year leads to more noisy

results in estimating model parameters, and perform a parameter estimation for the window

containing the first 548 data samples for the time series. Next, we shift the window 30 days

(� one month) and perform a parameter estimation for the data in the next window. We

repeat this process until the end the time series.

Multifractal analysis is a useful method to quantify properties of complex system, and it has

been applied in many different fields, e.g. [52–56]. Multifractal analysis is also popular in stud-

ies of financial markets and multifractal properties have been intensively studied [56]. To

investigate the multifractal properties of the Bitcoin market, we apply the MF-DFA method

[35]. The MF-DFA method is described by the following steps.

(i). Determine the profile Y(i).

YðiÞ ¼
Xi

j¼1

ðrtj � hriÞ; ð4Þ

where hri stands for the average of returns.
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(ii). Divide the profile Y(i) into Ns non-overlapping segments of equal length s, where Ns�

int(N/s). Since the length of the time series is not always a multiple of s, a short time

period at the end of the profile may remain. For this part, the same procedure is repeated

starting from the end of the profile. Therefore, total 2Ns segments are obtained.

(iii). Calculate the variance.

F2ðn; sÞ ¼
1

s

Xs

i¼1

ðY½ðn � 1Þsþ i� � PnðiÞÞ
2
; ð5Þ

for each segment ν, ν = 1, . . ., Ns and

F2ðn; sÞ ¼
1

s

Xs

i¼1

ðY½N � ðn � NsÞsþ i� � PnðiÞÞ
2
; ð6Þ

for each segment ν, ν = Ns+ 1, . . ., 2Ns. Here, Pν(i) is the fitting polynomial to remove the

local trend in segment ν; we use a cubic order polynomial.

(iv). Average over all segments and obtain the qth order fluctuation function.

FqðsÞ ¼
1

2Ns

X2Ns

n¼1

ðF2ðn; sÞÞq=2

( )1=q

: ð7Þ

For q = 0, the averaging procedure in Eq (7) cannot be directly applied. Instead, we

employ the following logarithmic averaging procedure.

F0ðsÞ ¼ exp
1

4Ns

X2Ns

n¼1

ln ðF2ðn; sÞÞ

" #

: ð8Þ

(v). Determine the scaling behavior of the fluctuation function. If the time series rti are long-

range power-law correlated, Fq(s) is expected to be the following functional form for

large s:

FqðsÞ � shðqÞ: ð9Þ

In calculating the fluctuation function Fq(s), we take q varying between -25 and 25, with

a step of 0.2. The scaling exponent h(q) is called the generalized Hurst exponent, and the

usual Hurst exponent is given by h(2). When h(q) is constant, the time series is called

“monofractal.” For example, the random Gaussian time series is monofractal [35]. On

the other hand, when h(q) varies depending on q, the time series is called “multifractal.”

Following [57], we define the multifractality degree Δh(q) by

DhðqÞ ¼ hðqminÞ � hðqmaxÞ; ð10Þ

where qmin = −q and qmax = q.

Since for the random Gaussian time series, Δh(q) takes zero, the magnitude of Δh(q) is

expected to relate with the strength of the market inefficiency.
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We also calculate the singularity spectrum f(α), which is another way to characterize a mul-

tifractal time series. It is defined by

aðqÞ ¼ hðqÞ þ qh0ðqÞ; ð11Þ

f ðaÞ ¼ q½a � hðqÞ� þ 1; ð12Þ

where α(q) is the Hölder exponent or singularity strength [35]. The multifractality degree

through f(α) is defined by

DaðqÞ ¼ aðqminÞ � aðqmaxÞ; ð13Þ

which takes zero for monofractal. In this study we take q = [−25, 25]. However, there is a cau-

tion that when |q| is large, the moments may diverse and the estimated results are unreliable

[36]. Thus, to avoid such a situation, following [47], for the calculations of the multifractal

degree Δh(q) and Δα(q), we take q = 4. The strength of Δα(q) is also related with the market

inefficiency, and we call Δh(q) and Δα(q) including kurtosis “efficiency-related measures.” We

use the same rolling window method to investigate time-varying properties of multifractality

and take the same window size (548 days) with the volatility analysis by the TGARCH model

to compare the results.

3 Data

We use Bitcoin tick data (in dollars) traded on Bitstamp from September 10, 2011, to June 06,

2020, downloaded from Bitcoincharts (http://api.bitcoincharts.com/v1/csv/). Due to a hacking

incident, no data are available from January 4, 2015 to January 9, 2015. For these missing data,

we treat them as the price is unchanged.

3.1 Price and return

Fig 2 illustrates daily (Δt = 1440-min) price and returns rtj constructed from the Bitcoin tick

data. We eliminate the data that are larger than 40, i.e., rti > 40, as outliers. This manipulation

keeps the results almost unchanged except kurtosis. In our data set, we find four outliers. Fig

2(d) shows the volatility series st defined by st ¼ st� 1 þ jrtj � �r , where rt and �r stand for the

return at t and the average of rt, respectively. The volatility series introduced in [58, 59] can be

utilized to identify the volatility clustering. Namely, the increasing (decreasing) trend of the

volatility series implies the existence of the high (low) volatility clustering. Such trends indicat-

ing high and low volatility clusterings are seen in Fig 2(d).

Table 1 provides descriptive statistics for the whole sample of returns, and we find a positive

average, high kurtosis, and negative skewness. We also explore the time variation in these

using the rolling window method.

3.2 Time-varying properties of descriptive statistics

Fig 3 illustrates the average, standard deviation (SD), kurtosis, and skewness calculated with a

548-day rolling window. Interestingly, they vary considerably over time. Whilst the kurtosis

before 2017 is very high (i.e., more than 10), it decreases after 2017. Recently, it has taken a

value of around 6, which is still higher than the Gaussian kurtosis. The origin of high kurtosis

could be a fat-tailed return distribution that means higher price variations are observed more

often. At the early stage of Bitcoin market, the tail index μ of the cumulative return distribution

is found to be μ� 2, which is referred to as the inverse square law [60]. The similar tail indces

are have also been reported in [61] This is sharply contrast to the well-known inverse cubic
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law for other assets [62–65], in which the tail index μ is μ� 3. The inverse square law observed

in the Bitcoin market, however, is not permanent. The recent Bitcoin data up to 2017 show

that the tail index comes close to 3, which suggests that the Bitcoin market is becoming more

mature [47]. Further studies [66, 67] also indicate the change of the tail index to 3. It is also

worth noting that the recent COVID-19 pandemic considerably affects the cryptocurrency

Fig 2. (a): Daily price, (b): daily price (semi-log plot), (c): returns and (d) volatility series.

https://doi.org/10.1371/journal.pone.0246209.g002
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market and as a result the market experiences a volatile period in which the tail index varies

[13].

These observations imply that the tail index μ of the cumulative return distribution in the

Bitcoin market varies over time and moves from μ� 2 (fatter tail) to μ� 3 (thinner tail),

which could account for the decrease in kurtosis. Although the skewness is mostly negative

over the whole period, the magnitude of the negative skewness decreases gradually with time,

and the skewness seems to disappear in recent returns. The disappearance of skewness possibly

means the efficiency improvement of the Bitcoin market, and agrees with the observation in

efficiency-related measures such as the Hurst exponent and the multifractal degree that indi-

cate that the market efficiency of the Bitcoin market varies over time and the recent market

efficiency is being improved. We describe the results on the market efficiency in more detail

later. Overall, these findings in descriptive statistics also suggest that properties of the Bitcoin

market vary over time. Thus, it is important to consider time variation in analysis.

3.3 Aggregational gaussianity

Fig 4 illustrates the aggregational Gaussianity of returns, namely the kurtosis of returns sam-

pled at Δt as a function of Δt. The figure is plotted in log-log scale, and we find that the kurtosis

decreases according to a power-law up to Δt� 20000 min� two weeks, with an exponent

* −0.62, and the kurtosis of returns at Δt longer than two weeks is consistent with the Gauss-

ian kurtosis, in agreement with the previous result [17]. This finding suggests that the time

series of returns at Δt longer than two weeks most likely becomes the random Gaussian time

series.

4 Empirical results and discussion

Table 2 presents the TGARCH parameters estimated for the whole dataset. The γ parameter is

negative, which indicates an inverted asymmetry in the volatility. Its magnitude, however, is

not large, which is consistent with the result of [31]. This is probably because the strength of

time-varying asymmetry of γ weakens in the parameter estimation for the whole dataset which

may include both periods of positive and negative asymmetries. In the following, we find that

the γ parameter varies over time considerably.

Figs 5 and 6 show the results of the TGARCH parameters in the 548-day rolling window. It

is evident that the parameters vary over time. Although parameter γ is mostly negative, we find

some exceptions. For instance, parameter γ takes positive or zero values around 2015; and

after 2019, its magnitude becomes small or consistent with zero. We also observe a strong

inverted asymmetry between 2016 and 2018. For the robustness check on the IID distribution

in Eq (2), we perform the parameter estimation with the normal and generalized error distri-

butions, and find that the similar asymmetric volatility patterns to that from the Student t dis-

tribution are obtained. Therefore, the choice of distributions in the IID process is irrelevant.

The AR(1) parameter c1, which captures serial correlation, also varies considerably. It is

argued that non-zero serial correlation implies that uninformed investors dominate in trading

Table 1. Descriptive statistics for the whole sample of daily returns.

Mean SD Kurtosis Skewness Nobs

0.27(11) 4.63(41) 11.9(22) -0.267(99) 3188

SD stands for “standard deviation.” The values in parentheses indicate one sigma errors estimated by the Jackknife

method.

https://doi.org/10.1371/journal.pone.0246209.t001
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Fig 3. Average, SD, kurtosis, and skewness as a function of time. SD stands for standard deviation. These are calculated using the

rolling window method with a window size of 548 days. Bars in the data points represent one sigma error, estimated by the Jackknife

method.

https://doi.org/10.1371/journal.pone.0246209.g003
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and that price changes due to uninformed investors will increase volatility more than price

changes caused by informed investors [68]. In line with [68], it is claimed that non-zero AR(1)

coefficients are found for cryptocurrencies; and the inverted asymmetry due to uniformed

investors is consistent with phenomena such as fear of missing out, pump and dump schemes,

and the disposition effect [31]. Our results of c1 indicate that there are periods in which c1 is

consistent with zero, which suggests that the Bitcoin market is not always dominated by unin-

formed investors. We find both strong inverted asymmetry and non-zero c1 from 2016 to

2018. Thus, the period from 2016 to 2018 is considered to be dominated by uninformed

Fig 4. Kurtosis at various sampling period Δt as a function of Δt. Bars in the data points represent one sigma error, estimated by the Jackknife

method. The red line displays the Gaussian kurtosis (= 3).

https://doi.org/10.1371/journal.pone.0246209.g004

Table 2. TGARCH parameter estimates for the whole dataset.

α β ω γ c1 μ ν
0.181(36) 0.853(17) 0.235(77) -0.058(21) -0.044(17) 0.181(36) 3.21(14)

ν is the shape parameter of the Student t distribution.

The values in parentheses indicate standard errors.

https://doi.org/10.1371/journal.pone.0246209.t002
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investors, thereby affecting the volatility asymmetry. As seen in Fig 2, in this period, the Bit-

coin price increases considerably and recorded the highest value on December 2017. Conse-

quently, Bitcoin price movement in this period is associated with the inverted asymmetry

induced dominantly by uninformed investors.

We also estimate the model parameters for high-frequency returns (6h and 12h). Fig 7 rep-

resents the results of γ together with those from the daily returns. We find that high-frequency

returns exhibit similar variation with daily returns except that the 6h returns for which no sig-

nificant inverted asymmetry is seen before 2015. These results imply that whilst the asymmet-

ric volatility pattern remains for higher frequency returns, the detail of the asymmetry pattern

depends on the frequency of returns.

To calculate the multifractal degree Δh(q) and Δα(q), we first determine h(q) by fitting the

fluctuation function Fq(s) to Eq(9) in a range of s = [20, 100]. Then, we determine Δh(q) and

Δα(q) by Eqs (10) and (13), respectively. As representatives, Fig 8(a) and 8(b) shows fluctua-

tion functions Fq(s) calculated using the first window data and h(q), respectively.

Fig 9(a) represents the Hurst exponent h(2) as a function of time, showing some anti-persis-

tent periods (h(2) < 1/2). The recent h(2) around 2020 is consistent with or slightly above 1/2,

which suggests that the recent Bitcoin market is becoming more efficient. This finding is

Fig 5. Estimation results of α, β, and ω. The error bars show the standard errors.

https://doi.org/10.1371/journal.pone.0246209.g005

PLOS ONE Time-varying properties of asymmetric volatility and multifractality in Bitcoin

PLOS ONE | https://doi.org/10.1371/journal.pone.0246209 February 1, 2021 11 / 21

https://doi.org/10.1371/journal.pone.0246209.g005
https://doi.org/10.1371/journal.pone.0246209


consistent with the results of kurtosis and skewness in Fig 3 that shows low kurtosis and

insignificant skewness for the recent Bitcoin market, meaning that the return distribution

becomes more Gaussian shaped than before. For Δh(q) and Δα(q), we show the results of q = 4

in Fig 9(b) as a function of time. Two measures of the multifractal degree calculated here show

the same time-varying pattern. Broadly speaking, the multifractal degree decreases with time,

which suggests that the Bitcoin market gradually approaches the efficient market. Using the

Amihud illiquidity measure [69], it is argued that the market inefficiency in the cryptocurrency

market is caused by illiquidity and the illiquidity is related with anti-persistency [4]. For the

Bitcoin market, liquidity in terms of the Amihud illiquidity measure turns out to be improving

[44], which agrees with the improved efficiency of the Bitcoin market in recent years.

In Fig 10(a) and 10(b), we examine the relationship between kurtosis and the efficiency-

related measures (a) h(2) and (b) Δα(4). Fig 10(a) shows that the results of h(2) near 1/2 takes

kurtosis smaller values, for example, less than 7. However, most larger kurtoses more likely

correspond to h(2) far from 1/2. In Fig 10(b), we find that the smaller kurtoses opt to take

small Δα(4). Therefore, the results of Fig 10(a) and 10(b) imply that in the more efficient mar-

ket, the kurtosis takes smaller values close to the Gaussian one. Here, note that since returns at

short scale are usually fat-tailed distributions, the kurtosis of daily returns may not reach the

Fig 6. Estimation results of γ, c1 and μ. The error bars show the standard errors.

https://doi.org/10.1371/journal.pone.0246209.g006
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Gaussian one, and it rather reaches a certain minimum value (> 3) at the efficiency-improved

market.

Fig 11(a)–11(c) illustrates relationships between the asymmetric parameter γ and three

measurements, (a) h(2), (b) Δα(4), and (c) kurtosis, and some remarks are in order. In Fig

11(a), it is observed that in an anti-persistent domain (h(2) < 1/2), the asymmetric parameter

γ takes negative value more than positive ones, and the parameter γ near zero tends to cluster

in a region that h(2) takes values near 1/2 or slightly above 1/2.

In Fig 11(b), we find that in a region of small Δα(4), for example, Δα(4)<0.5, the parameter

γmostly takes values near zero. However, for larger Δα(4), the parameter γ tends to take nega-

tive values. Fig 11(c) indicates that for a region near the Gaussian kurtosis (e.g., kurtosis <7),

the parameter γ comes to values near zero. Moreover, mostly the strong negative γ comes to a

region with higher kurtoses. The overall results from Fig 10(a)–10(c) indicate that for the mar-

ket being more efficient, that is, for h(2) near 1/2, small Δα(4), and kurtosis closer to the Gauss-

ian one, the volatility asymmetry likely disappears. This is consistent with the consequence of

the efficient market that any predictable patterns such as the asymmetric volatility should not

exist.

4.1 An application on investment strategy

Correct understanding of the market state is of great importance for investors who change

trading strategy depending on the state of the market. This study could contribute to offer

such information. For example, according to the efficient market hypothesis [46], the technical

Fig 7. Asymmetry parameter γ for 6h, 12h, and daily returns. The error bars show the standard errors.

https://doi.org/10.1371/journal.pone.0246209.g007
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analysis is not supported on the efficient market. Our results imply that the recent Bitcoin mar-

ket is being efficient and it might be difficult to make high profits by the technical analysis. By

monitoring the market efficiency of Bitcoin, if the Bitcoin market becomes inefficient substan-

tially again, one could use the technical analysis to gain profits. Another suggestion from the

Fig 8. (a) Fluctuation functions Fq(s) (b) The generalized Hurst exponent h(q). In Fig 8(a), the results are plotted from q = −25 (bottom)

to q = 25 with a step of 1.0.

https://doi.org/10.1371/journal.pone.0246209.g008
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efficient market hypothesis is that on the efficient market, the most efficient portfolio is a mar-

ket portfolio consisting of every asset weighted in proportion to its market capitalization. Of

course, it is difficult to form a completely diversified portfolio in practice [70]. However, it

may be possible to make an approximate diversified portfolio including the efficient Bitcoin.

Furthermore, although not all cryptocurrencies are efficient, when the cryptocurrency markets

become more mature and more efficient, an index or portfolio consisting of cryptocurrencies

could be a proxy of a fully diversified portfolio on the cryptocurrency markets.

5 Conclusions

We use the rolling window method to investigate time-varying properties of Bitcoin. We find

that various measurements, such as volatility asymmetry, kurtosis, skewness, serial correlation,

and multifractality, are time varying. Thus, the Bitcoin market may have inherently variable

properties. Although the inverted asymmetry is observed in Bitcoin and the strong inverted

asymmetry is found around 2016-2018, the recent volatility asymmetry is weak. The

Fig 9. (a) the Hurst exponent h(2), (b) multifractal degrees Δh(4) and Δα(4). These results are obtained by the rolling window method with a

548-day window and a step of 1 day.

https://doi.org/10.1371/journal.pone.0246209.g009
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magnitude of the volatility asymmetry may relate with the market state, especially the market

efficiency.

To investigate a relationship between the volatility asymmetry and the market efficiency,

we examine efficiency-related measures: the Hurst exponent, multifractal degree, and kurtosis.

Fig 10. (a) Kurtosis versus h(2) and (b) Kurtosis versus Δα(4).

https://doi.org/10.1371/journal.pone.0246209.g010
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Fig 11. Relationships between γ and (a) h(2), (b) Δα(4), and (c) kurtosis.

https://doi.org/10.1371/journal.pone.0246209.g011
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We find that when these efficiency-related measures indicate that the market is more efficient,

the volatility asymmetry is more likely to weaken. The efficiency-related measures indicate

that the recent Bitcoin market has become more efficient.

Whilst we use one of the GARCH-type models, that is, TGARCH model, which is com-

monly used in volatility analysis of Bitcoin, other types of volatility models such as stochastic

volatility model [71–73] exist. It might be interesting to investigate whether these models lead

to the similar results on the volatility asymmetry.

In addition to the inverted asymmetry, other remarkable properties are observed in the Bit-

coin market. For example, whilst it is claimed that for stock markets, time series of the log-vol-

atility increments shows “monofractal” anti-persistence behavior [74–76], for the Bitcoin

market “multifractal” anti-persistence behavior is reported [11]. This difference is important

to construct a correct volatility model with monofractal or multifractal behavior. Another

interesting property is observed in return-volatility cross-correlation. For stock markets, it is

found that return-volatility cross-correlation function exhibits an exponential decay that indi-

cates that the return-volatility cross-correlation is short-ranged [77–79]. However, for the Bit-

coin market, the return-volatility cross-correlation function shows a power law meaning that

the cross-correlation is long-ranged [12]. The mechanism that originates these remarkable

properties including the inverted asymmetry are not established yet. Toward the complete

understanding of the Bitcoin dynamics, we should further study these properties in more detail

in future direction.
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