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Abstract: Complex solid solutions (“high entropy alloys”),
comprising five or more principal elements, promise a para-
digm change in electrocatalysis due to the availability of
millions of different active sites with unique arrangements of
multiple elements directly neighbouring a binding site. Thus,
strong electronic and geometric effects are induced, which are
known as effective tools to tune activity. With the example of
the oxygen reduction reaction, we show that by utilising a data-
driven discovery cycle, the multidimensionality challenge
raised by this catalyst class can be mastered. Iteratively refined
computational models predict activity trends around which
continuous composition-spread thin-film libraries are synthes-
ised. High-throughput characterisation datasets are then used
as input for refinement of the model. The refined model
correctly predicts activity maxima of the exemplary model
system Ag-Ir-Pd-Pt-Ru. The method can identify optimal
complex-solid-solution materials for electrocatalytic reactions
in an unprecedented manner.

Complex solid solutions (CSS), often referred to as “high
entropy alloys”, were recently discovered to hold the promise
of shifting the paradigm in materials design from “using
materials that we have” to “engineering materials that we
need”. In electrocatalysis there is an urgent need to discover
new materials to catalyse the production of sustainable fuels
and chemicals, needed for mitigating climate change. For
many key reactions the scalability towards a global level is
limited by present-day catalysts. However, most of the
plausible billions of different materials have never been
synthesised and nearly all materials that have been employed
up to now represent edges and corners in the vast continuum
of chemical space. Exploration of the promising multidimen-

sional chemical space of CSSs with the aim of finding
previously out-of-reach catalysts is extremely challenging
and requires an intelligent materials discovery strategy to
focus on interesting regions of potential catalytic activity since
neither simulation nor experiments alone can overcome
serendipity in materials discovery.

The emerging paradigm change in electrocatalysis is based
on the availability of millions of different active sites in the
CSS atomic surface configuration. This unique arrangement
of multiple elements directly neighbouring a binding site
enables tuning activity by electronic and geometric effects.[1]

Recently, we discovered a noble-metal free CSS for the oxygen
reduction reaction (ORR),[2] proposed a theoretical base for
CSS catalysts as a discovery platform,[3] applied this strategy on
the CO2 and CO reduction reactions,[4] and described exper-
imental challenges and concepts,[5] which were confirmed
experimentally[6] and further confirmed theoretically.[7] More-
over, the discovery and investigation of CSS electrocatalysts is
attracting a burgeoning interest. Independently, several groups
have shown that CSS electrocatalysts are indeed “game-
changing” materials for a wide span of electrochemical
reactions such as hydrogen and oxygen evolution reactions,[8]

CO,[4] CO2
[4,9] and O2

[2, 3, 10] reduction reactions as well as
methanol oxidation[11] or ammonia synthesis and decomposi-
tion.[12–14] Outstanding activities were reported even though in
most cases only the simplest case of equiatomic CSS
compositions were investigated. This success was enabled by
the development of an increasing number of mostly non-
equilibrium synthesis methods comprising carbothermal
shock synthesis,[12,14] combinatorial co-sputtering,[2, 6] solvo-
thermal reactions,[15] ball milling,[9] dealloying,[10] oil phase
synthesis[16] and laser ablation[17] amongst others.
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Up until now selection of an elemental CSS composition is
guided by chemical intuition. With the combinatorial explo-
sion of possibilities that occurs when considering combina-
tions and composition of constituent elements, it becomes
almost impossible to discover optimal multinary electrocata-
lysts for specific reactions without an underlying theoretical
framework. While no such framework exists for predicting the
optimal set of constituent elements for a reaction, finding the
most active composition of a given set is of equal importance.
To accomplish this, we demonstrate a closed-loop data-driven
high-throughput experimentation approach that iteratively
combines (i) ab-initio simulations and modelling, (ii) combi-
natorial synthesis of materials libraries (MLs) and (iii) high-
throughput characterisation (see Figure 1). This starts with an
initial hypothesis/prediction of a system of interest which is
synthesised, in the form of thin-film MLs, comprising large
compositional ranges which allow the efficient identification
of property maxima and minima. The results are used to
refine the model to improve predictions in the next cycle.

As a testbed, noble metals as electrocatalysts for the ORR
allow robust and well-defined experimental parameters with-
out risking material modification such as surface oxidation or
dissolution. Moreover, established theoretical design princi-
ples exist for ORR performance, which have been confirmed
experimentally. Theory and experiment suggest that an
optimal catalyst binds *OH and *O with an adsorption
energy 0.1 eV[18] and 0.2 eV[19] weaker than Pt, respectively.
For comparing surfaces an estimate of the relative activity, A,
is calculated from all binding energies with associated weights
given by the probability of finding each type of site using
Equation (1):

A ¼
XZ

i¼1

Ymetals

k

f nik
k

 !
exp �

DEi � DEopt

�� ��
kBT

� �
ð1Þ

Per-site activity is assumed to increase exponentially with
decreasing difference between the binding energy of an
intermediate on site i, DEi, and the optimum given by the
Sabatier principle, DEopt. kB and Tare the Boltzmann constant
and temperature, respectively. The per-site activity is then
multiplied by the probability of site i occurring,

Qmetals
k f nik

k ,
where k are constituent metals, f are the fractions of k in the
overall composition, and nik is the number of atoms of k
constituting the binding site. Finally, all per-site activities of
the Z sites included in the model (Figure S1) are summed to
give the overall activity.

The computational challenge posed by CSS surfaces
derives from the millions of possible local atomic arrange-
ments, all having different binding energies defined by the
composition and relative positions of atoms. A totally mixed
alloy has a statistical distribution of different local atom
arrangements which serve as active sites. Therefore, a fast
method of calculating binding energies is needed. A DFT-
dataset of thousands of binding energies enables fitting
a model to describe the remaining millions of possible
arrangements. This initial model predicted CSS activities of
Ir-Pd-Pt-Rh-Ru for the ORR[3] and Pt-Pd-Cu-Ag-Au for the
CO2 and CO reduction reactions.[4] Here, we focus on the
system Ag-Ir-Pd-Pt-Ru, with the constituents chosen based
on the likelihood of forming a stable and active CSS, and
a composition predicted with the initial model. By training
a linear regression model on 3317 DFT calculated *OH and
*O binding energies and predicting all DEi, sequential least
squares programming was used to find compositions that
maximise Equation (1), considering only *OH binding ener-
gies. For computational details of the DFT-calculations and
regression model, see SI and Figures S1–2. Two most active
compositions were calculated in this way: Ag5Ir5Pt20Pd35Ru35

and Ag5Ir5Pd17Pt68Ru5, both assuming *OH binding as the
activity descriptor. The first composition optimisation was

bound to fractions between 5% and 35% to
retain a high probability for CSS stability. The
second composition was found by removing
the upper bound of 35%. Three Ag-Ir-Pd-Pt-
Ru MLs (ML1, ML2 and ML3) covering
different composition spaces centred around
the predicted compositions were fabricated
using combinatorial co-sputtering from five
elemental targets (Figures S5, 6) with compo-
sition ranges shown in Table S1 in the Sup-
porting Information. ML1 was centred around
the composition Ag5Ir5Pt20Pd35Ru35 and char-
acterised for comparison with the model
described above. ML2 and ML3 were both
centred around Ag5Ir5Pd17Pt68Ru5, being fab-
ricated for data consistency and trend repro-
ducibility. All 342 measurement areas (MAs)
on a ML are synthesised simultaneously in one
experiment.

The MLs were investigated with scanning
droplet cell (SDC) measurements in 0.1 M
HClO4. After rinsing with new electrolyte, the
SDC head was pressed onto each MA. The
wetted area served as working electrode. By

Figure 1. Schematic representation of the iterative materials discovery loop. a) Predicted
and experimentally obtained ORR activity on ML1 using SDC measurements: the initial
model does not match the experimental result. The x and y-axis denote the dimension
of the ML. b) The data-driven discovery cycle combining prediction, combinatorial
synthesis and high-throughput characterisation.
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measuring a linear sweep voltammogram (LSV) we evaluate
the materials� ORR activity (see SI). Mapping composition-
activity dependencies enables comparison with modelling. A
homogeneous Pt thin film showed a small standard deviation
with respect to the ORR activity for all MAs (Figure S8),
confirming reliability. Each ML was measured a second time,
being turned by 908, to rule out systematic errors (Figure 4e
and Figure S9). Thus, fully consistent datasets unambiguously
tied to the composition gradients (Figure S10) were obtained.
Spatially resolved XRD and EDX data as well as results from
atom probe tomography (APT) confirm the presence of
a single-phase CSS state of the samples and allow comparison
of activity at each MA of the MLs with predicted data
(Figure 2 and Figures S6 and S7).

Initial predictions fail to anticipate activity trends sat-
isfactorily (Figure 1a). Whereas composition might differ
from the bulk composition, due to for example, surface
segregation, these effects can be neglected for the given case
of a fully noble metal system, which is measured in the as-
deposited state and trends in the ML remain unaffected. We
iteratively developed a series of models I, II, III built upon the
initial model by additionally providing a measure of current
per site, ji, as a function of potential, U, see Equation (2).
Using the local composition around each binding site, (details
in Figure S1) surface binding energies are mapped. The
Koutecký-Levich equation for rotating disk electrode (RDE)
experiments is used to model ji.

1
ji
¼ 1

jki

þ 1
jD

ð2Þ

jki
¼ exp

� DEi � DEopt

�� ��þ DEopt � eU
kBT

� �
ð3Þ

Here e is the charge on an electron. ji is calculated per site
i, and then summed up over all sites, N, on the surface.

jtot ¼
XN

i

ji ¼
XN

i

1
1

jki

þ 1
jD

ð4Þ

The magnitude of the per-site current response diminishes
exponentially with increasing distance from the ORR volcano
peak, similar to the initial model. The resulting shape of the
current response can be correlated to the adsorption energy
distribution pattern. At low overpotentials there is little mass
transport limitation (jD, set to 1, i.e., relative currents are
calculated with arbitrary units) in experiment, enabling
comparison with SDC measurements.

Three models were developed with distinct binding and
site interactions as illustrated in Figure 3. All models are
“brute force methods” since for every composition a small
section of the surface is simulated (100 � 100 atoms, 3 layers)
with Ag, Ir, Pd, Pt, and Ru randomly populating the face
centred cubic (fcc) lattice. By extracting nearest neighbour
compositions around on-top and hollow sites on this surface
� 20000 binding energies are predicted. Model I focuses on
the *OH binding energy as catalytic activity descriptor, with
the optimum energy being 0.1 eV weaker than on Pt.
Assuming *OH binds to on-top sites without neighbouring

site interactions (Figure 3a left), using the surface binding
energies (Figure 3b) a measure of the current response at
certain potentials (Figure 3e) is calculated using Equa-
tion (2). In contrast, model II considers *O binding to
hollow sites (Figure 3a middle). In this case, even though
neighbouring sites share an atom, no site interactions are
assumed. The optimum energy is now 0.2 eV weaker than on
Pt.[19] The binding energies (Figure 3c) are then used to
predict current (Figure 3 f) as in model I.

Applying models I and II to a single-element surface,
scaling between fcc-hollow and on-top sites leads to an
identical activity prediction since an adsorbate sees the same

Figure 2. Results of spatially resolved a) EDX measurements at each
MA of ML2 illustrating the continuous composition gradients; b) XRD
measurements of ML2 and a selected diffraction pattern of the MA
Pd46Pt19.2Ru17.9Ir16.8Ag0.1; c) visualisation of APT results from a CSS thin
film sputtered on a tip-array[20] to confirm the single-phase CSS state.
The overall composition of this sample as determined by APT is
Pd47.1Pt18.9Ru17.8Ir15.9Ag0.3.
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surface environment regardless of the binding site. This is not
the case for a CSS since adsorption energy distributions for
*OH and *O have different shapes, (Figure 3b and c),
confirming that fcc-hollow and on-top sites do not scale on
a CSS. Interaction of *OH and *O at different binding sites is
important due to the complex surface arrangements. Model
III includes this effect and additionally considers that on
a real CSS surface some sites will prefer an *O binding to the
hollow position while other sites an *OH to on-top, and that
sites can be blocked by neighbouring adsorption (Figure 3a
right). The simulated surface of 10 000 atoms is populated
with *O and *OH adsorbates by filling the sites starting from
the most stable on-top and hollow sites. Once the surface is
filled, only blocked sites, assumed to be inactive, remain
vacant. Filled sites take part in the current calculation
(Figure 3g) as in models I and II. Since the surface is
populated with neighbouring site blocking considered, the
available binding energy distributions (Figure 3d) are not
simply a combination of the non-interacting *O and *OH
distributions. Moving from a pristine surface to a situation
where neighbouring sites interact, the binding energy distri-

bution is altered. We demonstrate predictions by the three
models, displaying predicted activity maps (Figure 3h–j)
using composition data from ML1 (Figure S5).

Figure 4 shows the comparison of predicted (model III)
and experimental activity maps as well as measured LSVs for
the ORR at selected MAs from regions with different activity.
All activity maps use the current (measured or calculated) at
820 mV vs. RHE as activity descriptor. Since the polarisation
curves do not cross within the relevant potential range, the
composition trends are not significantly affected by choosing
different potentials. An already good match of predicted and
measured data for ML1 is observed. XRD analysis revealed
that ML1 consists of three regions with different crystal
structure (Figure S7a), which can interfere with the compar-
ison and we highlighted the fcc-only region as the model
assumes an fcc structure. We then prepared MLs that were
purely fcc (Figures S7b,c). They show a very good agreement
with the activity trends. The simpler models I and II yield
different composition trends (Figure S3) emphasising the
importance of the additional interaction used in model III.
The most active CSS compositions surpass Pt activity,
especially in the relevant low overpotential region. Consid-
ering the drastically reduced Pt content in the CSS, it is shown
that superior activities are achieved on CSS surfaces and the
importance of implementing high-throughput iterative strat-
egies to fully exploit their multidimensional search space is
demonstrated.

To summarise, we combine simulation, machine learning,
data-guided combinatorial synthesis, and high-throughput
characterisation to identify CSS compositions with high
electrocatalytic activity, particularly for but not limited to
the ORR. We demonstrate that models for predicting ORR
activity based on simple descriptors do not contain enough
information to make predictions on a CSS surface. This
provides fundamental insights, namely that it is the inter-
action between adsorbates and resultant blocking that creates
the active surface. We find a model incorporating the simplest
adsorbate-adsorbate interactions is able to replicate exper-
imental activity trends remarkably well. Comparison of data
from over 1000 ORR activity measurements and machine
learning guided predictions demonstrates an efficient meth-
odology for high-throughput closed-loop materials design in
the flourishing field of electrocatalysis on CSS surfaces.
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