
Journal of Vision (2020) 20(8):20, 1–18 1

Encoding perceptual ensembles during visual search in
peripheral vision
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Observers can learn complex statistical properties of
visual ensembles, such as their probability distributions.
Even though ensemble encoding is considered critical for
peripheral vision, whether observers learn such
distributions in the periphery has not been studied.
Here, we used a visual search task to investigate how the
shape of distractor distributions influences search
performance and ensemble encoding in peripheral and
central vision. Observers looked for an oddly oriented
bar among distractors taken from either uniform or
Gaussian orientation distributions with the same mean
and range. The search arrays were either presented in
the foveal or peripheral visual fields. The repetition and
role reversal effects on search times revealed observers’
internal model of distractor distributions. Our results
showed that the shape of the distractor distribution
influenced search times only in foveal, but not in
peripheral search. However, role reversal effects
revealed that the shape of the distractor distribution
could be encoded peripherally depending on the
interitem spacing in the search array. Our results suggest
that, although peripheral vision might rely heavily on
summary statistical representations of feature
distributions, it can also encode information about the
distributions themselves.

Introduction

There are large differences in the processing of
visual information between the central and peripheral
visual fields. This reflects the fact that a much higher
percentage of neural structures in both the retina and

primary visual cortex are devoted to the foveal region
(e.g., Curcio & Allen, 1990; Daniel &Whitteridge, 1961;
Hubel & Wiesel, 1974; Drasdo, 1977; see Jóhannesson,
Tagu & Kristjánsson, 2018 for review). Resolution,
acuity, and contrast sensitivity are higher for foveal than
peripheral vision (Anstis, 1974; Virsu & Rovamo, 1979).
However, only a small central region of our visual field
corresponds with the fovea, whereas the bulk of it is
processed peripherally. This means that a significant
amount of our daily visual perception depends on
our peripheral vision. To have a complete picture of
our visual capabilities, it is crucial to understand how
processing differs between central and peripheral vision.

Apart from diminished resolution and acuity, one of
the main reasons why visual performance is degraded
in peripheral vision is crowding, which occurs when
similar items (i.e., distractors, or “flankers”) are present
nearby a target item (Stuart & Bruian, 1962; Bouma,
1970; Levi, Klein & Aitsabaomo, 1985; Wilkinson,
Wilson & Ellemberg, 1997). Recent work on crowding
has suggested that peripheral visual information is
encoded as visual ensembles, which are represented
in terms of summary statistics (Levi, 2008; Pelli &
Tillman, 2008; Balas, Nakano, & Rosenholtz, 2009;
Rosenholtz, Huang, Raj, Balas & Ilie, 2012; Ehinger &
Rosenholtz, 2016). This would enable peripheral vision1
to process a large area of the visual field very quickly to
detect any potentially informative visual items or events.
This would then guide consequent eye movements made
to project informative parts of the visual scene onto the
fovea for further processing. Therefore, examining how
visual ensembles are encoded in peripheral vision could
increase our understanding of how the visual scene is
processed.
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Although the visual system can represent a
distribution of features (e.g., orientation, color, size,
facial expression) across many objects as ensembles,
and can accurately and efficiently extract the summary
statistics of these ensembles (for reviews, see Alvarez,
2011; Haberman & Whitney, 2011; Whitney &
Leib 2018), foveal information is not needed for
this (Wolfe, Kosovicheva, Leib, Wood & Whitney,
2015). Furthermore, it has even been argued that
summarizing information in the peripheral visual field
as ensembles is an automatic compulsory process,
which, in turn, explains why crowding becomes stronger
with increasing eccentricity (Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001; Fischer & Whitney, 2011;
but see also Livne & Sagi, 2007; Bulakowski, Post &
Whitney 2011). Although crowding can be seen as a
limiting factor for object recognition in the periphery,
this compulsory averaging might facilitate scene
perception, because it has been shown that peripheral
processing is more useful for recognizing the gist of a
scene than foveal processing (Larson & Loschky, 2009;
Ehinger & Rosenholtz, 2016).

Given this strong link between peripheral processing
and ensemble perception, the effects of eccentricity
in encoding visual ensembles have not received the
attention they deserve. In particular, little work has
focused on how ensemble encoding differs between
central and peripheral vision. Ji, Chen, and Fu (2014)
presented participants with sets of faces where certain
faces appeared in the foveal visual field and others in
the periphery. Participants judged whether the overall
emotion of the set was positive or negative. They found
that faces in the foveal region were given more weight
than those in the periphery in participants’ judgments.
In contrast, by using gaze-contingent displays,
Wolfe et al. (2015) demonstrated that participants were
equally accurate in reporting the mean emotion of a
set of faces when there was a foveal occluder and when
there was not.

Both of these studies required explicit judgments
about the mean value of a set of features. These
explicit judgments on statistical parameters of a feature
distribution might have limited power in revealing how
accurately feature distributions in an ensemble are
encoded by the visual system. Recently, Chetverikov,
Campana, and Kristjánsson (2016, 2017a, 2017b,
2017c, 2020) used a novel method to demonstrate that
observers can encode the probability density function
underlying the distractor distribution in an odd-one-out
visual search task for orientation (2016, 2017a) and
color (2017b). Instead of using explicit judgments
of distribution statistics, they measured observers’
visual search times varying target similarity to
previously learned distractors, which revealed observers’
expectations of distractor feature distributions. This
was achieved by using role reversal effects between
the target and distractors, which occur when feature

values of target and distractors used on previous search
trials are swapped on the next trial (Kristjánsson &
Driver, 2008; Becker, 2010). This causes search times
to increase owing to the similarity between the current
target and the previous distractors, compared with
a case where current target and previous distractor
features are dissimilar. In this study, we use this implicit
method and manipulate this similarity between the
target and the previous distractors to assess whether
observers encode orientation distributions differently
with central and peripheral vision. In this way, we
can examine observers’ internal representations of
ensembles, rather than their explicit summary statistics
judgments that may in fact rely on these ensemble
representations.

Another goal of our study was to examine the effect
of ensemble encoding on odd-one-out visual search
performance. Ensemble encoding can strongly influence
visual search for outliers (Cavanagh 2001; Alvarez,
2011; Whitney, Haberman & Sweeny, 2014). Detecting
outliers among a set of items by comparing each item to
all others would require complex calculations. However,
creating ensemble representations of the relevant
feature distribution of the items would make outlier
detection much simpler. Rosenholtz et al. (2012) have
shown that a model that represents the visual search
area by dividing it into patches and then analyzing
these patches with respect to their statistical summaries
successfully predicts performance on classical visual
search tasks. When the difference between the statistical
summary of the patch that includes both the target
and distractors and of the patch that only includes
distractors increases, the search becomes easier, even
when the target–distractor confusability is the same at
an individual item level (e.g., search for O among Qs
vs. search for Q among Os). In this study, we examine
whether this influence of ensemble encoding on visual
search performance changes between the central and
peripheral visual fields. More important, previous
studies have typically focused on the effect of target–
distractor discriminability (Duncan & Humphreys,
1989, Palmer, Verghese & Pavel, 2000), segmentability
of distractor features (Utochkin & Yurevich, 2016;
Cho & Chong, 2019), or of summary statistics
(Rosenholtz et al. 2012) on visual search performance.
In contrast, our methodology allows us to investigate
the effect of the shape of the distractor distribution
while keeping all those other factors as constant as
possible.

In Experiment 1, we assessed observers’ encoding of
the orientation distribution of the distractor set in an
odd-one-out visual search task, as well as its effect on
search performance. The search array was presented
either in the central or the peripheral visual field. In
Experiment 2, we increased the spacing of the oriented
bars as well as their size in the peripheral condition,
while decreasing their size in the central condition, to
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make the two conditions more comparable in terms
of processing capacity and partly accounting for the
cortical magnification factor.

To summarize, our aim was to study search for
targets among distractors with different distributions to
answer the question of performance differences between
the periphery and the center, as well as to measure
feature distribution learning as described above (and in
Chetverikov et al., 2016, 2017a) as a function of retinal
eccentricity.

Experiment 1

Participants

Fourteen participants, seven males,
M age = 32.14, took part in the study. All had
normal or corrected-to-normal visual acuity. All
participants signed an informed consent form before
participating. Four were paid for their participation,
whereas the other 10, who were staff or students at
the University of Iceland, participated voluntarily.
The experiment was run in accordance with the
Declaration of Helsinki and the requirements of the
ethics committee of the University of Iceland.

Stimuli

The display included a search array of 36 white
lines arranged in a 6 × 6 invisible grid extending to
9° × 9° on a grey background (Figure 1). For the central
condition, the search array was placed at the center
of the screen, whereas for the peripheral condition it
was centered 9° to the right or left of the center of
the screen. The length of each line was 1°, and their
position in the grid was jittered by randomly adding a
value between ±0.25° to their horizontal and vertical
coordinates. A red fixation dot with a radius of five
pixels was placed at the center of the screen.

Design

The details of the methodology we used in this study
have been described in Chetverikov, Hansmann-Roth,
Tanrikulu, and Kristjánsson (2019). Here, we followed
the same design except for the addition of the
peripheral condition and eye tracking to make sure that
participants were fixating at the center of the screen.

The experiment included streaks of learning and
test trials. Each learning streak included five or six
search trials in which the orientations of the distractors
were sampled either from a uniform, range = 60°, or
a truncated Gaussian, SD = 15°, distribution. The

Figure 1. (A) Example search array for the central condition in
experiment 1. (B) Example search array for the peripheral
condition in Experiment 1. In one-half of the peripheral trials,
the search array was placed 9° to the right of center (red
fixation dot) of the screen, and to the left of it in the other half.

Gaussian distribution was truncated at 2*SD away
from the mean so that the range for the uniform and the
Gaussian distribution was equal. This was additionally
ensured by setting the orientation of two distractor lines
to the minimal and maximal values of a given range
and mean for both distributions. The mean orientation
of the distractor distribution was determined randomly
for each learning streak and kept fixed during that
streak. The orientation of the target line was randomly
determined with the restriction that the target to mean
distractor distance in feature space was at least 60°.

A single test trial followed the learning trials. The
main variable that was manipulated in the test trial
was the distance between the target orientation on the
current test trial and the mean distractor orientation
on the previous learning streak. This Current Target
– Previous Distractor (CT–PD) distance determines
the extent of the role reversal effects. To have a
uniform distribution of CT–PD values, we divided the
orientation space into 12 bins where each bin covered
a range of 15°. Then for each test trial, a CT–PD
value was randomly chosen from the bins ensuring that
at the end of the experiment we had equal numbers
of CT–PD values from each bin. Given the chosen
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Figure 2. An example of learning streak trials and a test trial. On the left, the distractor distribution and the target orientation is
shown for a learning streak. The distractor orientations are sampled from the same distribution throughout the learning trials,
however, the target orientation is randomly chosen given that it is at least 60° away from the distractor distribution mean. On the test
trial, the target orientation is chosen to yield different CT–PD values. In the example shown here, the distance between the current
target orientation (80°) and the previous distractor distribution mean (60°) yields a CT–PD value of +20°.

CT–PD value for that test trial, the target orientation
was determined to yield the chosen CT–PD distance
(Figure 2). The orientations of the distractors in the
test trial were sampled from a truncated Gaussian,
SD = 10°, distribution. The mean orientation of
the distractors was randomly determined with the
restriction that the target to mean distractor distance in
feature space was at least 60°.

Each participant completed 1872 search trials, which
corresponds with a total of 288 (learning + test) streaks,
that is, 2 (search location: central or peripheral) × 2
(distractor distribution: Gaussian or uniform) × 12
(CT–PD bins) × 2 (learning streak length: 5 or 6) × 3
(repetition).

Procedure and materials

Participants sat 100 cm away from a 24-inch LCD
monitor (1920 × 1080) connected to a Windows 7 PC.
An EyeLink 1000 Plus eyetracker was used to track
participants’ fixations. The experiment was run using
the Psychtoolbox (Brainard, 1997; Kleiner, Brainard &
Pelli 2007) and EyeLink (Cornelissen, Peters & Palmer,
2002) toolbox extensions in MATLAB (Natick, MA).
We recorded eye movements from observers’ right
eye, while their head was stabilized with a chin rest.
The experiment included eight blocks of trials, and at
the beginning of each block a five-point calibration

was performed. The average calibration error for the
participants was 0.37°

Participants were asked to find the oddly oriented
line among the 36 oriented lines, and indicate whether
the oddly oriented line was in the upper three rows
or in the bottom three rows of the search array by
pressing the up and down arrow keys accordingly. The
target position in the search array was randomized.
Participants were asked to respond as quickly and
correctly as possible while keeping fixation on the red
dot centered on the screen. The next search trial was
shown immediately after the participants responded,
except when an error was made. In that case, the
word “Error” appeared in the middle of the screen in
a red font for 1 s. To motivate subjects, a score was
calculated for each trial based on the participant’s
accuracy and response time (for a correct response:
score = 10 + (1 − RT) × 10; for errors: score = −|10
+ (1 − RT) × 10| − 10; where RT is response time in
seconds). The accumulated current score was shown to
participants during the breaks.

The experiment was completed in eight blocks, split
into two sessions. Each block consisted of 36 learning
+ test streaks. Participants took as much resting time
as they needed between the blocks. At the beginning
of each block, the participants were told in which
location on the screen the search array would appear
(left, right, or center) relative to the fixation point. The
location of the search array was kept fixed throughout
a block, but alternated across blocks. All conditions
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were counterbalanced, and trials were randomized for
each subject separately. The order in which participants
performed trials with different search array locations
was also counterbalanced across subjects. For all
14 participants, the first session included 72 practice
streaks (roughly 400 search trials, with one-half of
them in the center, and the other half in the periphery),
which was followed by three blocks of experimental
trials. The second session included 24 practice streaks
(i.e., 130 search trials) and five experimental blocks.
The four participants who were inexperienced with the
search task were given a full practice session (i.e., five
blocks, which corresponds with 180 streaks) before
they started the two experimental sessions. This was
done to acquaint these participants with the search
task, because their response times were exceptionally
high (>3 s) when they were first introduced to the task.
The other 10 participants were already experienced
with similar visual search tasks, and because their
overall search times were already lower than 1 s, they
did not perform separate practice sessions (but they
still completed the practice trials embedded in the
experimental sessions). On average, each session took
50 minutes to complete.

Results and discussion

In the central condition, trials where participants
made an eye movement outside of the search array
grid were excluded. In the peripheral condition, the
trials where participants made an eye movement into
the search area were excluded (overall 10% of all
trials). If such an eye movement occurs during the
learning streak, the learning process can potentially be
interrupted. That is why we used longer learning streaks
with five or six trials, rather than two trials, which has
been found to be enough for observers to encode the
distractor distribution with this method (Chetverikov
et al., 2017a). Therefore, even if the learning streak is
interrupted by such an eye movement, this would only
shorten the length of the effective learning streak, and
there would still be enough learning trials on average to
encode the distractor distribution. Therefore, exclusion
of test trials was independent of exclusion of learning
trials.

Trials where RTs were too high (>3 s) or too low
(<150 ms) were also excluded (<0.1% of remaining
trials). Trials where participants made an error were
excluded from RT analyses (9% of the remaining
trials). RTs were log transformed for all analyses. In
the periphery condition, whether the search array was
presented on the right or left side of the screen did not
have an effect on observers’ performance. The data were
therefore combined across the left and right hemifield
conditions (for more details see Appendix A).

Visual search performance
Figure 3 shows visual search performance in the

different conditions. Participants were fastest when
the distractor orientations were sampled from the
Gaussian with SD = 10° (M = 648 ms, SD = 81 ms),
followed by the Gaussian with SD = 15° (M = 666 ms,
SD = 98 ms) and they were slowest when sampled from
a uniform distribution (M = 688 ms, SD = 118 ms).
A two-way repeated measures analysis of variance
(ANOVA) yielded a significant effect of distribution
type on RT, F(2,26) = 10.91, p < 0.001, η2

G = 0.02, as
well as a significant interaction between distribution
type and search location, F(2,26) = 3.87, p < 0.05,
η2
G = 0.003. However, search location alone did not

have a significant effect on RTs, F(1,13) = 0.81,
p > 0.05. When the two search locations were analyzed
separately, an effect of distribution type was only
observed in the central condition, F(2,26) = 12.71,
p < 0.05, η2

G = 0.03, whereas in the peripheral
condition distribution type had little influence on RTs,
F(2,26) = 3.35, p > 0.05.

Participants were most accurate when the distractor
orientations were sampled from the Gaussian with
SD = 10°, M = 0.95, SD = 0.02, followed by the
Gaussian with SD = 15°, M = 0.91, SD = 0.03,
and they were least accurate when sampled from a
uniform distribution, M = 0.89, SD = 0.04. A two-way
repeated measured ANOVA revealed a significant effect
of distribution type on accuracy, F(2,26) = 54.15,
p < 0.001, η2

G = 0.37. There was no significant main
effect of location, F(1,13) = 0.26, p > 0.05, or an
interaction between the two factors, F(2,26) = 2.28,
p > 0.05.

Overall, the search was faster and more accurate
when the variance of the distractor distribution was
lower. Although this finding is in line with previous
studies, there was one interesting exception to this
general trend. When the search array was presented in
the periphery, the distractor distribution did not have
a significant effect on search times, even though the
accuracy was similar for the central and peripheral
conditions.

Encoding of distractor distributions
Figure 4 shows the CT–PD curves (response times

on the test trials as a function of CT–PD distance),
which reflect the effect of role reversals between target
and distractor orientations. Since the distributions
we used were symmetric, absolute values of CT–PD
distances were used in the following plots and analyses.
Test trials following an error were excluded from the
analyses, because participants tend to slow down on a
trial following an error, which overrides the role reversal
effects.
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Figure 3. Visual search performance in Experiment 1. Error bars represent 95% confidence intervals. Gaussian with SD = 10° (denoted
by black) corresponds with the results obtained from the test trials, and the other two distractor distribution types (Gaussian with
SD = 15° and uniform, which are denoted by red and blue respectively), correspond with the results obtained from learning trials.

Figure 4. Role reversal effects in Experiment 1. Search times on test trials are plotted as a function of the distance (in orientation
space) between the current target orientation in the test trials and the mean distractor orientation of the preceding learning streak
(CT–PD). Shaded area indicates 95% confidence intervals of the local (loess) regression fit.
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Figure 5. Fitted models and the CT–PD curves obtained from the test trial RTs in Experiment 1.

To assess to what extent participants encoded the
distractor distribution, we compared these CT–PD
curves with the corresponding type of the distractor
distribution used in the learning streak. Given that
absolute values of CT–PD were used here, after a
learning streak in which distractors were sampled from
a Gaussian distribution, it would be expected that the
search times in test trials would monotonously decrease
with increasing CT–PD values. Whereas, for the test
trial after a learning streak with uniform distribution of
distractors with a range of 60°, the search times would
be expected to be roughly constant within the 30° range,
but then decrease outside of that range.

To test this hypothesis, we fit several possible
distribution models to the CT–PD curves we obtained
from the test trials (Figure 5). These models included

a null model (i.e., constant RT over CT–PD values), a
linear model (i.e., RT linearly depends on CT–PD), a
half-Gaussian model (i.e., RT as a function of CT–PD
described by a half-Gaussian with SD = 15°), a uniform
model (i.e., constant RT but with different baselines
within and outside of the 30° CT–PD range) and a
uniform-with-decrease model (i.e., constant RT within
the 30° CT–PD range, then linear decrease outside of
that range). More formal descriptions of the models
used in these analyses can be found in Chetverikov
et al. (2017b). Table 1 shows the fit quality for the two
best models among all models for each search array
location, with accompanying Bayesian information
criteria (BIC) of relevant model comparisons.

When the search array was in the center, the best
fits for both the Gaussian and the uniform distractor
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Center Periphery

Distractor distribution Gaussian Uniform Gaussian Uniform
Best model Uni. w/decrease Linear Linear Uni. w/decrease
Second-best model Linear Uni. w/decrease Uni. w/decrease Linear
�BIC: nest vs. Null 10.42 17.86 27.21 30.79
�BIC: best vs. second best 0.41 0.92 4.58 3.69

Table 1. Model fits to the search times as a function of CT–PD distances in Experiment 1. Notes: �BIC > 2 indicates “positive”
evidence, �BIC > 6 indicates “strong” evidence, and �BIC > 10 corresponds to “very strong” evidence (Kass & Raftery, 1995).

distributions were considerably better (�BIC > 10)
than the null model. However, the best fits for both
conditions were not better than the second best fits
(�BIC < 1). This finding suggests that, when the search
array was in the center, participants were able to encode
certain summary statistics (e.g., mean orientation) of
the distractor distributions, but notably, they were
not able to encode the shape of that distribution. The
two best models, uniform with decrease and linear,
fit the CT–PD curves obtained from the Gaussian
or uniform distractor distribution condition equally
well.

When the search array was presented in the
periphery, the two best fits were considerably better
than the null model, �BIC > 25. Not only that, the
best fit for the Gaussian condition (linear model) was
better than the second best fit (uniform with decrease
model), �BIC = 4.58. This indicates that when the
distractor distribution was Gaussian, the search times
linearly decreased as CT–PD value increased. When
the distractor distribution was Uniform, the best fit
(uniform with decrease model) was better than the
second best fit (linear model), �BIC = 3.69, meaning
that the RTs stayed roughly constant for a certain range
but then decreased outside of that range.

To test whether the observed best fit models and
their �BIC values are due to chance, we performed an
additional bootstrap analysis. The data from the two
distractor distribution conditions were combined and
bootstrapped 10,000 times, where for each bootstrap
sample the distractor distribution label (Gaussian and
uniform) of each trial was randomly shuffled. We fit our
main four models to each of these bootstrap samples
and calculated the �BIC between their best and the
second best fits. From this �BIC joint distribution, we
calculated the probability of obtaining different best
fits for the two distractor distribution conditions where
the �BIC between the best and the second best fit was
larger than the corresponding �BIC values observed in
our results. This probability was 0.123 for the central
condition and 0.003 for the peripheral condition. The
probability of obtaining the observed results from the
central condition was higher, reflecting the small �BIC

values obtained in that condition (0.41 and 0.92; see left
column in Table 1). The low probability we obtained
for the peripheral condition indicates that the results
from the model comparisons for the two distractor
distribution conditions are unlikely to be due to chance
and that participants were able to encode details about
the distractor distribution (such as its shape) when the
search array appeared in the periphery.

Whether the distractor distribution was encoded
beyond its summary statistics was assessed by the
demonstration of a statistically meaningful shape
correspondence between the CT–PD curves and
the physical distractor distribution. However, owing
to noise in the visual system, a representation of a
distribution would be expected to involve certain
approximations. For example, a comparison of
observers’ priors and natural statistics reveals important
similarities, but not an exact match, between the
two (Girshick, Landy & Simoncelli, 2011). This
finding can explain why the best fit for the Gaussian
distractor distribution was a linear model rather than
a half-Gaussian model for the periphery condition.
Both the linear and the half-Gaussian model involve a
strict2 decrease in RT as CT–PD increases, which was
the expected shape feature of a CT–PD curve obtained
after following a Gaussian distractor distribution.
However, this strict decrease is not expected after a
uniform distractor distribution. Accordingly, the best
model for the uniform distractors in the periphery
condition was the “uniform with decrease” model,
which does not involve a strict decrease in RT as
CT–PD increases.

Item heterogeneity (e.g., from variance) is known
to influence judgments of visual ensembles (e.g.,
Marchant, Simons & de Fockert, 2013). In our
experiment, there was a slight variance difference
between the Gaussian and the uniform distribution as
their ranges were equal. Notably, however, in a previous
study using the same implicit methodology we used
here, Chetverikov et al. (2016) showed that the shape
correspondence between CT–PD curves and distractor
distributions cannot be explained by this variance
difference.
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Experiment 2

In Experiment 2, we changed the spacing between the
oriented lines, as well as their lengths. For the peripheral
condition, we increased both the spacing between the
lines and their length. Because the effects of crowding
increase with increasing eccentricity, these changes will
partly compensate for crowding in the periphery, as well
as for the cortical magnification factor. In addition, we
decreased both the spacing between the lines and their
length in the central condition. These changes ensured
that all the lines of the search array in the central
condition fell within the foveal region. These changes
made the two search array location conditions more
comparable in terms of general processing capacity.

Participants

Fourteen participants, seven males, M age = 29.93,
took part in the study. Ten had previously participated
in Experiment 1. All had normal or corrected-to-normal
visual acuity. All participants signed an informed
consent form before participating. Four were paid for
their participation, whereas the other 10, who were staff
or students at the University of Iceland, participated
voluntarily. The experiment was run in accordance with
the Declaration of Helsinki and the requirements of
the ethics committee of the University of Iceland.

Stimuli and procedure

The search display was the same as in Experiment 1,
except that the size of the search field and of the
oriented lines were scaled differently for the peripheral
and central conditions. In the central condition, the
36 oriented lines of the search array were arranged
in a grid extending only to 4° x 4° and centered on
the screen. The length of each line was 0.5° and
their position was jittered randomly by adding a
value between ±0.1° to their horizontal and vertical
coordinates. For the peripheral condition, the search
array extended 13° x 13°, and was placed 11° to the
right or left of the fixation point. In this way, the
distance between the fixation point and the oriented
line that was closest to the fixation point (4.5°) was the
same in the peripheral conditions of Experiments 1 and
2. The length of each line in the periphery condition
was increased to 1.4°, and their position was jittered
randomly between ±0.3° A red dot with a radius of five
pixels was again used as a fixation point.

The equipment, procedure, and design of the
experiment were exactly the same as in Experiment 1. A
five-point eye-tracking calibration was again performed

before each experimental block. The average calibration
error was 0.39°.

Results and discussion

In the central condition, trials in which participants
made an eye movement outside of the search array grid
were excluded, whereas in the peripheral condition trials
where participants made an eye movement into the
search array were excluded from the analysis (overall
10% of all trials). Trials in which RTs were more than
3 s, less than 150 ms, and where participants made
an error were also excluded from the RT analyses
(11% of the remaining trials). RTs were log transformed
for all analyses. Whether the search array was presented
on the right or left side of the screen had no effect on
observers’ performance in the periphery condition, so
the data from the left and right hemifield conditions
were combined (for more details see Appendix B).

Visual search performance
Figure 6 shows the RT and search accuracy

for each of the conditions. A two-way repeated
measures ANOVA yielded a significant effect of
distractor distribution type on RT, F(2, 26) = 10.5,
p < 0.001, η2

G = 0.03. Similar to the results of
Experiment 1, participants were fastest when the
distractor distribution was Gaussian with SD = 10°,
M = 613 ms, SD = 50 ms, followed by the Gaussian
SD = 15°, M = 619 ms, SD = 59 ms, and they were
slowest when the distractor distribution was uniform
M = 644 ms, SD = 77 ms. Similar to what we observed
in Experiment 1, there was no significant effect of
search array location on RT, F(1, 13) = 3.23, p > 0.05;
however, there was a significant interaction between
search location and distribution type, F(2, 26) = 22.25,
p < 0.001, η2

G = 0.03.
A repeated measures ANOVA on accuracy yielded

a significant effect of distribution type, F(2, 26) =
22.74, p < 0.001, η2

G = 0.22, as well as a significant
effect of search location, F(1, 13) = 6.86, p < 0.05,
η2
G = 0.07. Participants were most accurate when the

distractor distribution was Gaussian with SD = 10°,
M = 0.94, SD = 0.03, followed by Gaussian with
SD = 15°, M = 0.9, SD = 0.03, and were least accurate
with uniformly distributed distractors, M = 0.89,
SD = 0.03. Overall, participants were more accurate
in the central condition, M = 0.91, SD = 0.04, than
the peripheral condition, M = 0.89, SD = 0.04. There
was no significant interaction between the two factors,
F(2, 26) = 2.13, p > 0.05.

As in Experiment 1, participants in Experiment 2
were overall more accurate and faster when the
distractor distribution had a lower variance. The
effects of distribution type on search times were,
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Figure 6. Visual search performance in Experiment 2. Error bars represent 95% confidence intervals. Gaussian with SD = 10° (denoted
by black) corresponds to the results obtained from the test trials, and the other two distractor distribution types (Gaussian with SD =
15° and uniform, which are denoted by red and blue respectively) correspond to the results obtained from learning trials.

Center Periphery

Distractor distribution Gaussian Uniform Gaussian Uniform
Best model Linear Uni. w/decrease Linear Linear
Second-best model Uni. w/decrease Linear Uni. w/decrease Uni. w/decrease
�BIC: best vs. null 8.92 11.41 65.00 34.11
�BIC: best vs. second best 2.11 2.01 11.04 4.30

Table 2. Model fits to the search times as a function of CT–PD distances in Experiment 2. Notes: �BIC > 2 indicates “positive”
evidence, while �BIC > 6 indicates “strong” evidence, whereas �BIC > 10 corresponds with “very strong” evidence (Kass & Raftery,
1995).

however, not observed in the peripheral condition.
The overall average accuracy was similar between the
two experiments. The average RT in Experiment 2 was
43 ms lower than the one obtained in Experiment 1.
This difference was likely due to those observers
in Experiment 2 who previously participated in
Experiment 1 responding slightly faster because they
performed more sessions.

Encoding of distractor distributions
Figure 7 shows the CT–PD curves obtained from

Experiment 2. The curves were calculated in the same
way as in Experiment 1. In the central condition, when
the distractor distribution was Gaussian, the search
times monotonously decreased as CT–PD increased.
However, when the distractor distribution was uniform,

search times stayed roughly constant but then steadily
decreased when the CT–PD exceeded the range of
the uniform distribution. These observations were
confirmed by the model comparisons done by fitting
possible distribution models to RTs from the test trials
(Table 2 and Figure 8). The best fit for the Gaussian
distractor distribution was the linear model, whereas
the best fit was the uniform-with-decrease model for the
uniform distractor distribution. Both of these best fits
were better than the second best fit models, �BIC > 2,
and better than the null model, �BIC > 8.

For the peripheral condition, the CT–PD curves
did not change depending on the preceding distractor
distribution type. As shown on the right side
of Figure 7, search times in the periphery condition
linearly decreased as CT–PD distance was increased,
regardless of the preceding distractor distribution
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Figure 7. Role reversal effects in Experiment 2. Search times on test trials are plotted as a function of the distance (in orientation
space) between the current target orientation in the test trials and the mean distractor orientation of the preceding learning streak
(CT–PD), separately for each search array location. Shaded area indicates 95% confidence intervals of the local (loess) regression fit.

type. This finding was also confirmed by the model fit
comparisons (Table 2). The best fit for both distractor
distribution types was the linear model, which had a
considerably better fit than the second best models,
�BIC > 4, and better than the null model, �BIC > 34.

To ensure that the different results obtained from the
model comparisons were not due to chance, we again
performed a bootstrap analysis as in Experiment 1. The
data from the two distractor distribution conditions
were combined, separately for the central and peripheral
conditions, and resampled 10,000 times, where the
distractor distribution label for each trial was randomly
shuffled. We applied the model comparison analysis to
these bootstrap samples, and calculated the probability
of obtaining different best-fit models for the Gaussian
and uniform condition, where �BIC values between
the best and the second-best fits were larger than the
ones observed in Experiment 2. The probabilities we
obtained were 0.008 and 0.013, for the central and the
peripheral condition, respectively. This finding indicates
that the model comparisons between the Gaussian and
the uniform conditions were not due to chance.

Contrary to what was observed in Experiment 1,
participants in Experiment 2 were better at encoding
the shape of the distractor distribution when the search
array was presented in the center, compared with in
the periphery. However, role reversals with a CT–PD
distance of around 0° had a greater influence on RTs

in the periphery regardless of the preceding distractor
distribution. Response times decreased sharply and
monotonously as CT–PD increased, as seen from the
high negative slopes obtained for the CT–PD curves of
the peripheral condition. For example, the estimated
slope of the best fit model for the Gaussian distractor
distribution in the peripheral condition, B = –0.03,
SE = 0.0003, z = –8.67, p < .001, was highly negative,
whereas that level of steepness was not observed for the
best fit model for the Gaussian distractor distribution
in the central condition, B = –0.01, SE = 0.0003,
z = –3.97, p < .001.3 This finding indicates that, even
though participants did not encode the shape of the
preceding distractor distribution in the periphery
condition, it is clear that the mean of the distractor
distribution was specifically encoded.

General discussion

In two experiments, we investigated similarities
and differences in visual search performance and
ensemble encoding of distractor sets between the
central and peripheral visual fields. A crucial part of our
experimental design involved investigating the effects of
distractor distributions with the same mean and range,
but with different shapes (Gaussian or uniform). First,
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Figure 8. Fitted models and the CT–PD curves obtained from the test trial RTs in Experiment 2.

in both experiments, we found that the shape of the
distractor distribution strongly affected visual search
times when the search was performed in the foveal
region, but we did not observe its effect in the periphery.
In the first experiment, more details of the shape of
the distractor distribution were found to be encoded
in the peripheral condition than the central condition.
In the second experiment, we scaled down the search
array for the central condition, but scaled it up for the
peripheral condition. This time, encoding of the shape
of the distractor distributions was found to be better in
the central than the peripheral condition. Overall, we
conclude that in addition to summary statistics, detailed
information (e.g., shape) about distractor distributions
can be encoded with peripheral vision, depending on
the scale (or the interitem distance) of the search array.

In what follows, we speculate what these findings are
likely to reflect.

Search times in central versus peripheral vision

The influence of distractor distribution type on
search times in the central condition of our experiments
is in line with previous studies. Distractor heterogeneity
is known to have negative effects on search performance
(Duncan & Humphrey, 1989; Rosenholtz, 2001).
In the central condition, the lower the variance
of the distractor distribution, the faster and more
accurate participants were. Search times in the center
differed, even though only the shape of the distractor
distribution was changed while their summary statistics
were kept similar. However, this finding was not
observed when the search array was presented in the
periphery. To our knowledge, this differential effect of
distractor distribution on search times in the center
and periphery has not been observed before in the
literature.
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Eccentricity effects on search performance have
been well-established (Carrasco, Evert, Chang & Katz,
1995; Carrasco & Yeshurun, 1998). Even though
crowding increases with increasing eccentricity, these
eccentricity effects were found to be independent of
crowding (Carrasco & Frieder, 1997; Madison, Lleras
& Buetti, 2018). However, other researchers have also
found effects of peripheral crowding on visual search
performance (Vlaskamp, Over & Hooge, 2005). In our
experiments, regardless of the influence of eccentricity
and crowding, the overall search times in the central
and peripheral conditions did not differ. This result was
not surprising since the influences of eccentricity and
crowding are not as strong in pop-out search as in other
types of visual search tasks (Wertheim, Hooge, Krikke
& Johnson, 2006; Gheri, Morgan & Solomon, 2007). In
contrast with previous studies, however, we found that
certain characteristics of the distractor distribution had
no influence on the search times in the periphery, even
though this influence was observed in foveal search.
These characteristics include the variance (or range)
and the shape of the distractor distribution. This result
was observed in both experiments, in other words,
even when the spacing between the search items, as
well as their size, were manipulated to account for the
cortical magnification factor. Moreover, this difference
between central and peripheral regions was observed
even though the overall search times and accuracy did
not differ between the two regions.

We propose that this interaction between distractor
distribution type and search array location is consistent
with the summary statistical account of peripheral
visual search (Rosenholtz et al, 2012). According to this
view, what determines search times in the periphery
is the difference in summary statistics4 of a “feature
pooling” region that contains the target feature and
a region that does not (i.e., only distractor features).
The size of these feature-pooling regions increases
with eccentricity. This view can account for the search
times observed in our experiments. The summary
statistics of the different distractor distributions used in
our study were very similar to each other. The mean
of the distractor distribution was equally distant (in
orientation space) from the target on all trials of the
experiment. Gaussian SD = 15° and uniform distractor
distributions had the same range, which made their
variance very similar. The only slightly different
distribution (with respect to its summary statistics)
was the Gaussian SD = 10° with its lower variance.
That peripheral search times with the Gaussian
SD = 10° were not lower than the other two distribution
type conditions could be due to role reversal effects,
because the Gaussian SD = 10° distribution was only
used in the test trials. However, it should be noted that
the search times observed with Gaussian SD = 10° in
the central condition were lower than the other two
distribution conditions, even in Experiment 1, where

the overall amount of slowing owing to role reversals
was fairly similar in the center and periphery.

In contrast with the peripheral search, response times
in the central condition differed for the different types
of distractor distributions, even though the differences
between their summary statistics were small. This
contrast between foveal and peripheral search times
provides evidence for the view that summary statistical
representations in peripheral vision account for visual
search times.

Alternatively, the lack of differences in RT in
the periphery can be explained by higher internal
noise. We have consistently found in previous studies
that the variance of the internal representation of
distractors (corresponding with the “width” of the
CT–PD curve) is larger than the variance in the
stimuli (e.g., Hansmann-Roth, Kristjánsson, Whitney
& Chetverikov, 2020). This finding is to be expected
because of the internal noise added during processing
in the visual system. Given that the external noise is
likely to be higher in the periphery than in the center, it
can mask the differences in the distribution shape (note,
however, that this explanation does not agree with the
role reversal results; see further discussion elsewhere in
this article).

Ensemble coding with central versus peripheral
vision

Notably, our results go beyond the summary
statistical account of peripheral vision. We used the
methods introduced by Chetverikov et al. (2016,
2017) to asses any feature distribution learning in
the periphery and in the center. Chetverikov et al.
have shown that observers can extract more detailed
information about feature distributions within visual
ensembles than previous studies on ensemble perception
have indicated. In Experiment 1, when the search
array was presented in the periphery, search times on
test trials with respect to CT–PD distance revealed
that participants were able to encode more than just
the summary statistics of the distractor distribution.
The shape of the CT–PD curves observed on the test
trials of Experiment 1 depended on the shape of the
distractor distribution used in the preceding learning
trials. However, the effect of the shape of the distractor
distribution was not observed in the periphery
when the spacing of the search items was increased
in Experiment 2. This observation is in line with
other studies demonstrating that crowding facilitates
ensemble coding (Parkes et al., 2001; Fischer &
Whitney, 2011). Because the peripheral search array was
more crowded (low interitem spacing) in Experiment 1
than Experiment 2, this increased crowding might have
facilitated a more efficient process, perhaps akin to
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texture segmentation (Julesz, 1981), which, in turn, can
explain why the shape of the distractor distribution was
encoded in more detail for the periphery condition in
Experiment 1 but not in Experiment 2.

However, in Experiment 2, when the target
orientation on test trials was set to the mean orientation
of the distractor distribution on the preceding learning
trials (i.e., CT–PD = 0), the effect of role reversal was
stronger in the periphery than in the center (Figure 7).
Not only that, RTs decreased linearly with a relatively
high negative slope as soon as CT–PD increased.
This suggests that the visual system relied heavily on
the mean orientation of the distractor distribution
for finding the target in the periphery condition of
Experiment 2, rather than encoding other details of the
distractor distribution.

What factors could have facilitated the encoding
of information about the shape of the distribution as
opposed to its summary statistics? Apart from the effect
of crowding mentioned above, another reason could
be the increase in interitem spacing in Experiment 2,
which made a significant part of the search array
appear at even higher eccentricity. This could have
made the encoding of the distractor distributions more
difficult. In fact, participants made more mistakes in
the periphery condition than the central condition in
Experiment 2. This could force peripheral vision to rely
on the summary statistics of the distractor distribution,
rather than encoding the distribution itself. However,
further empirical evidence is needed to confirm such an
explanation.

Overall, we suggest that the difference in results
between the two experiments reflect performance
differences of the ensemble-encoding mechanism in
peripheral vision owing to the changes introduced to
the visual stimuli, rather than two different encoding
mechanisms (e.g., summary statistics vs. distribution).
In other words, we argue that the peripheral visual
system constructed a representation of the distractor
distribution in both experiments; however, this
representation was less precise in Experiment 2, where
more weight was given to the mean of the distribution
in building the representation of the distribution, rather
than its other features. Such an explanation is consistent
with a distribution-based framework of visual attention
(see Chetverikov et al. [2017c] for a review).

The display used in the central condition in
Experiment 1 was very similar to the ones used in
previous studies, which demonstrated that participants
encode the shape of the distractor distribution
(Chetverikov et al., 2016, 2017a). However, in this
study we did not observe distribution shape learning
in Experiment 1. The CT–PD curves obtained in this
study were noisier than those obtained in previous
studies. One of the main differences between our study
and those previous ones was that we asked observers
to maintain fixation while they performed the search,

whereas in the previous studies participants were free
to move their eyes. Even though the size of the search
array in Experiment 1 was smaller than the ones used
previously by Chetverikov et al. (2016, 2017a), when
participants fixated at the center of the array, the lines
at the outer part of the array still fell outside of the
foveal region. Some participants in our study reported
that, in the central condition when they saw a candidate
line that they thought was the target, they sometimes
struggled with inhibiting their eye movements toward
that candidate line. It is possible that this inhibition
of eye movements influenced the encoding of the
shape of the distractor distribution. Our results from
Experiment 2 support this interpretation because, when
the search array was scaled down so that almost all
the oriented lines fell within 2° around the fixation
point, more details about the shape of the distractor
distribution were encoded. However, further studies are
needed to understand the influence of eye movements
on the learning of distractor distribution shape.

The main difference between the two experiments
was the scaling of the search array and the difference
in results might also be explained by the degree of
mismatch between the size of the spatial filters in
the periphery (or fovea) and the spatial resolution
of the search array. Such a mismatch can influence
performance in texture segmentation tasks. The task
and the stimuli used in our study have parallels with
texture segmentation tasks. However, the effect of
spatial resolution on texture segmentation has been
observed in explicit performance measures such as
accuracy (Yeshurun & Carrasco, 1998). In our study,
the pattern of results obtained for such performance
measures did not essentially differ between the two
experiments. Therefore, if our method had only relied
on such explicit measures, then it could not have
revealed any differences in how scaling of the search
array influences encoding of the distractor feature
distributions. This highlights an urgent need in the
literature for implicit experimental methods similar
to the one used in this study. For example, future
studies can use our implicit method for novel insights
into texture processing mechanisms, eschewing the
limitations of explicit experimental measures.

Conclusions

Our results showed that the shape and variance of the
distractor distribution in a pop-out search for an oddly
oriented line did not influence search performance
when the search was performed with peripheral vision,
whereas they had a significant effect when the search
was performed in the foveal region. This result is in line
with the view that visual information in the periphery
is represented in terms of the summary statistics of the
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scene. However, our results also showed that, beyond
summary statistics, more details about the distractor
distribution can be encoded with peripheral vision
depending on the spacing between the search items (or
the overall size of the search array). When the interitem
spacing was increased (in Experiment 2), participants
tended to encode the mean of the distractor distribution
rather than details about its shape.

Our study also suggests that visual search studies
of ensemble summary statistics should be interpreted
with caution. The visual search times were not sensitive
to the different distractor distributions when the
summary statistics of those distributions were roughly
the same. This finding could suggest that peripheral
vision relies mostly on summary statistics. However, our
implicit method revealed that, under certain conditions,
participants’ peripheral vision encoded more detailed
information about the distractor distribution than
only the summary statistics. These results call for the
increased use of implicit experimental methods for a
deeper understanding of what information is encoded
from visual ensembles.

Keywords: visual search, ensemble perception,
summary statistics, priming of pop-out, peripheral vision
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Footnotes
1Throughout this article, the term “peripheral” visual field is used to
refer to all the areas outside of the fovea, which includes parafoveal and
peripheral regions (i.e., might also be referred to as extrafoveal).
2We use “strictly decreasing” to refer to a function that is always decreasing
and does not remain constant (i.e. cannot include a plateau). We use

“monotonic decrease” to refer to a function that is always decreasing or
remaining constant (i.e. can include a plateau).
3Note that analyses were done on log-transformed reaction times.
4Note that the “statistics” in Rosenholtz et al. (2012) account differ
from typical “summary statistics” (e.g., mean and variance) in that they
represent an output of a hierarchy of filters tuned to different luminance,
orientation, and spatial frequency, and thus, in theory, should represent
an orientation probability distribution as well (see also Rosenholtz, 2016).
However, the precision of that representation is not clear.
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Appendix A

Search performance in Experiment 1 did not
significantly differ between the left and the right
hemifields, both in terms of RT, F(1, 13) = 2.66, p >
.05, and accuracy, F(1, 13) = 0.28, p > .05. Also, there
was no significant interaction between distribution type
and hemifields for RT nor accuracy, F(2, 26) = 2.56,
p > .05; F(2, 26) = 0.09, p > .05, respectively.

Regarding distribution learning, although there were
slight differences between the hemifields, there were no
consistent effects of the hemifield that would allow us to
draw any conclusions without further experimentation.
The model comparisons done on the CT–PD curves
obtained from the right hemifield yielded similar
results to the ones shown in the periphery column
of Table 1. For Gaussian distractors, the best model
was “linear” and for uniform distractors the best
model was a “uniform-with-decrease” one, and in both
cases the best model was considerably better than the
second best model, �BIC ≥ 2. In the left hemifield,
for Gaussian distractors the best and the second best
model was “uniform”and “half-Gaussian,” respectively,
however, with very similar BIC values, �BIC = 1.08.
For uniform distractors, the best and the second best
model was the same as in the right hemifield (“Uni w/
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decrease” and “Linear”, respectively), however, with
very similar BIC values, �BIC = 0.42. In other words,
the distribution learning was clearer in the right than
in the left hemifield. However, these differences in
distribution learning should be interpreted with great
caution. The experiment was not designed to examine
the differences between the two hemifields, and more
data points from each hemifield are needed to draw firm
conclusions.

Appendix B

In Experiment 2, search RTs again did not differ
between the two hemifields, F(1, 13) = 0.15, p > .05;
however, observers were overall slightly more accurate
in the left, M = 0.92, SD = 0.04, than the right
hemifield, M = 0.88, SD = 0.04, F(1, 13) = 24.37,
p < .05, η2

G = 0.06. There were no significant
interactions between distribution type and hemifields

for RT, F(2, 26) = 2.56, p > .05, nor accuracy,
F(2, 26) = 0.76, p > .05.

In terms of distribution learning, the results in
Experiment 2 were opposite to Experiment 1. In the
right hemifield, there was no indication of distribution
learning (as opposed to encoding only the mean of the
distribution). For the Gaussian distractors, the best
model was again “linear” and was considerably better
than the second best model, “uniform-with-decrease,”
�BIC = 3.35. For the uniform distractors, the best
and the second best models were the “uniform-with-
decrease” and “linear” models, respectively. However,
the BIC’s of these two model fits were very similar,
�BIC = 0.46. In the left hemifield, the best model
for Gaussian distractors was “linear” and for uniform
distractors it was “uniform.” For both distractor
distributions, the best models were considerably better
than the second best models, �BIC > 4. We again
want to note that the experiment was not designed to
examine differences between the two hemifields, and
more data points from each hemifield are needed to
draw firm conclusions.


