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ABSTRACT 

The ongoing COVID-19 pandemic caused by SARS-CoV-2 has raised global concern for public health and 
economy. The development of therapeutics and vaccines to combat this virus is continuously progressing. 
Multi-omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics and 
metallomics, have helped understand the structural and molecular features of the virus, thereby assisting in 
the design of potential therapeutics and accelerating vaccine development for COVID-19. Here, we provide 
an up-to-date overview of the latest applications of multi-omics technologies in strategies addressing 
COVID-19, in order to provide suggestions towards the development of highly effective knowledge-based 
therapeutics and vaccines. 
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ability to induce a protective immune response with 
long-term immune memory. In recent years, pro- 
teomics and genomics advancements have made it 
possible to isolate and identify pathogen-associated 
antigens, thus increasing the effectiveness of vac- 
cine antigen selection and accelerating vaccine de- 
velopment. Studies in genomics, proteomics and 
metabolomics have also enabled thorough investiga- 
tion of host responses after vaccination, guiding the 
design of effective and safe vaccines. 

In early 2020, a novel coronavirus, SARS-CoV- 
2, began to spread rapidly in humans, causing enor- 
mous health, economic and social impacts world- 
wide. The aforementioned multi-omics technologies 
played crucial roles in the study of SARS-CoV-2 and 
the related disease, COVID-19. In December 2020, 
researchers extracted serial plasma samples from 

139 patients at various stages of COVID-19, quanti- 
fied plasma proteins and metabolites, and sequenced 
peripheral blood mononuclear cell (PBMC) tran- 
scripts and surface proteins [ 1 ]. This integrated anal- 
ysis provided useful information for therapeutic in- 
tervention. Another team used large-scale single-cell 
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Commons Attribution License ( h
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NTRODUCTION 

ith the development of high-throughput sequenc-
ng, mass spectrometry, and computer science and
lgorithms, various omics approaches, such as ge-
omics, transcriptomics, epigenomics, proteomics
nd metabolomics, are now widely accessible, en-
bling the systematic and comprehensive analysis of
ife processes. The utilization of multi-omics data is
xpected to accelerate the development of new drugs
nd play an important role in vaccine design (Fig. 1 ).
ypically, the discovery of new drugs, such as anti-
odies (Abs) and small molecules, is a lengthy pro-
ess that relies on the identification of targets and
he design and development of strategies to inhibit
r activate them. Multi-omics strategies can be ex-
loited to systematically study the pathogenesis of
iseases, identify treatable targets, predict drug resis-
ance, etc., thus greatly accelerating the progress of
rug development. 
Vaccination is the most effective way to prevent

nd control infectious diseases. The keys to vaccine
evelopment are the accurate and rapid identifica-

ion of antigens specific to the pathogen, and the 
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Figure 1. Multi-omics approaches facilitate drug and vaccine development. Created by Biorender.com. 
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ranscriptome profiling to reveal the immune signa-
ure of COVID-19 [ 2 ]. A single-cell RNA sequenc-
ng (RNA-seq) analysis was performed on 284 sam-
les from 196 COVID-19 patients to build a compre-
ensive immune landscape from 1.46 mi l lion cel ls.
sing the single-cell sequencing data, the authors
dentified changes in different circulating leukocyte
ubpopulations and patients’ characteristics, such as
everity and stage of disease, in COVID-19 pneumo-
ia. The authors identified COVID-19-associated
NA in multiple epithelial and immune cell types,
ccompanied by significant changes in the host cell
ranscriptome. Based on the increased understand-
ng of SARS-CoV-2 and of the host responses to
he virus, subsequent studies using multi-omics ap-
roaches yielded 84 potentially active compounds,
nd further computational and toxicity analyses led
o the identification of six candidate drugs: am-
acrine, bosutinib, cretinoin, crizotinib, nidanib and
unitinib [ 3 ]. In recent years, metallomics has also
radually stepped into a new era and has been in-
egrated with other disciplines. In response to the
urrent SARS-CoV-2 pandemic, some scholars have
roposed using a comparative metallomics approach
o screen COVID-19 drugs. An anti-ulcer drug al-
eady in use, bismuth ranitidine citrate, was identi-
ed as potentially active against SARS-CoV-2 by a
Page 2 of 30 
metallomics approach and is expected to be applied 
for the treatment of COVID-19 [ 4 ]. 

Multi-omics technologies have helped uncover 
the molecular processes and host responses underly- 
ing COVID-19 initiation, progression and transmis- 
sion. In this review, we present an overview of how 

multi-omics approaches have aided both our under- 
standing of the pathogenesis of COVID-19 pneu- 
monia and the development of effective therapeu- 
tic options (Abs and small-molecule drugs) and vac- 
cines. The application of multi-omics to COVID-19 
has accelerated our ability to develop novel therapies 
and offers a direction for the logical design of future 
vaccines. 

Design of antibodies against SARS-CoV-2 
Abs, produced by plasma cells and specifically tar- 
geting antigens, have become the predominant treat- 
ment modality for various diseases over the past 
decades due to their high specificity and favorable 
pharmacokinetic properties. Despite the generally 
long development cycle for Ab therapeutics, the dis- 
covery and development of Abs for the prevention 
and treatment of COVID-19 were conducted in an 
expedited manner in response to the pandemic. 
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dentification of neutralizing antibodies 
gainst wild-type SARS-CoV-2 
lthough neutralizing antibodies (NAbs) in con-
alescent plasma from patients have induced clini-
al improvement in mild and severe COVID-19 pa-
ients [ 5 ], the therapeutic use of such NAbs is lim-
ted due to insufficient scalability. Isolating mono-
lonal antibodies (mAbs) with neutralizing capabil-
ty from convalescent patients’ memory B cells pro-
ided a promising solution for intervention against
he SARS-CoV-2 infection. The diverse B cell reper-
oires generated by VDJ (variable, diversity and join-
ng) recombination and somatic hypermutation re-
uire mAb sequence information to be obtained
rom clonal amplification of B cells. NAbs for SARS-
oV-2 can be isolated using single-cell RNA and
DJ sequencing of antigen-specific memory B cells
rom individuals who recovered from a SARS-CoV-
 infection, individuals who had been vaccinated
gainst SARS-CoV-2, and SARS-CoV-1 convalescent
ndividuals [ 6 ]. To circumvent the requirement for
iosafety level 3 (BSL-3) conditions when handling
he highly pathogenic and infectious live SARS-CoV-
, which hinde rs the developme n t of the ra peutics,
seudovirus-based neutralization assays were devel-
ped for evaluating NAbs against SARS-CoV-2 in
iosafety level 2 (BSL-2) facilities [ 7 ]. Within a few
onths after the first reported outbreak of COVID-
9, several groups identified potent NAbs that were
nticipated to be candidates for the development of
linical intervention against SARS-CoV-2. Pinto et al.
dentified the S309 mAb, which cross-reacts with the
 glycoprotein of SARS-CoV-2 and potently neutral-
zed the virus, isolated from memory B cells of an
ndividual infected with SARS-CoV-1 in 2003 [ 8 ].
u et al. isolated four NAbs from a convalescent pa-

ient, two of which showed complete competition
ith ACE2 (angiotensin-converting enzyme 2) for
inding to the receptor binding domain (RBD) of
he SARS-CoV-2 S glycoprotein [ 9 ]. Additionally,
4 potent SARS-CoV-2 NAbs were identified from
558 antigen-binding IgG1 + clonotypes from 60
OVID-19 convalescent patients. The most potent
f these NAbs exhibited strong therapeutic and pro-
hylactic efficacy in a SARS-CoV-2-infected mild-
ymptom mouse model and a severe-symptom ham-
ter model [ 10 , 11 ]. From 8 individuals infected with
ARS-CoV-2, 206 RBD-specific NAbs were isolated
nd characterized from single B cells; these NAbs
xhibited a wide range of RBD-binding activities
 12 ]. Through single-cell sorting of S-glycoprotein-
pecific memory B cells from COVID-19 convales-
ent individuals, 453 NAbs were identified, the most
otent of which could neutralize the virus at very
ow doses, exhibiting significant prophylactic and
herapeutic efficacy in a hamster COVID-19 model
Page 3 of 30 
[ 13 ]. Furthermore, two potent NAbs were isolated 
from a convalescent patient; the most potent of these 
demonstrated therapeutic potential through inhibi- 
tion of infection in rhesus monkeys in both prophy- 
lactic and therapeutic settings [ 14 ]. Table 1 sum-
marizes the representative NAbs for the wild-type 
SARS-CoV-2 identified and characterized in these 
studies. 

The main target of NAbs with regard to coron- 
avirus infection is the spike protein (S), because it 
is surface-exposed and mediates cell entry by bind- 
ing to ACE2 on target cells [ 15 ]. Analysis of the
rich proteomic and genomic data in the interna- 
tional immunogenetics information system (IMGT) 
database revealed that the natural, all-human com- 
binatorial antibody library constructed 20 years 
ago contains NAbs against the S glycoprotein of 
SARS-CoV-2 [ 10 ]. That study also revealed that the
combinatorial antibody library, like the human im- 
mune system in vivo , can generate effective recog- 
nition sequences in response to antigenic stimu- 
lation. These findings provide new directions for 
the future development of Abs against SARS-CoV- 
2, as well as vaccines. While most NAbs isolated 
from COVID-19 convalescent patients target the 
RBD, some NAbs recognize the N-terminal do- 
main (NTD) of the S glycoprotein [ 16 ]. The NTD-
directed NAbs are generally less potent, probably be- 
cause of their inability to compete with ACE2 bind- 
ing [ 17 ]. It is noteworthy that the Ab-spike bind-
ing affinities do not fully correlate with the neutral- 
izing abilities, because Ab-spike binding does not 
necessarily ensure blocking the spike-ACE2 bind- 
ing [ 16 ]. For example, as an NAb targeting the
RBD of SARS-CoV, CR3022 can bind to the RBD 

of SARS-CoV-2 with high affinity as well, but it 
is unable to neutralize SARS-CoV-2 [ 18 ]. There- 
fore, binding-based screening of spike-targeting Abs 
is often followed by function-based screening and 
epitope mapping during identification of potent 
NAbs. 

Identification of neutralizing antibodies 
against SARS-CoV-2 variants 
As an RNA virus, SARS-CoV-2 evolves continu- 
ously via the occurrence of genetic mutations or 
viral recombination during replication. Numerous 
mutations have been revealed through genetic se- 
quencing. The selective pressure from Abs induced 
by SARS-CoV-2 infection may also promote addi- 
tional mutations [ 19 , 20 ]. Although most mutations
are neutral or mi ld ly deleterious, a small portion of
mutations are fitness enhancing and may alter vari- 
ous aspects of virus biology, such as pathogenicity, 
infectivity, transmissibility and antigenicity [ 21 , 22 ]. 
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Figure 2. Screening of NAbs that avoid Omicron escape. (A) The structure of the BA.1 (Omicron) variant of the SARS-CoV-2 spike trimer. The NTD, RBD, 
subdomains 1 and 2, and the S2 protein are shown in cyan, yellow, pink and green, respectively. The red spheres indicate the alpha carbon positions 
for each Omicron variant residue. NTD-specific loop insertions/deletions are shown in red, with the original loop shown in transparent black. Adapted 
with permission from [ 30 ]. (B) mAb-mediated neutralization of vesicular stomatitis virus (VSV) pseudoviruses carrying the mutations present in the S 
glycoprotein of the Omicron variants BA.1, BA.2, BA.3, BA.4, BA.5, BA.2.12.1 and BA.2.75. The potency of each mAb or mAb cocktail is indicated by their 
IC 50 (top) or fold change relative to neutralization of the Wuhan-Hu-1 (D614) pseudovirus (bottom). Adapted with permission from [ 25 ]. (C) Schematic of 
MACS-based high-throughput yeast display mutation screening (left), and neutralization of SARS-CoV-2 VOCs (pseudotyped VSV) by nine NAbs (right). 
Adapted with permission from [ 6 ]. 
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able 2 summarizes the mutations of interest in
he S glycoproteins that have been detected up to
2 September 2022. For example, the variant
.1.1.529 (designated Omicron) contains more
han 30 mutations in the S glycoprotein (Fig. 2 A).
ecause essential ly al l NAbs found in the sera of
onvalescent individuals or elicited by vaccines
arget epitopes in the S glycoprotein of SARS-CoV-2
RBD, NTD, or other epitopes), a mutation in S,
n event that contributes to the spreading of SARS-
oV-2 variants, especially global variants of concern
VOCs), can cause escape from NAbs [ 23 ]. VOCs
how decreased susceptibility to previously iden-
ified NAbs raised against wild-ty pe SAR S-CoV-2
r its other variants (Fig. 2 B) [ 24 , 25 ]. The effect of
Page 8 of 30 
SARS-CoV-2 mutations on viral antigenicity can be 
revealed by testing the ability of NAbs to bind either 
isolated mutants or pseudotyped viruses that carry 
the mutations [ 24 , 25 ]. Mutation screening using a
fluorescence-activated cell sorting (FACS)-based 
yeast display platform not only allows mapping of all 
single-amino-acid mutations that affect the binding 
of specific NAbs but also predicts the efficacy of 
NAb-based drugs against mutations [ 26 –29 ]. To 
assess how a large collection of NAbs reacts to 
SARS-CoV-2 variants, screening against mutations 
can be performed by magnetic-activated cell sorting 
(MACS), which increases throughput ∼100-fold 
over FACS while maintaining comparable data 
quality [ 6 ] (Fig. 2 C). 
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Figure 3. The RBD sites targeted by four mAbs that cross-neutralize Omicron. Representative Abs (the Fv region) bound to 
spike proteins are shown as a composite. Colored surfaces on the RBD depict the epitopes, and the RBM is shown as a black 
outline. Adapted from [ 36 ]. 
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To identify mAbs reactive to SARS-CoV-2 vari-
nts, researchers have engaged in the identifica-
ion and development of broadly neutralizing mAbs,
hich can have a wider therapeutic efficacy [ 31 ].
iable candidates for prophylactic or therapeutic
rotection against a broad range of SARS-CoV-2
ariants were identified from either recovered pa-
ients or humanized mice [ 32 –34 ]. An in vitro evolu-
ion approach using random mutagenesis and selec-
ion by yeast display libraries enabled the generation
f engineered NAbs with broad and potent antivi-
al activity against SARS-related viruses [ 35 ]. The
eijing government has approved the use of DXP-
0 4 (NCT0 4669262 and NCT05381519), a potent,
road-spectrum NAb identified by Cao et al. [ 7 ]
Fig. 2 C), as a compassionate drug in Beijing Di-
an Hospital. Thirty-five patients have received DXP-
04; as of 19 November 2022, 17 of the patients had
ecovered successfully. Cameroni et al. compared
he in vitro neutralizing activity of 36 neutralizing
TD - or RBD -specific mAbs against the Omicron
B.1.1.529) variant. The NTD targeting mAbs lost
ll activity against B.1.1.529, whereas four classes of
Abs, defined by their cognate RBD-binding sites
sites I, II, IV and V), retained activity: S2K146,
2 ×324 and S2N28 targeting site I (RBM), S2 ×259
argeting conserved RBD site II, sotrovimab target-
ng site IV, and S2H97 targeting highly conserved
ryptic site V (Fig. 3 ) [ 36 ]. 
Combinations of NAbs with distinct, non-

verlapping epitopes can provide greater protection
nd resistance against mutation than single mAbs
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[ 37 ]. Such NAbs can be selected from the previously
identified panels of NAbs for the wild-type or earlier 
variants of SARS-CoV-2 [ 38 ]. NTD-targeting mAbs 
were suggested for use in cocktail therapies with 
RBD-targeting mAbs [ 39 , 40 ]. Treatment with a
cocktail that includes Abs that recognize different 
non-overlapping epitopes of the RBD was shown 
to minimize the generation of escape mutations 
[ 19 ]. Differentiation among antibody epitopes 
through high-resolution structural characterization 
facilitated the development of Abs with greater 
resistance to immune escape [ 34 ]. CoV-AbDab, 
a public database released by the Oxford Pro- 
tein Informatics Group, documents all published 
or patented Abs and nanobodies able to bind to 
SARS-CoV-2 and other coronaviruses, including 
SARS-CoV-1 and MERS-CoV [ 41 ]. As of 26 July
2022, there have been 8802 entries annotated as 
SARS-CoV-2-binding deposited in CoV-AbDab. 

Multiple anti-SARS-CoV-2 Ab products, devel- 
oped as either monotherapies or a combination, 
have either requested authorization or been granted 
approval by the US FDA, although these autho- 
rizations wi l l terminate at the end of the pandemic
[ 42 ]. With the circulation of new VOCs, the use
of certain mAbs can be limited by the US FDA if
these treatments are shown to be inactive against the 
variants. As an example, the US FDA issued emer- 
gency use authorization (EUA) for bamlanivimab, 
administered as a monotherapy, in November 2020. 
But in April 2021, due to the increased resistance of
VOCs to the mAb, the EUA was revoked. However, 
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amlanivimab and etesevimab administered to-
ether received an EUA in February 2021 for the
reatment of mild-to-moderate COVID-19 in adults
nd pediatric patients who test positive for SARS-
oV-2 and who are at high risk of progressing to
evere COVID-19. The emergency use of these Abs
s postexposure prophylaxis for COVID-19 in adults
nd pediatric patients (12 years of age and older,
eighing at least 40 kg) at high risk of progression to
evere COVID-19 was later included in the revised
UA. In December 2021, the National Medical
roducts Administration (NMPA) of China ap-
roved the registration of applications for the NAb
ombination therapy drugs ambavir monoclonal
njection (BRII-196) and romesvir monoclonal in-
ection (BRII-198) [ 12 ], the first time independent
ntellectual property rights had been awarded to a
ARS-CoV-2 NAb combination drug in China. 

dentification of nanobodies against 
ARS-CoV-2 
ingle-domain antibodies (nanobodies) with neu-
ralizing ability have also garnered interest with
egard to the development of anti-SARS-CoV-2
herapies. Nanobodies derived from the heavy chain-
nly subset of camelid immunoglobulins have mul-
iple advantages over conventional Abs. These in-
lude their smaller size and higher stability, which
romise compatibility with inhalatory administra-
ion and high local drug concentration and bioavail-
bility, and a simpler structure, which enables man-
facturing by readi ly avai lable microbial systems
 43 ]. Nanobodies (a.k.a., single-domain antibodies
VHHs)) can be isolated from immunized llamas
 44 , 45 ], alpacas [ 46 –48 ] or mice engineered to pro-
uce VHHs cloned from alpacas [ 47 ], then selected
hrough a yeast surface-display library [ 49 ], syn-
hetic nanobody libraries [ 50 ] or phage display tech-
ologies [ 51 ]. Cocktails consisting of nanobodies
ecognizing non-overlapping epitopes are expected
o show improved potency [ 48 ]. Rapid and low-
ost development may make it possible to quickly
roduce SARS-CoV-2 variant-specific nanobodies to
ombat escape mutations [ 51 ]. 

iscovery of small-molecule drugs 
or SARS-CoV-2 
ix human coronaviruses have been identified so far,
ncluding the agent causing the common cold, but
o anti-coronaviral treatment had entered clinical
rials before the emergence of SARS-CoV-2 [ 52 ].
he outbreak of COVID-19 makes it clear that ef-
ective therapeutics are crucial when preventive mea-
ures are missing. Tremendous effort has poured into
Page 10 of 30 
anti-SARS-CoV-2 drug discovery, especially with re- 
gard to developing small-molecule drugs, which have 
substantial advantages, in terms of cost, production, 
stability, distribution and administration, compared 
with biologics. High-throughput technologies have 
played a key role in assisting the screening of small- 
molecule antiviral drugs, the characterization of drug 
antiviral activities, and the demonstration of the 
mechanism of action (MOA) of antiviral drugs. For 
example, proteomics and transcriptomics play a key 
role in identifying the dysregulated pathways, essen- 
tial genes and proteins underlying the pathophysiol- 
ogy of COVID-19, which provides potential targets 
for drug development. Remarkably, a small number 
of direct-acting antivirals, including remdesivir [ 53 ], 
molnupravir [ 54 ] and nirmatrelvir [ 55 ], have re-
ceived emergency approval (Fig. 4 and Table 3 ). Due 
to length constraints, here we wi l l focus on smal l-
molecule antivirals that target essential proteins in 
the viral life cycle, have shown significant in vitro and 
in vivo efficacy, and have been evaluated in clinical tri- 
als (Table 3 ). 

Identification of RdRp inhibitors 
The genomic RNA replication of CoVs in in- 
fected cells is mediated by replication-transcription 
machinery, of which RNA-dependent RNA poly- 
merase (RdRp) is the core component [ 56 , 57 ].
RdRp catalyzes the synthesis of a nascent RNA 

strand complementary to a given RNA template 
in many viruses, including CoVs, the hepatitis 
C virus (HCV), influenza and Zika. RdRp dis- 
plays a highly conserved catalytic domain, mak- 
ing it an excellent target for antiviral drugs, es- 
pecially nucleotide analogue prodrugs. Molecules 
such as favipiravir, ribavirin, sofosbuvir, baloxavir 
and dasabuvir, are nucleotide analogue prodrugs, 
which are marketed as antiviral drugs for several vi- 
ral infections [ 58 ]. Given the significance of the tar-
get and the widespread clinical application of nu- 
cleotide analogue antivirals, drug repurposing has 
emerged as a viable method for the quick discovery 
of possible COVID-19 therapies (Fig. 4 and Table 3 ). 
SARS-CoV-2 replication has reportedly been halted 
by a number of approved drugs [ 59 , 60 ]. Several of
these drugs have gone through clinical trials to as- 
sess whether they may be effective against COVID- 
19 and the SARS-CoV-2 infection. 

Remdesivir (GS-5734) was one of the first 
antiviral drugs to demonstrate in vitro efficacy 
against SARS-CoV-2 (EC 50 : 0.77 μM) [ 61 ], attract- 
ing considerable attention right from the start of 
the COVID-19 pandemic. Gilead Sciences initially 
developed the drug for HCV infections and then 
expanded its use to Ebola and Marburg virus 
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Figure 4. Chemical structures of small-molecule drugs and candidates in clinical trials, and their targets for the treatment 
of COVID-19. 
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nfections [ 62 ]. Remdesivir is a phosphoramidate
rodrug of an adenine derivative (GS-441524),
hich is converted intracellularly into a triphos-
hate form (GS-443902). GS-443902 competes
ith adenosine nucleoside triphosphates for incor-
oration into the viral RNA by RdRp, causing pre-
ature termination of the viral RNA chain [ 63 ].
o profile the metabolic pathway of remdesivir, the
RNA expression of nucleoside metabolic enzymes
as analyzed using public human-lung single-cell
ulk mRNA sequence data sets [ 64 ]. The results
ndicated that carboxylesterase 1 (CES1), cathep-
in A (CatA) and histidine triad nucleotide-binding
rotein 1 (HINT1) were involved in the transfor-
ation of remdesivir into a monophosphate form,
roviding a better understanding of the MOA of
emdesivir and assisting the discovery of novel nu-
leotide analogs as antiviral drugs. Due to the high
onservation of CoV RdRp non-structural protein
nsp)12 between different coronaviruses, especially
ithin genogroups, remdesivir has shown broad-
pectrum antiviral activity against several viruses,
ncluding Ebola virus, SAR S-CoV and MER S-CoV,
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in both cultured cells and animal models [ 65 –67 ].
While preliminary evidence suggested that remde- 
sivir could slow the progression of COVID-19, larger 
randomized trials failed to demonstrate clear ben- 
efits in reducing mortality in hospitalized patients 
[ 68 ]. Despite the inconsistent clinical outcomes, 
remdesivir has received EUA in several countries 
to treat COVID-19 and has been approved by the 
US FDA for use in hospitalized patients with severe 
COVID-19 [ 69 ]. 

In 2021, molnupiravir (MK-4482; EIDD- 
2801), a n isoprop yl es te r prodrug of β-D-N 

4 -
hydroxycytidine (NHC), also received EUA from 

the US FDA as an oral drug [ 70 ]. One of the key
benefits of oral medications is that they allow for 
the early prescription of antiviral drugs without 
the need for hospitalization. Indeed, molnupiravir 
elicited significant improvement in hospitalization 
risk and mortality in non-hospitalized COVID-19 
patients [ 71 ]. The drug was specifically developed 
against influenza [ 72 ], but revealed broad-spectrum 

antiviral activity against CoVs [ 54 ]. Next-generation 
sequencing (NGS) analysis of the 538-base-pair 
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https://www.shionogi.com/global/en/news/2022/11/e20221122.html
https://verupharma.com/pipeline/sabizabulin-for-covid-19/
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(bp) region of the viral genome in the nsp15 en- 
donuclease revealed a significantly increased error 
rate in NHC-treated MERS-CoV RNA, while NHC 

antiviral activity was associated with increased viral 
mutation rates. Molnupiravir treatment and pro- 
phylaxis reduced the replication and pathogenesis 
of SARS-CoV-2 in the human lung-only (LoM) 
humanized mouse model (the similarity between 
the LoM model and human SARS-CoV-2 infection 
has been demonstrated by RNA-seq analysis) [ 73 ] 
and also blocked transmission of the virus to un- 
treated ferrets [ 74 ]. Unlike remdesivir, the MOA 

of molnupiravir is to promote mutations in the 
replication of viral RNA. Tautomers of NHC can 
mimic both cytidine (C) and uridine (U), thereby 
allowing the triphosphate form of NHC to be effec- 
tively incorporated into nascent viral RNA by RdRp. 
This results in increased mutagenesis when the 
NHC-containing RNA strand is used as a template 
to form NHC-A or NHC-G base pairs [ 75 ]. The
cumulative mutations from repeated replication 
cycles can lethally alter the genetic composition of 
the virus. However, the possibility of increased viral 
mutagenicity raises concerns about the potential 
consequent risk of the development of viral mutants 
resistant to therapeutics. 

Azvudine (FNC) is an HIV-1 RdRp inhibitor 
that received approval from the NMPA for AIDS 
treatment in 2021 [ 76 ]. The drug demonstrated mi- 
cromolar potency against SARS-CoV-2 in cell lines, 
while oral administration of azvudine in SARS-CoV- 
2-infected rhesus macaques showed promising re- 
sults, as evidenced by significant anti-SARS-CoV-2 
activity in the thymus [ 77 ]. Analysis of single cells
from thymic samples showed improvements in im- 
mune cells in the thymus in the FCN-treated group, 
including an increase in viable CD4 + , CD8 + T cells, 
B and NKT cells. Further, gene enrichment anal- 
ysis of the differentially expressed genes (DEGs) 
in thymic immune cells revealed that FNC signif- 
icantly enhanced pathways involved in immunity, 
anti-viral response, inflammation, innate immunity 
and T cell activation, with CD4 + cells being mainly 
involved. The thymus may be a key organ for con- 
trolling COVID-19, so the chemo-to-immune antivi- 
ral MOA of FNC may be a reasonable strategy in the
development of anti-SARS-CoV-2 dr ugs. Azv udine 
has undergone a randomized, single-arm clinical trial 
for compassionate use, in which patients quickly and 
completely achieved negative conversion of SARS- 
CoV-2 nucleic acid when it was taken orally [ 77 ].
The drug has been approved by the NMPA for the 
management of COVID-19 in China. 

VV116 ( JT001) is a tri-isobutyrate ester of a 
7-deuterated derivative of GS-441524 that was de- 
veloped after the outbreak of COVID-19 [ 78 ]. The 
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Figure 5. Crystal structures of SARS-CoV-2 3CL pro in complex with inhibitors. (A) The dimeric 3CL pro with bound nirmatrelvir. 
The binding modes of nirmatrelvir (B), ensitrelvir (C) and FB-2001 (D) in the active site (S1–S4 subsites) of 3CL pro . Adapted 
with permission from [ 80 ]. 

h  

m  

i  

fi  

p  

S  

c  

t  

m  

E  

p  

C

I
U  

R  

t  

f  

p  

n  

l  

l  

R  

s  

s  

h  

v  

c

 

 

 

 

50  
ydrobromide salt form of VV116 exhibited a re-
arkably improved oral bioavailability (F = ∼80%

n rats) and a favorable tissue distribution pro-
le, al lowing oral administration of VV116 in both
reclinical and clinical studies [ 79 ]. In a panel of
ARS-CoV-2 variants (Alpha, Beta, Delta and Omi-
ron), VV116 had strong cellular activity, and was
herapeutically effective in SARS-CoV-2-infected
ice [ 78 ]. In December 2021, Uzbekistan granted
UA approval for VV116, which has also been ap-
roved by the NMPA in China for the treatment of
OVID-19. 

dentification of 3CL pro inhibitors 
pon entry into the host cell cytoplasm, the viral
NA is uncoated and translated into two polypro-
eins, pp1a and pp1ab [ 80 ], which are essential
or the production of new mature virions. These
roteins are extensively processed by the predomi-
ant viral protease (M 

pro , also called chymotrypsin-
ike cysteine protease, 3CL 

pro ) along with papain-
ike protease (PL 

pro ) to generate 16 nsps [ 52 ].
esearchers have delineated the human protein sub-
trate landscape of 3CL 

pro using proteomics and sub-
trate screening techniques. There were at least 101
uman substrates for 3CL 

pro , some of which were in-
olved in RNA processing, translation and cell cycle
ontrol [ 81 ]. 
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3CL 

pro , which primarily exists as a catalytically 
active dimer, is unique in recognizing the rigor- 
ous substrate specificity and cleavage at the P1- 
Gln position. Since human proteases lack this char- 
acteristic, it might be possible to develop selec- 
tive protease inhibitors with favorable clinical safety. 
Unlike RdRp inhibitors, 3CL 

pro inhibitors, such 
as nirmatrelvir, ensitrelvir and FB2001, have ad- 
vanced into clinical trials. These inhibitors have 
been de novo developed using a structure-based de- 
sign strategy instead of drug repurposing (Figs 4 
and 5 , and Table 3 ). Nirmatrelvir (PF-07321332) 
is the first novel inhibitor of SARS-CoV-2 3CL 

pro 

granted an EUA by the US FDA (in December 
2021) for treating mild-to-moderate COVID-19 pa- 
tients with a minimum age of 12 [ 82 ] (Fig. 4 and
Table 3 ). Nirmatrelvir is a peptidomimetic inhibitor 
of SARS-CoV-2 3CL 

pro that has a glutamine-like 
pyrrolidone in the P1 position, which fits well into 
the highly conserved S1 subsite, and a nitrile as an
electrophilic warhead to form a reversible covalent 
connection with the catalytic cysteine [ 55 ] (Fig. 5 A
and B). Additionally, a fused cyclopropyl ring with 
two methyl groups, a tert -leucine and trifluoroac- 
etamide engage the S2, S3 and S4 subsites of the pro-
tease, respectively, increasing the binding affinity of 
nirmatrelvir to the target. Nirmatrelvir demonstrated 
an excellent selectivity profile, and potently inhib- 
ited SARS-CoV-2 3CL 

pro with an IC of 7.5 nM and
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n EC 50 of 74.5 nM in Vero E6 cells treated with
n efflux inhibitor. Nirmatrelvir is sold as Paxlovid
oral pi l ls) and is administered in combination with
 low dose of ritonavir to maintain a high level of
he drug in the body. Ritonavir is a potent inacti-
ator of CYP3A4, a cytochrome enzyme critical to
rug metabolism [ 55 ]. In a phase II–III clinical trial,
axlovid significantly reduced hospitalization or
eath by 88% compared to a placebo among pa-
ients who did not receive COVID-19 therapeutic
Ab treatment, representing a promising therapeu-
ic treatment for COVID-19 [ 83 ]. 
Ensitrelvir (S-217622), the first non-

eptidomimetic, non-covalent inhibitor of SARS-
oV-2 3CL 

pro (Fig. 5 C), was de novo developed
ia high-throughput mass-spectrometry-based
irtual screening followed by structure-guided
ptimization [ 84 ]. The drug exerted potent in-
ibition of SARS-CoV-2 3CL 

pro with an IC 50 of
3 nM, antiviral activity (EC 50 = 0.37 μM) and
avorable pharmacokinetics profiles. The excellent
harmacokinetic properties of ensitrelvir allow
t to be orally administered without ritonavir so
s to avoid the dr ug–dr ug interactions caused by
itonavir. Moreover, ensitrelvir exhibited potent
ellular activity against seven VOCs, including the
lpha, Beta, Gamma, Delta, Omicron, Lambda and
u strains. Oral administration of ensitrelvir dose-
ependently reduced intrapulmonary viral titer in
ARS-CoV-2-infected mice and hamsters. These
avorable preclinical data prompted the progression
f ensitrelvir into a phase III clinical trial for non-
ospitalized patients w ith COVID-19. Ensitrelv ir
Xocova TM ) was approved in Japan for the treat-
ent of COVID-19 under the emergency regulatory
pproval system (ERAS) in November 2022. 
FB2001 is also a covalent peptidomimetic

nhibitor of SARS-CoV-2 3CL 

pro with an alde-
yde as the warhead (Fig. 5 D) [ 63 ]. The drug
otently inhibited the protease, with an IC 50 of
3 nM, as well as the replication of SARS-CoV-2
n Vero E6 cells, with an EC 50 of 0.53 μM. More-
ver, FB2001 exhibited favorable pharmacokinetic
roperties and low toxicity when administered
ntravenously. Currently, a phase Ⅱ /III clinical study
s underway to evaluate the efficacy of FB2001 in
on-hospitalized patients with COVID-19 infection.
esides nirmatrelvir, ensitrelvir and FB2001, three
ARS-CoV-2 3CL 

pro inhibitors, EDP-235, PBI-0451
nd SSD8432 (SIM0417), whose chemical struc-
ures and antiviral activity data are not disclosed,
re also under phase I, II and II/III clinical trials,
espectively. In particular, SSD8432 (simnotrelvir)
n combination with ritonavir (XIANNUOXIN 

TM )
as conditionally approved by the NMPA on

9 January 2023. 
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Host targeting antiviral agents 
A side from v ir us-targeting dr ugs, host-targeting an- 
tiviral agents offer promising COVID-19 therapeu- 
tic options by directly preventing viral replication 
or regulating the host inflammatory response 
(Table 3 ). By applying tissue-specific Mendelian 
randomization (MR) of gene expression and plasma 
protein levels, the causal effects of drug targets 
on 49 viral infection phenotypes, 501 complex 
diseases and 72 disease-related phenotypes were 
estimated, and a prioritization approach was used to 
further screen drugs with potential for COVID-19 
treatment [ 85 ]. Baricitinib, a JAK inhibitor previ- 
ously approved to treat rheumatoid arthritis [ 86 ], 
effectively suppressed elevated cytokine levels in 
severe SARS-CoV-2 infection and was predicted to 
inhibit the cellular entry of SARS-CoV-2 [ 55 , 87 ].
In November 2020, the US FDA issued an EUA for 
the treatment of suspected or laboratory-confirmed 
COVID-19 in hospitalized adult and pediatric pa- 
tients needing supplemental oxygen [ 58 ], due to 
the drug producing a considerable reduction in 
mortality [ 88 ]. Sabizabulin, an oral small-molecule 
inhibitor of tubulin polymerization [ 89 ], can in- 
terfere with the transport of androgen receptors 
(ARs) into the cell nucleus as well as the trans- 
port of the virus within the cell by microtubules. 
Sabizabulin can also inhibit the release of inflam- 
matory cytokines. It is currently in phase III clinical 
evaluation as a therapeutic treatment for hospi- 
talized moderate-to-severe COVID-19 patients at 
high risk of acute respiratory distress syndrome. 
Through inhibition of eukaryotic translation elon- 
gation factor 1A, plitidepsin (aplidin) demonstrated 
extremely potent activity against SARS-CoV-2—
27.5-fold greater potency than that of remdesivir 
[ 90 ]. Plitidepsin is in phase III clinical evaluation as
a therapeutic treatment for hospitalized moderate- 
to-severe COVID-19 patients at high risk of acute 
respiratory distress syndrome. 

Proteomics data revealed that serine protease 
transmembrane protease serine 2 (TMPRSS2) is re- 
quired to activate the fusion of viral and host mem- 
branes through cleavage at the S1–S2 junction of 
the S glycoprotein, thus identifying this serine pro- 
tease as an attractive therapeutic target [ 91 ]. Two 
approved serine protease inhibitors, camostat and 
nafamostat, were repurposed as anti-SARS-CoV-2 
agents [ 92 , 93 ] (Fig. 4 and Table 3 ). Camostat is
used to treat chronic pancreatitis and postoperative 
reflux esophagitis in Japan. Early in the COVID- 
19 pandemic, camostat attracted particular interest 
owing to its potent activity against the TMPRSS2- 
dependent entry of SARS-CoV-2 [ 92 ]. Nafamostat is 
an approved anticoagulant in Japan and Korea. The 
inhibitory activity of nafamostat against TMPRSS2 
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as shown to be ∼10 times greater than that of
amostat [ 94 ]. More importantly, nafamostat treat-
ent resulted in a significant reduction of viral titers
f SARS-CoV-2 in mice [ 95 ]. 
Notably, proxalutamide, an antagonist of AR, un-

erwent clinical trials for its effectiveness in treat-
ng COVID-19 and received an EUA in Paraguay
or treating hospitalized COVID-19 patients [ 96 , 97 ]
Table 3 ). A possible mechanism of proxalutamide’s
ntiviral action is associated with its effect on TM-
RSS2 protein expression. Viral replication pro-
otes de novo pyrimidine biosynthesis in the host.
onsequently, human dihydroorotate dehydroge-
ase (DHODH), a key enzyme catalyzing a rate-
imiting step in pyrimidine biosynthesis, has become
 therapeutic target of interest [ 98 , 99 ]. Lefluno-
ide, a DHODH inhibitor used clinically to treat au-
oimmune diseases, demonstrated broad-spectrum
ntiviral activity. Other DHODH inhibitors, such
s brequinar [ 100 ] and emvododstat [ 85 ], inhibit
ARS-CoV-2 replication in Vero E6 cells in the nM
o μM range. Of note, DHODH inhibitors can
ynergize with nucleoside analogs, such as remde-
ivir and molnupiravir, to block SARS-CoV-2 repli-
ation [ 101 ]. A small-scale clinical study enrolling
0 hospitalized COVID-19 patients revealed that
eflunomide was superior to placebo treatment in
hortening viral shedding time [ 102 ]. These in-
ibitors, including RP-7214, are currently in phase II
r III trials for treating COVID-19. 
Nanotechnology has also played a pivotal role

n the figh t agains t SARS-CoV- 2 in va rious ca pac-
ties. Through their interactions w ith v iral surface
roteins, nanomaterials can prevent effective virus–
ost cell contact. An inhalable nanocatcher, soluble
uman ACE2 produced by genetically engineered
ells [ 103 ], was developed to inhibit host cell infec-
ion by competing with SARS-CoV-2 binding. By in-
roducing a mucosal adhesion excipient, hyaluronic
cid (HA), the nanocatcher was able to signifi-
antly prolong retention time in the lung and en-
ance viral inhibition in a mouse model. In addition,
he presence of sucrose significantly improved the
anocatcher’s storage and transport stability [ 104 ].
nother group constructed a nanodecoy by fusing
ell membrane nanovesicles derived from highly ex-
ressed hACE2 cells and human monocytes, which
isplay abundant cytokine receptors. The nanode-
oy was able to neutralize the virus and inflamma-
ory cytokines at the same time in a mouse model,
ffectively disrupting SARS-CoV-2 infection [ 105 ].
hang et al. described ultrathin, two-dimensional
uInP 2 S 6 (CIPS) nanosheets as a new agent, able
o inhibit SARS-CoV-2 infection in vitro and in vivo
 106 ] (Fig. 6 A and B). Mass spectrometry (MS)-
ased two-step isotope labeling lysine reactivity pro-
Page 17 of 30 
filing (TILLRP) and molecular dynamics (MD) 
simulation were used to identify the binding sites be- 
tween the virus RBD and CIPS, revealing that bind- 
ing to CIPS engages the same RBD residues involved
in ACE2 binding (Fig. 6 C and D). Notably, CIPS
can selectively and efficiently bind to the S glycopro- 
tein of both wild-ty pe SAR S-CoV-2 and all VOCs
(Fig. 6 E). Most importantly, adhesion to CIPS not 
only blocks interaction with ACE2 and subsequent 
infection, but it also substantially increases the size 
and shape of the virus, which can then be read-
ily taken up by macrophages and degraded within 
phagolysosomes. Overall, the study provides new 

ideas and strategies for the development of broad- 
spectrum antiviral drugs. 

In general, the use of omics technologies has 
aided in the screening of drug targets, in the anal- 
ysis of the biological relationships between targets 
and diseases, in evaluating the efficac y and MOA s
of small-molecule drugs, and in exploring the broad 
spectrum of antiviral drugs. Biobanks built from 

omics strategies may become critical resources for 
rapidly screening small-molecule antiviral drugs in 
epidemic and pandemic situations in the near future. 

Design of COVID-19 vaccines 
To date, there are 50 authorized vaccines for 
COVID-19 and 242 in clinical or preclinical de- 
velopment. Several vaccines, including ChAdOx1 
nCoV-19 (AstraZeneca/Oxford), Ad26.COV2.S 
( Janssen), NVX-CoV2373 (Novavax), BNT162b2 
(Pfizer-BioNTech) and mRNA-1273 (Moderna), 
administered by intramuscular injection, have been 
granted EUA in many countries, with hundreds 
of mi l lions of doses given worldwide. Despite the
unsurpassed progress we have made in vaccine devel- 
opment, we sti l l struggle to obtain a comprehensive
understanding of the profiles of anti-SARS-CoV-2 
immunity triggered by the different vaccines, and 
we sti l l need to satisfactorily address the issue
of vaccination against the emerging viral VOCs. 
Many multi-omics approaches, including glycomics, 
transcriptomics and proteomics, provide potential 
value in finding the characteristics of pathogens 
and elucidating host responses to vaccines, which 
can ultimately lead to a roadmap for vaccine design 
(Fig. 7 , Table 4 ). 

Antigen discovery and development 
Omicron variants have now emerged as the pre- 
dominant circulating strains on most continents, 
as determined by prompt application of NGS 
techniques, which have also provided crucial infor- 
mation on specific mutations [ 112 , 113 ]. Considering 
that multiple mutations in the SARS-CoV-2 variant 
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Figure 6. Antiviral effect of CIPS against SARS-CoV-2. (A) A schematic depiction of CIPS’s ability to prevent SARS-CoV-2 
infection of target cells. (B) Transmission electron microscope (TEM) images showing the interaction between SARS-CoV- 
2 and CIPS. The red arrows indicate virus particles adhering to CIPS. (C) MD simulation of the ACE2–RBD and CIPS–RBD 
binding interfaces. (D) Schematic diagram of the binding interface between CIPS and the RBD of the spike protein, S1. The 
S1 conformation is shown in grayscale, while the RBD is shown in color. The RBD encompasses two regions in the RBD–CIPS 
interaction: the N437-Y508 region (purple), which shows the strongest binding efficiency, and the remaining region (green). 
(E) CIPS inhibits the in vitro infectivity of SARS-CoV-2 VOCs. Adapted with permission from [ 106 ]. 
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equence lead to changes in pathogenicity, infectiv-
ty, transmissibility and/or antigenicity [ 21 ], vac-
ines’ efficacy against variants has become an urgent
roblem [ 114 ]. Glycomics analysis of SARS-CoV-2
as received considerable attention during the pan-
emic and has contributed to the development of
accines. Watanabe et al. revealed the glycosyl com-
osition of 22 glycosylation sequons by site-specific
S (i.e. showing that the glycosyl groups at N234
nd N709 were mainly of the oligomannose type)
cross the trimeric S structure, providing a bench-
ark for assessing the quality of immunogens in
accines [ 115 ]. Using ultra-high-performance liquid
hromatography (UHPLC), Brun et al. compared
he glycan signatures of virus-derived stabilized
ecombinant trimer and non-stabilized S protein.
he results showed that a stabilized trimeric pre-
usion S protein, accompanied by abolishing the
urin cleavage site, may be likely to elicit desirable
b responses [ 116 ]. Apart from the N-linked glyco-
ylation landscape, 17 O-glycosylation modification
ites in the S protein were identified for the first time
sing MS-based glycosylation identification tech-
ology. Researchers have found that 11 out of these
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17 sites are located near glycosylated asparagine 
(Asn). Furthermore, an ‘O-Follow-N’ rule has been 
proposed whereby the O-glycosylation occurs near 
the site of N-glycosylation. This rule may be appli- 
cable to other proteins and promote immunogen 
design [ 117 ]. 

For assessing the features of protective immunity 
and vaccine efficacy, Pulendran’s group devised and 
applied a ‘system vaccinology’ approach for the iden- 
tification of protective epitopes tailored for different 
diseases and human populations [ 118 ]. Regarding 
SARS-CoV-2, the authors extensively applied omics 
tools to identify immunogenic epitopes of SARS- 
CoV-2 by defining epitopes recognized by B and T 

lymphocytes and epitopes associated with protective 
immunity in response to either infection or different 
vaccines, and validated the vaccines experimentally 
[ 119 , 120 ]. 

Adjuvant screen and design 
As critical components of most vaccines, adjuvants 
are central to vaccine efficacy and durability, which 
is necessary for the establishment and amplification 
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f protective adaptive immunity. In general, while
djuvants must induce inflammation to be effective,
heir inflammatory effects must be spatiotemporally
ontrolled in order to avoid pathological tissue de-
truction. This must be considered when designing
ew adjuvants. 
Aluminum salts, in their particulate form (alum),

re the oldest and most commonly used and effec-
ive adjuvants. Aluminum-based adjuvants activate
he nucleotide oligomerization domain (NOD)-like
eceptor thermal protein domain associated protein
 (NLPR3) inflammasome and the production of
L-1 β , thereby inducing a localized inflammatory
eaction that amplifies the vaccine-induced specific
Page 19 of 30 
adaptive immunity and long-term immunological 
memory [ 121 ]. Alum can function as an adjuvant 
through the depot effect, i.e. by increasing the time 
the antigen remains at the immunization site [ 122 ].
The approved inactivated SARS-CoV-2 vaccine, 
CoronaVac, formulated with an alum adjuvant, is 
well tolerated, safe and induces humoral responses 
(NCT04884685, NCT04352608). Since antiviral 
immune protection relies not only on the pro- 
duction of specific Abs but, more importantly, on 
the generation of specific cytotoxic T cells, it is 
particularly important to adjuvant design that the 
compound can also promote the generation of 
T-cell-based immunological memory. As alum 
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referentially amplifies humoral immune responses
production of Abs), an emulsion of alum admixed
ith squalene/water (a very effective clinically ap-
roved adjuvant) has been described [ 123 ]. PAPE
alum-stabilized pickering emulsion) exhibits a fa-
orable biosafety profile and the capacity to induce
trong humoral and cellular immune responses. A
itrogen bisphosphonate–modified zinc-aluminum
ybrid adjuvant (FH002C) induced SARS-CoV-2
pecific T cell responses in mice in combination
ith an S protein-based vaccine [ 124 ]. In FH002C,
itrogen bisphosphonate (risedronate), a drug for
steoporosis, was loaded onto alum by harnessing
he alum’s phosphophilic nature. FH002C also
ncorporates zinc ions, which have an immunos-
imulatory effect and promote T H 

1 responses
 125 ]. A subunit vaccine adjuvanted with FH002C
romoted the development of T fh and germinal
enter B (GCB) cells and showed generation of
ntibody-producing plasma cells in the early days
fter immunization. 
More recently, oil-in-water emulsion adjuvants,

uch as MF59, AS01, AS03 and AS04, and molecu-
ar adjuvants, such as CpG ODN (oligonucleotide),
ave been used in US-FDA-approved human vac-
ines. In contrast to alum, the adjuvant effect of
F59 seems to depend on the activation of the

nflammatory signaling adapter protein, MyD88
myeloid differentiation primary response 88) but is
ndependent from NLRP3 inflammas ome activ ation
 126 ]. MF59 induces a transient release of adenosine
riphosphate (ATP) from injected muscle, which is
ikely related to the stimulation of adaptive immune
esponses [ 121 ]. Recently, Kim et al. demonstrated
hat MF59 stimulated CD8 T cells, but not anti-
ody responses, through a RIPK3-dependent path-
ay [ 126 ]. AS0 adjuvant systems have been devel-
ped through a rational combination of classical ad-
uvants, including alum, emulsions and liposomes,
ith immunostimulatory molecules, such as MPL
nd QS21. AS04 is composed of MPL (3- O -desacyl-
 

′ -monophosphoryl lipid A) and aluminum salts.
hrough Tol l-li ke receptor 4 (TLR 4) activation of
nnate cells, the protection induced by the AS04-
ased human papi l lomavirus (HPV)-16/18 vaccine
emains 100% complete for as long as nine years after
mmunization [ 127 ]. Immunization with poly (D, L-
actic-co-glycolic acid) (PLGA) particles containing
PL and R848 (the TLR7 ligand, resiquimod) was
ble to induce a molecular profile (based on RNA-
eq) characteristic of activated B cells and early pro-
ramming of B cell memory, suggesting that the com-
ination of TLR ligands can promote memory B cell
eneration [ 128 ]. AS03 is a squalene-in-water emul-
ion (as MF59) with the addition of α-tocopherol.
S03 is being evaluated in COVID-19 vaccine clin-
Page 20 of 30 
ical trials. Given the similarity of MF59 and AS03, 
it is likely they engage common innate immune ac- 
tivation pathways [ 129 ]. AS01 is a unique combina- 
tion of MPL and QS-21, a known adjuvant extracted 
from Quillaja saponaria [ 130 ], formulated within li- 
posomes. AS01 exhibits an excellent adjuvant capac- 
ity for both humoral and cellular immune responses 
[ 130 ]. 

Considering the age-related decline of immune 
function, there is a need to develop adjuvants to in- 
crease immune responses in the elderly. CpG 1018, a 
TLR9 agonist, has been used as an adjuvant for the 
hepatitis B vaccine in older adults. This adjuvant has 
been found to be more effective than the alum-based 
hepatitis B virus (HBV) vaccine [ 131 ]. CpG 1018 is
also currently being tested in clinical trials as an ad- 
juvant for COVID-19 vaccines (NCT04982068 and 
NCT04990544). Besides overcoming the weaker 
immune responsiveness in the elderly [ 132 , 133 ], ad-
juvants may also help extend the duration of immune 
response from a vaccine. A novel TLR7/TLR8 ad- 
juvant, 3M-052, elicited long-lasting protective im- 
munity against HIV in a non-human primate model 
[ 134 ], inducing long-lived bone marrow plasma cells 
and increasing the expansion of T FH 

cells, which per- 
sisted for 70 weeks. 3M-052, formulated with alum, 
is currently under evaluation as a vaccine adjuvant 
for HIV (NCT04177355). 

In a search for new potent innate immune ago- 
nists, Li et al. screened 75 agonists by RNA-seq and 
identified stimulator of interferon gene (STING) 
agonists—cyclic dinucleotides (CDNs)—as agents 
able to induce high levels of interferons (IFNs), 
proinflammatory cytokines and chemokines in pri- 
mary human respiratory epithelial cells and against 
SARS-CoV-2 in vivo in two different mouse models 
[ 135 ]. Based on a genome-wide transcriptomic anal- 
ysis, Cai et al. identified cyclic dinucleotide 2 ′ , 3 ′ -
cGAMP as a potent agonist of STING in Drosophila . 
Gene ontology (GO) enrichment analysis showed 
that 2 ′ , 3 ′ -cGAMP stimulates the Janus kinase-signal 
transducer and activator of transcription ( JAK- 
STAT) pathway, further triggering a broad antiviral 
response [ 136 ]. To amplify STING activation, Sun 
et al. screened nutritional metal ions (Zn 2 + , Mn 2 + , 
Ca 2 + , K 

+ , Co 2 + , Fe 3 + , etc.) and discovered that
Co 2 + and Mn 2 + can augment the activity of STING 

agonists in type I IFN production [ 107 ]. As Mn 2 + is
already approved by the US FDA for use in pharma- 
ceuticals, the authors assembled Mn 2 + with CDN 

into nanoparticles, as potential adjuvants for enhanc- 
ing immunity. Wang et al. used a new type of man-
ganese nanoadjuvant in a SARS-CoV-2 subunit vac- 
cine, which targets lymph nodes and elicits strong 
neutralizing responses against infection with pseu- 
dov irus and w ild-type v irus in a mouse model [ 137 ].
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Figure 8. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. (A) Schematic representa- 
tion of the fabrication of the RBD-Exo vaccine. (B) Ex vivo imaging of mouse lungs 4 and 24 h after inhalation of fluorescent exosomes (Exo) or liposomes 
(Lipo). (C) TEM images of RBD-Exo after storage at −80°C, 4°C or r.t. for 3 weeks (3W) or 3 months (3M). Adapted with permission from [ 142 ]. 
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Stephenson et al. performed single-cell tran-
criptome analyses of peripheral blood mononu-
lear cells from 130 patients with COVID-19 and
bserved a significant decrease in IgA2 in symp-
omatic COVID-19, underscoring the importance
f inducing an efficient mucosal immune response
nd the need for designing effective mucosal adju-
ants [ 138 ]. A recent study showed that coadminis-
ration of alum with an elastase inhibitor elicited mu-
osal sIgA production [ 139 ]. A neutrophil elastase
nhibitor promoted the expression of mucosal hom-
ng receptors and the trafficking of splenic B cells,
ndicating that inhibition of neutrophil elastase can
mprove the efficacy of alum-based vaccines. Wang
t al. designed a mucosal adjuvant able to bypass
he surfactant layer and reach alveolar macrophages.
he authors assessed the adjuvant’s ability to in-
uce an anti-flu response in mice [ 140 ]. The mu-
osal adjuvant is a lung biomimetic nanoparti-
le (PS-GAMP) composed of cGAMP (2 ′ ,3 ′ -cyclic
uanosine monophosphate–adenosine monophos-
hate) and pulmonary surfactant (PS)-biomimetic
anoparticles. PS-GAMP was recognized and taken
p by lung-resident alveolar macrophages and ep-
thelial cells after intranasal administration, where
TING was activated. 

accine delivery system development 
elivery systems play important roles in the devel-
pment of an effective vaccine, especially for re-
ombinant protein vaccines and messenger RNA
mRNA) vaccines. Delivery systems can co-deliver
djuvants and antigens, improve their stability, and
ncrease the delivery to antigen-presenting cells,
mproving immune responses and the generation of
mmune memory [ 141 ]. Wang et al. used exosomes
erived from human pulmonary globular cells as vac-
ine carriers, then conjugated the SARS-CoV-2 RBD
Page 22 of 30 
protein onto the exosomal surface to prepare a virus- 
like particle vaccine (RBD-Exo) (Fig. 8 ) [ 142 ]. In-
halation of the RBD-Exo vaccine showed better lung 
retention and distribution than a liposome vaccine in 
a mouse model. Additionally, the vaccine stimulated 
mucosal immunity and T H 

1-biased T cell immu- 
nity in lung tissue, decreasing COVID-19-induced 
lung tissue damage. More importantly, the vaccine 
demonstrated excellent stabi lity, al lowing storage for 
three months at room temperature. 

Messenger RNA (mRNA) vaccines represent one 
of the most significant innovations to emerge from 

the COVID-19 pandemic. According to the COVID- 
19 Vaccine Tracker ( https://covid19.trackvaccines. 
org/ ), as of 24 November 2022, there were 64 
mRNA vaccines under development worldwide 
and 9 approved, including two that have been in- 
cluded in the WHO Emergency Use Listing (EUL): 
BNT162b2, jointly developed by Pfizer/BioNTech, 
and mRNA-1273, developed by Moderna. The tech- 
nical barriers to mRNA vaccines lie in sequence de- 
sign, the control of mRNA stability, and delivery 
systems. The ideal delivery system must be safe, 
sufficiently stable and organ specific [ 143 ]. Lipid 
nanoparticles (LNPs) are the most clinically ad- 
vanced mRNA carriers [ 144 ]. As of November 2022, 
almost all COVID-19 mRNA vaccines that are in 
development or that have received clinical approval 
use an LNP delivery system. LNPs have a variety of 
advantages for mRNA distribution, including stan- 
dardized formation, flexibility, superior biocompat- 
ibility and substantial mRNA payload capacity. The 
challenge of optimal delivery to certain organs, in 
particular the respiratory mucosa, is crucial because 
the majority of LNPs target the liver. 

Cheng et al. proposed a selective organ target- 
ing strategy by varying the proportion of cationic 
and anionic lipids in LPN formulation [ 145 ]. In 

https://covid19.trackvaccines.org/


Natl Sci Rev , 2023, Vol. 10, nwad161 

a  

t  

t  

o  

t  

d  

t  

s  

f  

a  

t  

t  

p  

b  

t  

t  

o  

p  

w  

v  

c  

t  

t  

o
 

l  

r  

s  

fl  

t  

c  

p  

r  

r  

t  

a  

q  

j

V
T  

a  

B  

t  

g  

o  

a  

a  

t  

v  

i  

o  

f  

D  

a  

 

 

 

 

 

 

nimal models, increasing the concentration of
he anionic lipid, 18PA, encouraged targeting of
he spleen, whereas increasing the concentration
f the cationic lipid, DOTAP (1,2-dioleoyl-3-
rimethylammonium-propane chloride), directed
elivery to the lung. Qiu et al. achieved organ selec-
ivity of LNPs in vivo by changing the connecting
tructure of the lipid tails [ 108 ]. Changing the linker
rom an ester bond (referred to as the O series) to
n amide bond (referred to as the N series) shifted
he specificity of mRNA delivery from the liver
o the lung. Proteomic analysis revealed that the
rotein corona around LPNs changes significantly
etween 306-O12B and 306-N16 LNPs (14 of
he 20 most abundant proteins differed between
he formulations). Fibrinogen coating, which only
ccurred with 306-16B LNPs, is expected to im-
rove endothelial cel l ad hesion, and is consistent
ith the observation of selective delivery of mRNA
ia 306-16B LNPs to lung endothelial cells. Lipid
omposition is a key element determining LNP
ropism for different organs, and wi l l be the basis for
he rational design of selective organ/cell targeting
f future LNPs. 
A critical issue was recently brought to the pub-

ic’s attention: LNPs induce a strong inflammatory
eaction in humans and not in mice, due to a species-
pecific difference in the control of IL-1-induced in-
ammation [ 146 ]. This finding stresses once more
he need for relevant experimental models for vac-
ine development [ 147 , 148 ] and indicates the im-
ortant need for the scientific community to accu-
ately validate results and assess their relevance in
eal-life situations. In the case of LNPs, the ability
o modify the lipid composition of the particles may
id in the development of carriers that induce the re-
uired controlled, local inflammation in human sub-
ects without causing pathological effects. 

accination route selection 
he induction of antigen-specific Abs and T cells
nd the establishment of long-term specific T and
 cell memory are the main mechanisms forming
he basis of protective vaccines. The nature and or-
an tropism of the targeted pathogen and the route
f vaccine administration are important drivers of
 successful vaccination. Abs, which are often taken
s immunization benchmarks because they are easy
o measure, use different mechanisms of attack on
iruses and other infectious agents, from direct bind-
ng/neutralization to opsonization and facilitation
f phagocytosis, complement-mediated lysis of in-
ected cells, and Ab-mediated cellular cytotoxicity.
ifferent classes of Abs with different properties and
natomical locations add to the complexity of the
Page 23 of 30 
humoral response to infections/vaccines. Although 
the current trend is to deliver vaccines through the 
same route used by the natural infections (e.g. in- 
halation in the case of respiratory diseases) in or- 
der to achieve organ-selective ‘barrier’ immuniza- 
tion and memory, systemic immunization has been 
used successfully for a long time and has been shown
to give rise to an immune profile different from
that induced by the natural infection, but neverthe- 
less efficient protection. An example is the study by 
Ackerman et al. in non-human primates vaccinated 
with an adenoviral vaccine against simian immun- 
odeficienc y v irus (SIV) [ 149 ]. The authors found
that Ab-dependent protection was achieved by dif- 
ferent mechanisms with intramuscular delivery vs. 
inhalation (IgG-dependent phagocytosis by mono- 
cytes after intramuscular administration vs. IgA- 
dependent phagocytosis by neutrophils after vaccine 
inhalation) using functional and biophysical assess- 
ments and predictive hazard models. This confirms 
the notion that different immune mechanisms come 
into play depending on the location and mode of 
pathogen entry/encounter with immune effectors, 
but that the differing mechanisms are both able to 
attain protective immunity. However, the type of 
protective immunity can affect different outcomes. 
In the case of the current anti-COVID-19 vaccines, 
none are ‘sterilizing’ i.e. avoiding infection; vacci- 
nated subjects can get infected, but their immunity 
is such that the infection is rapidly eliminated. Al- 
though vaccinated individuals do not develop the 
disease, or develop a mild form, these subjects can 
sti l l transmit the infection to other subjects. Only
vaccines that can stop the virus at its entry point 
(the respiratory system), e.g. inhaled mucosal vac- 
cines that can specifically induce protective memory 
at the level of the respiratory mucosal tissue and the
production of specific mucosal IgA Abs, can result in 
sterilizing immunity. 

An adenovirus type 5 vector-based COVID-19 
vaccine (Ad5-nCoV) developed by CanSinoBIO has 
been approved by the NMPA for emergency use 
as an inhalation booster immunization. The latest 
clinical trial results (NCT05043259) showed that 
the level of neutralizing Abs against SARS-CoV-2 
were almost 20 times greater compared to an inacti- 
vated, homologous intramuscular booster [ 150 ]. In 
addition to greater IgA levels, the inhalation group 
exhibited a significantly induced T H 

1 type cellu- 
lar immune response, which was unaffected by gen- 
der, age or other factors. Another study reported 
that intranasal enhancement with adenovirus vec- 
tors elicited higher levels of lung-resident memory 
T cells (T RM 

) compared with intramuscular injec- 
tion of two doses of mRNA vaccine [ 151 ]. The
transcriptional profile shows that the T RM 

response 
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acks exhaustion characteristics, indicating that T RM 

an offer long-term local protection against infection
 152 ]. 

issection of mechanisms of vaccine efficacy 
ulti-omics technologies are assisting us not only

n understanding the host response to SARS-CoV-
 but also host responses to different vaccination
egimens, thereby providing a solid foundation for
he design of novel evidence-based vaccines with
ptimized antigens, adjuvants and administration
outes, tailored to the different needs of different
roups of people (such as children, the elderly, or pa-
ients with chronic diseases) [ 153 , 154 ]. 
A rigorous study on adaptive immune responses

n subjects infected by SARS-CoV-2 showed the
omplex immune profiles of antiviral immunity and
tressed the importance of T cells, in addition to
bs, in effective antiviral responses [ 155 ]. Acti-
ation of human dendritic cells (DCs) from 30
ifferent donors was reported in response to 10
ifferent adjuvants or candidate adjuvants, e.g. 7
ol l-li ke receptor (TLR) agonists, the classical alu-
inum hydroxide alum, the MF59 oil-in-water ad-

uvant Addavax TM , and Quil-A® [ 156 ]. Luminex
MAP technology and principal component analy-
is (PCA) were used for assessing the production of
5 cytokines and chemokines and grouping the adju-
ants into strong, intermediate and weak categories.
he strong adjuvants included the TLR agonists
ipopolysaccharides (LPS) (TLR4 agonist, bacterial
ipopolysaccharide, used as a positive control), MPL
nd R848. As expected, the viral-like agonist, R848,
nduced higher levels of IFN α and IL-1 β , which are
mportant for antiviral immune reactions, and a sim-
 lar profile was obtained by lipid-complexed single-
tranded RNA (which is also a virus-like TLR ago-
ist). It is important to note that strong adjuvants,
.e. molecules that can induce a potent production
f cytokines and chemokines, may have substantial
ide effects (e.g. cytokine storm). The most effec-
ive strong adjuvant, LPS, shows exceedingly potent
nflammatory effects and toxicity in animals and
uman beings, and therefore is not clinically viable
s an adjuvant. 
The induction and regulation of epigenetic

hanges in innate immune cells has recently re-
eived renewed attention in the design of improved
accines. Pathogens have long been known to in-
uce epigenetic changes in innate immune cells,
nd the same has been observed with vaccines
such as Baci l lus Calmette-Guérin (BCG)) and
djuvants [ 157 ]. A recent study utilized single-cell
ransposase-accessible chromatin with sequencing
scATAC-seq) to analyze the epigenomic profiles of
Page 24 of 30 
immune cells in patients convalescing from COVID- 
19 [ 158 ]. The trained and activated monocytes, 
accelerated B cells, and expanded effector and mem- 
ory CD8 + T cells were the main cells to establish 
immune memory via a remodeling of the chromatin 
accessibility landscape. That study facilitates our 
understanding of how memory cells are established 
and provides a new approach for adjuvant design. 
Another study mapped the single-cell epigenetic and 
transcriptomic profiles, in leukocytes of individuals 
vaccinated against influenza, using RNA-seq and 
scATAC-seq [ 111 ]. Epigenetic changes persisted 
for up to six months. Monocytes, the major innate 
immune effector cells, can be divided into different 
subpopulations according to the accessibility of AP-1 
and the consequent upregulation of inflammation- 
re lated gene s. The oil-in-water adjuvant, AS03, 
reduced histone acetylation, AP-1 accessibility and 
the expression of various TLR-related inflammatory 
factors, while increasing chromatin accessibility at 
the interferon regulatory factor (IRF) and signal 
transducer and activator of transcription (STAT) 
loci, leading monocytes to an antiviral state. 

Modulation of epigenetic changes by vaccines 
and adjuvants is most likely fundamental to the 
establishment of innate memory, a mechanism of 
increased non-specific resistance to infections and 
other diseases triggered by previous exposure (e.g. 
vaccination) [ 159 , 160 ]. The example of BCG, a
live vaccine against tuberculosis, is exemplary in 
that it shows that vaccination in children can 
non-specifically increase survival/resistance to dis- 
eases [ 161 –163 ]. Not only can innate memory sub-
stantially increase vaccine efficacy by contributing 
to long-term resistance, but innate memory can 
also broaden vaccine coverage, achieving protec- 
tion against unrelated or partially related infections. 
In mammals, innate memory based on epigenetic 
changes can last a lifetime and even be passed down 
to progeny [ 164 ], or it can be reprogrammed to
adapt to newly incoming stimuli. In this context, 
epigenetic reprogramming-based adjuvants and vac- 
cines can be developed to reprogram subjects with an 
‘immunobiography’ that biases their immune reac- 
tivity toward insufficient protection to mount a pro- 
tective response (e.g. elderly people) [ 165 , 166 ]. 

A recent study systematically analyzed the in- 
nate and adaptive immunity generated by mRNA 

vaccines [ 109 ]. Arunachalam et al. comprehen- 
sively analyzed the immune profiles of 56 healthy 
volunteers vaccinated with the BioNTech mRNA 

vaccine (BNT162b2), using a systems vaccinol- 
ogy approach. BNT162b2 vaccination produced 
large amounts of neutralizing Abs against wild- 
ty pe SAR S-CoV-2 and, to a lesser extent, against 
the B.1.351 VOC. Using whole blood for mRNA 
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equencing, gene set enrichment analysis (GSEA)
howed that the booster vaccine produced a stronger
mmune response than the primary vaccination:
i) more specific multifunctional CD4 + and CD8
 

+ cells were generated; (ii) higher concentra-
ions of IFN γ were produced; (iii) dendritic cell
ctivation was increased; and (iv) the proportion
f inflammatory monocytes was up-regulated. Be-
ause mortality from COVID-19 is highest in the
lderly, and the elderly population does not gener-
lly respond well to vaccination, the study examined
hether there were age-related differences in re-
ponse to mRNA vaccination. Changes in mono-
ytes and inflammatory modules tended to be
reater in younger participants, while expression
f B and T cell modules was increased in older
dults. The authors further examined transcrip-
ional changes at the single-cell level by sequenc-
ng (CITE-seq (cellular indexing of transcriptomes
nd epitopes by sequencing)) 45 peripheral blood
ononuclear cell samples from 6 individuals. Con-
istent w ith prev ious results, single-cell transcrip-
omic analysis showed that, after secondary im-
unization, mRNA vaccination uniquely induced

 cluster of antiviral myeloid cells with an ∼100-
old increase in proportion; these cells were en-
iched in IFN-responsive transcription factors and
ad decreased AP-1. At the same time, the authors
dentified distinct immune pathways associated with
D8 + T cells and NAb responses, and showed
hat monocyte signatures were associated with NAb
esponses against the B.1.351 variant. 
Another study compared the time-dependent

evelopment of the immune response in subjects
accinated with different types of vaccines [ 120 ].
lthough there was little overlap in day 1 responses
o the first dose of BNT162b2 mRNA vaccine with
ther vaccines, day 1 post-booster responses were
omparable to those of other adjuvanted vaccines
H5N1 + AS03), live virus vaccines (Ebola and HIV
accines) and inactivated vaccines. Common fea-
ures include IFN signaling, dendritic cell activation
nd inflammatory responses. Cell cycle character-
stics were linked to an upregulation of B cell and
lasma cell modules for the majority of vaccinations,
eflecting the growth of cells that secrete Abs. 

UTURE PERSPECTIVES 

accines and antimicrobial drugs (Abs, antibiotics,
ntimicrobial peptides and small molecules) are
he most effective ways to prevent and treat in-
ectious diseases. For SARS-CoV-2 infection, sev-
ral Ab therapies have been granted approval or
mergency use by the US FDA. The use of novel
Page 25 of 30 
small-molecule drugs, especially the oral formula- 
tions of molnupiravir and Paxlovid TM , have demon- 
strated significant therapeutic benefits in COVID- 
19 treatment, making an important step forward 
in the fight against SARS-CoV-2 infection. Sev- 
eral candidate drugs against the virus (viral in- 
hibitors) or host targets (inhibitors of viral en- 
try, enhancers of defensive reactivity) are cur- 
rently in clinical trials for COVID-19. However, 
the constant emergence of new variants necessi- 
tates a constant reshuffling of specific preventive and 
therapeutic strategies. In addition, concerns about 
approved drugs, such as the potential toxicity and 
teratogenicity of molnupiravir (which may introduce 
mutations in the host) and the potential dr ug–dr ug
interactions with Paxlovid TM , together with the po- 
tential induction of viral resistance to these drugs, 
call for new effective antivirals. Extensive studies 
with advanced technologies and methodologies are 
required to gain additional insight into the molec- 
ular mechanisms underly ing host–v irus interaction, 
virus mutation and evolution, and host immune and 
inflammatory responses as the bases for the develop- 
ment of novel therapeutic strategies. 

The unprecedented global effort to investigate 
the host–pathogen interaction in COVID-19 has 
generated a massive amount of data that remains to 
be examined, understood and exploited to design 
optimal preventive and therapeutic strategies. Vac- 
cination is the most economical and effective pub- 
lic health intervention for the prevention and con- 
trol of infectious diseases in modern medicine. Up to 
now, more than 10 bi l lion doses of anti-SARS-CoV-2 
vaccines have been administered worldwide, includ- 
ing mRNA vaccines, adenovirus vaccines, and inac- 
tivated and subunit vaccines. Whi le al l vaccines offer 
some protection against SARS-CoV-2, tailor-made 
vaccines targeting specific variants or broadly protec- 
tive antiviral vaccines have so far not been achieved. 
An open issue with all the anti-SARS-CoV-2 vaccines 
is the duration of the protection, which seems lim- 
ited (at least w hen ex amining antibody titers). Thus,
booster vaccination has been implemented world- 
w ide w ith repeated injection (every six months) and 
with the use of different vaccines and adjuvants at 
each booster in order to broaden the capacity to 
recognize viral variants and prolong the duration of 
immune protection. New perspectives in vaccine de- 
velopment include the innovative concept of epige- 
nomic adjuvanticity, i.e. an immunotherapeutic ap- 
proach to reprogram innate responses towards better 
resistance and fewer side effects in response to future 
infections. Multi-omics studies can provide poten- 
tially valuable guidance for vaccine design and use, 
but these novel technologies require standardization 
and validation before they are sufficiently mature 
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o effectively support clinical studies. We also stress
ere that the selection of experimental models in pre-
linical studies is critical because of the many impor-
ant differences between humans and other animals
hat may substantially hamper clinical translatability.
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