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Abstract: In this study, electron diffraction patterns observed under high vacuum conditions for an
SrTiO3 surface were interpreted in detail while paying special attention to the features of inelastic
effects. The surface of the SrTiO2 was carefully prepared to enforce its termination with single
domains of TiO2 layers at the top. The inelastic patterns were interpreted using analytical models.
Two types of Kikuchi lines are recognized in this paper: those which can be described with the Bragg
law and those which appear due to surface wave resonance effects. However, we also discuss that
there exists a formal connection between the two types of the Kikuchi lines observed.

Keywords: perovskities; nanostructured materials; interfaces; SrTiO3; RHEED; Kikuchi patterns;
inelastic scattering

1. Introduction

If a beam of electrons with energies of 10–50 keV hits a crystal surface, then diffraction
of the electron waves occurs, and diffraction patterns on respective screens can be observed.
Some bands (lines, etc.) called Kikuchi effects may appear, which cannot be explained
directly with the concept of plane wave diffraction; it is necessary to assume that some
electrons are first incoherently scattered into all directions and only then diffracted. Such
effects were found, both in transmission and reflection geometry, soon after the discov-
ery that electrons may behave as matter waves (in particular, for reflection experiments,
respective results were discussed by Nishikawa and Kikuchi in [1]). The incoherent scat-
tering of incident electrons may happen due to thermal vibrations of the atomic nucleus
in a crystal. It became apparent that the occurrence of incoherent thermal effects (also
known as inelastic, phonon scattering effects) can be in fact very helpful with respect to
obtaining information about the structure of investigated samples. In particular, using
electron backscatter diffraction (the technique developed in combination with scanning
electron microscopy), microstructural details of the arrangement of atoms in samples can
be extracted (for example, see [2–4]).

To obtain information about nanoscale crystalline surfaces, researchers often use
reflection high-energy diffraction (RHEED). In some respects, RHEED is like electron
backscatter diffraction. However, for the case of RHEED, grazing geometry is applied
(i.e., the value of the angle between the incident beam and the surface is typically less
than 5◦, whereas for electron backscatter diffraction, this angle is several times larger). For
RHEED, it is relatively rare to carry out the analysis of inelastic features caused by thermal
vibrations because this type of regular effect can be observed in the grazing geometry
only if the surface of a sample is very well ordered (otherwise, surface imperfections
cause stronger but less regular effects). However, it seems that a deeper understanding of
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phonon scattering features is becoming more and more important even for RHEED because
nowadays, nanostructured samples are much more refined than those fabricated 40 years
ago, when the use of RHEED started to become popular (in combination with molecular
beam epitaxy).

It is worth summarizing important works on Kikuchi effects appearing in RHEED pat-
terns described in the literature. Larsen et al. [5] analyzed patterns for ordered and partially
disordered GaAs(001) surfaces. Similar surfaces were investigated by Braun et al. [6]; how-
ever, they extended their studies to also include AlAs(001). Dudarev et al. demonstrated an
approximate theoretical approach in which inelastic collisions were treated kinematically,
but the propagation of elastic electron waves was described more precisely, i.e., dynami-
cally [7]. In their book, Ichimiya and Cohen [8] presented fundamental information about
Kikuchi features; in particular, they displayed useful analytical formulas for determining
the Bragg lines and resonance envelopes. Here, it is worth mentioning that there is also
some software on the web for simulating RHEED patterns, including Kikuchi lines [9].
This software was developed by Nakahara for Apple computers. This website currently
seems to be inactive; however, from the materials presented there, basic concepts on how
simulated RHEED patterns should look like can be learned. Furthermore, the authors of
another book [10] thoroughly discussed the fundamentals of the propagation of electron
waves in crystals, paying great attention to inelastic effects. Finally, in [11], Hagiwara and
Shigeta analyzed RHEED patterns for Si(111) surfaces with different reconstructions, and
in [12], Sun et al. presented an investigation for growing surfaces of SrTiO3(001). The last
two papers, containing analyses of Kikuchi effects, are quite recent, so we will discuss them
in detail.

Hagiwara and Shigeta interpreted the resonance lines that they observed in exper-
imental patterns for Si(111). Their concept that interpreting whole RHEED patterns for
fixed angles of the incident beam may be helpful for obtaining details of the surface
reconstructions is interesting and encouraging. However, it seems that further develop-
ment of numerical software for dynamic calculations is needed to achieve the quantitative
level of such analyses. Namely, an explicit inclusion of lattice thermal vibrations and/or
other possible sources of incoherent scattering of primary electrons at some stage of the
interpretation seems to be important.

Recently, strontium titanate (with the chemical formula SrTiO3) has started to attract
much attention as one of the materials that can potentially be applied to future electronic
devices due to its interesting properties. In any case, Sun et al. [12] carried out an analysis
of inelastic Bragg lines to support the validity of their description of the growth of an
SrTiO3 thin film with the use of molecular beam epitaxy. The experiments were conducted
employing time-controlled shutters, and subsequently, SrO and TiO2 fluxes were supplied
alternately on a TiO2-terminated SrTiO3 substrate. According to the authors of [12], the
film growth was realized in the layer-by-layer mode, in which single monolayers of SrO
and TiO2 were formed alternately at the crystal top. The periods of the RHEED oscilla-
tions observed were sometimes in direct agreement with the description proposed, but
sometimes the periods were two times longer than one might expect from a simple phe-
nomenological approach. However, according to the explanation given by Sun et al. [12],
the occurrence of double periods is caused by the difference in the mean inner potential
for TiO2- and SrO-terminated surfaces. To support their description, the authors precisely
analyzed the variations in the shapes of the Kikuchi lines. Actually, such an explanation of
results observed is acceptable; however, the problem still requires further investigation.
This is because another explanation is also possible; namely, if the growth was realized
by the simultaneous formation of two oxide monolayers, then periods of two types might
also be also recognized: the basic ones and periods two times shorter due to the effect
of frequency doubling (the occurrence of such an effect has been reported for a number
of materials; see [13–15]). In any case, conclusions drawn only from the observation of
RHEED oscillations cannot be unambiguous. In a very recent paper, Orvis et al. [16]
demonstrated that Auger electron spectroscopy can be properly adjusted to check the
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composition of the growing surface termination. Their results also suggest that the alter-
nate formation of single SrO and TiO2 monolayers is indeed possible. However, further
investigation might aid a better understanding of the growth modes of complex oxides and
also possibly help in developing useful parametrized models (in practice, growth modes
are never perfect, but this can be taken into account in theoretical work; for the concept
of parametrized descriptions, for example, see [17]). It needs to be emphasized that the
paper of Sun et al. [12] seems to be very important for the nanotechnology of perovskite
thin films, and the concept of analyzing Kikuchi patterns to learn additional information
about the layers grown is valuable.

The primary goal of our research work was to learn what kind of Kikuchi effects
appear for well-prepared perovskite surfaces. We carried out our investigations keeping in
mind the question of whether a thorough observation of Kikuchi lines can be of some help
in controlling the preparation of substrates that are applied to fabricate nanostructures.
More specifically, we were interested in answering the question of whether both Bragg
and resonance lines can be recognized in respective experimental patterns. This question
seemed to be important in the context of recently published papers [11,12], where only
single types of lines were discussed. In our work, we investigated a TiO2-terminated SrTiO3
crystal, which is an example of a well-prepared perovskite substrate.

2. Materials and Methodology
2.1. Details of Experimental Work

The RHEED measurements were conducted in a chamber that is typically used for
pulsed laser deposition (PLD). The PLD method is currently quite commonly used by
researchers dealing with the growth of high-quality thin films (for a review, see [18,19]).
This method can be applied to prepare different perovskite films [20,21]. For the preparation
of structures with complex stoichiometry, PLD can indeed be competitive with respect to
molecular beam epitaxy, which is often used in nanotechnology (for example, see [22]). If
PLD systems are equipped with a RHEED apparatus, then in situ examination of surface
samples is possible [23,24].

The PLD system used in the current work, with base pressure of about 10−8 Torr,
was built and accessorized by Neocera, Inc. (Beltsville, MD, USA). The high-pressure
RHEED apparatus (STAIB Instruments GmbH, Langenbach, Germany) installed in the
system is dedicated to monitoring the changes at the sample surface during the material
deposition; subsequently, the geometry of the incident beam is fixed. However, samples
can be precisely rotated around the axis perpendicular to the surface. Diffraction patterns
can be observed with the help of a charge-coupled device camera (k-Space Associates, Inc.,
Dexter, MI, USA).

In this work, we focused on analyzing RHEED patterns that can be observed for a
well-prepared surface. We investigated a TiO2-terminated SrTiO3 sample that was prepared
as prescribed by Connell et al. [25]. According to their procedure, the sample should be
annealed at 1000 ◦C in air for at least 1 h and cleaned in deionized water. The confirmation
that atomically smooth surfaces can indeed be prepared with the help of such a method
was shown in the paper of Pawlak et al. [26]. Furthermore, after placing the sample inside
the PLD system, a pressure of about 10−8 Torr was obtained. The RHEED experiments
were conducted at room temperature. The energy of the primary beam electrons was set to
20 keV.

It should be noted that SrTiO3 substrates can be further used for layered nanostruc-
tures. In some situations, it is possible to observe RHEED oscillations. However, in the
current paper, we focused on discussing the results obtained without the deposition of
materials, in order to avoid the appearance of structural imperfections at the surface. For
TiO2-terminated SrTiO3 samples, fine details can be recognized in RHEED patterns, and
thus, a detailed theoretical analysis is possible.
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2.2. Theoretical Approach Applied

Interpreting whole RHEED diffraction patterns is not especially simple because, after
the crystal is hit by the electrons of an incident beam, multiple scatterings of the electron
partial waves occur. Furthermore, the scattering events may be coherent or incoherent
(for a thorough discussion, see [10]). In practice, for specific experiments, only selected
phenomena can be considered in a theoretical analysis. It seems that for whole RHEED
patterns, the most advanced but practically manageable approach was demonstrated by
Korte and Meyer-Ehmsen [27]. They treated coherent processes dynamically (i.e., multiple
scatterings of elastic waves were included in their approach), but incoherent events were
treated kinematically (i.e., perturbatively). The dynamic treatment of the diffraction of
elastic waves requires time-demanding computations. In our work, we decided to use
another approach. We were interested in reproducing basic geometric features of the
patterns, so we employed simplified analytical formulas. To interpret the Kikuchi lines,
we followed the prescription given in the book of Ichimiya and Cohen [8]. The Bragg
reflection lines were generated with the help of the Bragg law written in quadratic form.
The resonance lines were determined using a phenomenological equation developed from
the dynamic theory of diffractions for electron waves propagating nearly parallel to the
surface. However, we introduced our own modification in the description of the resonance
lines in relation to the treatment of Ichimiya and Cohen [8]. The aim of the modification
was to make it possible to carry out a joint analysis of Bragg reflection and resonance effects.
Additionally, to simulate the whole RHEED patterns, the distributions of the spots that
appear at the screen also needed to be determined. We employed formulas from dynamic
diffraction theory, which are results of the use of the two-dimensional (2D) Bloch wave
approach. In fact, it is convenient to discuss the details of the modelling patterns starting
with the explanation of the formulas for the spots. Later on in the paper, it assumed that
the surface of the sample is parallel to the xy-plane (see Figure 1).
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Figure 1. Geometry of the measurements and the system of coordinates applied in theoretical
considerations.

2.2.1. Set of Bragg Spots

We have assumed that the appearance of a set of spots at the screen is caused by
diffraction electrons scattered elastically. In fact, electrons scattered inelastically may cause
similar effects if the direction of the wave propagation remains the same after an inelastic
event and the change of the electron energy is of order 1%. In general, such effects may
happen due to the electron–plasmon interaction; however, there is no need to consider
them separately in the analysis if only the positions of the spots need to be determined.

Precise descriptions of the propagation of electron waves inside a crystal can be
achieved if the Schrödinger equation is properly used in the theoretical treatment. Looking
for such descriptions constitutes the subject matter of the dynamic diffraction theory for
electrons. Let us assume that the surface of a crystal is defined by z = zT and the crystal
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is in a space determined by z < zT . Furthermore, the incident beam is assumed to be a
plane wave, described by the wave vector Ki. If the crystal is periodic in the planes parallel
to the surface, then the electron wave function Ψ(r) can be expressed in the following
form [8,10,28]:

Ψ(r) = ∑
g
φg(z) exp

[
i (Ki‖ + g) · r‖

]
. (1)

In Equation (1), Ki‖ is the parallel component of Ki, and similarly, r‖ is a parallel
component of r. Due to the 2D periodicity of the crystal, the 2D reciprocal surface lattice
can be defined. Respectively, in Equation (1), g denotes a vector of this lattice. It should
be mentioned that Equation (1) can be treated as a starting point of the 2D Bloch wave
approach developed to compute intensities of spots observed at the screen (for more
details, see [8,10,29,30]). Here, we are interested only in the determination of a set of
wave vectors of the beams propagating towards the screen. For z > zT , the part of
Ψ(r) resulting from diffraction can be expressed as a sum of partial waves with the form
Rg exp

[
i (Ki‖ + g) · r‖ + i Kgzz

]
, where Rg is the amplitude of the wave. However, such

terms may describe both propagating waves (if Kgz is real) or evanescent waves (if Kgz is
imaginary). Only propagating waves cause the appearance of spots at the screen; therefore,
we have not considered further evanescent waves.

The procedure to determine the set of wave vectors Kg allowing one to compute
the positions of the spots at the screen is as follows. Initially, for a selected vector g, we
calculate x and y components of Kg and some auxiliary value h.

Kgx = Kix + gx,
Kgy = Kiy + gy,

h = |Ki|2 − Kgx
2 − Kgy

2.
(2)

If h< 0, we simply reject the selected vector g from considerations. If h > 0, we
can write

Kgz =
√

h, (3)

finally having all the required components of Kg. Additionally, we need to specify all
the components of Ki. Assuming that this vector is always fixed in the xz-plane, its
components can be expressed as follows:

Kix = |Ki|sin θ,
Kiy = 0,

Kiz = −|Ki|cos θ,
(4)

where θ means the glancing angle.
To derive formulas to find the distribution of spots, we used some concepts from the

2D Bloch wave approach. This means that, in some sense, we employed the framework
of dynamic diffraction theory. In principle, it should be possible to only use kinematic
arguments and employ the Ewald sphere construction [31,32]. Therefore, we can say
that elastically scattered electrons cause the appearance of “Bragg spots” at the screen.
The kinematic and dynamic theories indeed give identical results if spot positions are
considered (predictions of the theories differ if spot intensities are analyzed). However, to
explain the appearance of resonance lines, dynamic theory findings still need to be recalled
(see Section 2.2.3).

It is worth noting that the thickness of our sample was equal to about 0.5 mm. How-
ever, even for such thick samples, it is necessary to use the concept of reciprocal space
rods (rather than points) to describe the part of the diffraction pattern formed by elastically
scattered electrons. This part of the pattern is caused by the interference of coherent, partial
electron waves coming from very few atomic layers located at the surface. This is because,
in RHEED, we consider the electron waves (with the coherence limited by inelastic events)
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which move nearly parallel to the surface (due to the application of grazing geometry). A
more detailed discussion can be found in the book by Ichimiya and Cohen [8].

Using Formulas (2)–(4), it is possible to predict RHEED patterns resulting from one-
stage scattering of electrons by a well-ordered surface, i.e., if inelastic events are ignored. In
Sections 2.2.2 and 2.2.3, we discuss how to theoretically predict two-stage scattering effects.

2.2.2. Bragg Reflection Lines

It is assumed that the primary beam of electrons hits the crystal surface; this beam
can be described with the help of the wave vector Ki. Many electrons are scattered
incoherently into all directions. After the inelastic collisions, these electrons are diffracted
by the periodic crystal potential. We are interested in finding the conditions for the
intensity maxima for waves reaching the screen, defined by the wave vector K f . We

assume that
∣∣∣K f

∣∣∣2 = |Kt|2 = |Ki|2 , where Kt is one of the wave vectors of the electrons
scattered incoherently due to thermal vibrations (i.e., we ignore small changes of the
electron energies). We apply the following equation to determine those maxima at the
screen that can be assigned to the vector G of the three-dimensional (3D) reciprocal lattice:

2K f x Gx + 2K f y Gy + 2
(

K f z
2 − ṽ

)1/2
Gz = |G|2. (5)

In Equation (5), K f x, K f y, K f z, Gx, Gy and Gz are the respective components of the
vectors K f and G, and ṽ is the reduced mean potential of the crystal.

Some discussion of how to use Equation (5) to plot Kikuchi lines is given in [8]. Here,
we briefly show a derivation of Formula (5). It is necessary to start from the Laue equation:
K f − Kt = G. Then, we can write

∣∣∣K f −G
∣∣∣2 = |Kt|2 , followed by 2K f G = |G|2. The

latter equation constitutes some form of the Bragg law. It was employed for determining
Kikuchi lines for the case of RHEED by Larsen et al. [5]. However, a very similar equa-
tion was mentioned earlier in a book by Kittel [33] in the course of the presentation of
X-ray diffraction.

For the case of RHEED, the effect of the refraction also needs to be included in the analy-

sis. This is realized by replacing the wave vector component K f z by
(

K f z
2 − ṽ

)1/2
. The val-

ues of ṽ can be determined using the following relation (derived from the Schrödinger equation):

ṽ =

(
1 +
|qe|U
m0c2

)
2m0

}2 Ṽ. (6)

In Equation (6), Ṽ is the mean inner potential. Further, the term (1 + (
∣∣qe
∣∣U)/(m0c2))

describes the relativistic correction (|qe| is the absolute value of the electron charge and U
is the accelerating voltage of the electron gun). In general, the values of Ṽ can be found
experimentally or theoretically. We used the second method, employing parametrized
Gaussian functions for electron scattering factors for ions [34] (actually, for ions, extra
non-Gaussian terms also exist, but they cancel each other out in neutral crystals [35]).
Subsequently, Ṽ was determined with the help of the following formula:

Ṽ = − }2

2m0

4π

c3
latt

(
3 ∑

i
aO

i + ∑
i

aTi
i + ∑

i
aSr

i

)
, (7)

where aO
i , aTi

i and aSr
i denote the values of the respective Gaussian parameters for O2−,

Ti4+ and Sr2+ ions [34]. Accordingly, we found that Ṽ = −15.08 eV. It is worth noting that
Equation (7) can be obtained based on the definition of electron scattering factors, using
their relations with the electrostatic potentials of atoms and ions (for details, see [8,10,29]).
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2.2.3. Resonance Lines

Surface resonance scattering is a dynamic phenomenon; i.e., its full analysis requires
solving the Schrödinger equation. Bragg reflections (discussed in Section 2.2.2) have a
simpler interpretation—to obtain the basic formulas, only the constructive interference of
waves needs to be considered. In fact, Bragg reflection lines were already recognized in the
1920s [1]. The situation was different for resonance lines. There was a long debate in the
literature on special effects which might be expected if an electron beam formed due to
diffraction moved nearly parallel to the surface (see [36] and references therein). However,
it seems that the situation became much clearer when the paper of Ichimiya et al. [37] was
published. The authors demonstrated experimental resonance lines and formulated the
conditions for their appearance. Namely, sometimes electrons can be channeled inside a
crystal because of internal reflection. Ichimiya et al. [37] carried out research using the
technique called convergence beam RHEED, but their results can also be generalized for
the case of diffuse scattering observed with the standard RHEED apparatus when primary
beam electrons move in one direction (for a detailed discussion, see the book of Ichimiya
and Cohen [8]). Therefore, in our current work, we used concepts from the aforementioned
paper. However, we also introduced some modifications allowing us to discuss a formal
connection between Bragg reflection and resonance lines.

We assumed that each resonance line is associated with some vector g of a 2D surface
reciprocal lattice. The following formulas were used to determine the shapes of the lines:

2K f x gx + 2K f y gy + K f z
2 − α ṽ = |g|2

and
α ≈ 1.

(8)

To show the derivation of these formulas, we initially recall (as in Section 2.2.1) that
due to the diffraction of waves by the periodic potential in the planes parallel to the surface,
many coupled beams appear above the surface. If we assume that the beam of electrons
moving in the direction defined by K f represents the reference beam, then we can consider
a beam with the wave vector K−g. The following relations are satisfied: K−g‖ = K f ‖ − g

and K−gz
2 =

∣∣∣∣K f

∣∣∣∣2 − ∣∣∣K f ‖ − g
∣∣∣2 (both K−g‖ and K−gz are related to K−g; specifically, K−g‖

is the vector component parallel to the surface and K−gz is the z component). Now, we
need to analyze the condition K−gz

2 = 0, which describes the change of the form of the
electron wave. For K−gz

2 > 0, outside the crystal, a propagating wave appears in the formal
solution of the diffraction problem. For K−gz

2 < 0, the appearance of an evanescent wave
can be observed. However, inside the crystal, due to the refraction, for the appearance
of an evanescent wave, fulfilling the stronger condition of K−gz

2 − ṽ < 0 needs to be
considered. Furthermore, according to Ichimiya et al. [37], if the conditions K−gz

2 < 0
and K−gz

2 − ṽ > 0 are satisfied, the beam determined by K−g has the propagating wave
form inside the crystal, but due to the internal reflection effect, the electrons cannot leave
the crystal. Consequently, an increase in the intensity of the basic beam (with the wave
vector K f ) may be expected, and due to this, a Kikuchi envelope may appear at the screen.
We slightly modified this approach. First, we formulated the conditions for the envelope
as the relation K−gz

2 − α ṽ = 0, where the parameter α may take values between 0 and 1.

Accordingly, we can write
∣∣∣∣K f

∣∣∣∣2 − ∣∣∣K f ‖ − g
∣∣∣2 − α ṽ =0. After a simple manipulation, we

obtain K f z
2 + 2K f ‖·g− |g|

2 − α ṽ = 0 and then Equation (8). Second, we considered the
results of Marten and Meyer-Ehmsen [38] and of Dudarev and Whelan [39]. In the papers of
these authors, the intensity peaks appearing due to resonance scattering are rather narrow.
Furthermore, in both papers, theoretical considerations referred to the formation of bound
states in the crystal. Subsequently, we assumed that resonance lines can be described with
specific values of α, but values greater than 1 are also possible (the scattering potential
inside the crystal is not uniform; absolute values of the potential are much larger near
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atomic cores than between cores). We also need to acknowledge that sometimes two (or
even more) close lines may appear in experimental patterns, and such lines should be
described by different, specific values of α. However, it seems reasonable to assume that,
initially, α ≈ 1.

It should be noted that in the derivation given above, we used K f and −g rather than
Ki and +g. The use of the latter pair would be in accordance with the book of Ichimiya
and Cohen [8]. However, we were interested in establishing some connection between
Bragg reflection lines and resonance lines. Therefore, we adopted the same approach as in
Section 2.2.2.

2.2.4. Additional Remarks

It is perhaps also useful to briefly discuss what kind of diffraction patterns can be
observed if, e.g., two-dimensional islands exist at the surface. Then, a series of vertical
streaks appear at the screen. This happens because the diffraction spots (caused by elastic
scattering) significantly change their shapes in the direction perpendicular to the surface.
One can employ the Ewald sphere construction to explain this effect.

It is worth mentioning that the methodology developed in Sections 2.2.1–2.2.3 may
potentially be used, e.g., for determining the details of surface reconstructions. Analyses
of this type are based on the interpretation of rocking curves, i.e., plots of spot intensities
recorded as functions of the glancing angle of the incident beam. For advanced analyses,
the rocking curves are measured for principal azimuths, where many Kikuchi lines exist
(for example, see [40]). Since each line represents a certain diffraction condition, the
overlapping of many diffraction conditions occurs for such azimuths. In our opinion, a set
of computed Kikuchi lines might be helpful for selecting additional azimuths for carrying
out measurements of those rocking curves for which only specific conditions are fulfilled.

Finally, it should be emphasized that, in principle, our methodology can be used for
samples with relatively flat surfaces. If samples are rough, then the elastic electron waves
are scattered in all directions. Moreover, the respective patterns formed at the screen are
strongly dependent on the specific arrangement of atoms at the surface. In such situations,
regular Kikuchi lines appearing due to the thermal vibrations cannot be easily identified in
the diffraction patterns.

3. Results and Discussion
3.1. Interpretation of Experimental Patterns

We carried out a detailed analysis of the collected data (for the description of the
experiments conducted, see Section 2.1). Below, we summarize our main findings (see
Figures 2 and 3).

(1) The experimental patterns contained both spots and lines. We determined the
distributions of the spots theoretically, assuming that they appear due to simple diffraction
of a certain part the primary beam electrons (i.e., it can be said that spots are the result
of the one-stage process). The shapes of the lines were determined assuming that some
electrons were first incoherently scattered into all directions and only then diffracted (i.e.,
in our treatment, the lines appear due to the two-stage process). In this work, we were
able to achieve a very good agreement between experiment and theory. In this context, it
should be noted that the polar and azimuthal angles defining the direction of the incident
beam were determined computationally in a fitting procedure. The values of these angles
can be measured only with limited precision, i.e., with errors of some 0.2◦. In any case, the
final results are very promising. It can be concluded that fine geometric details of RHEED
patterns for well-prepared samples can be reproduced with the help of analytical formulas.
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scattered inelastically (the Bragg reflection effects are shown in blue and the resonance scattering
effects are shown in red).
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Figure 3. Similar to Figure 2, but an off-symmetry experimental pattern is shown in (a) and the
theoretically determined pattern is displayed for the incident beam azimuth [110] −2.4◦ in (b).

(2) For the SrTiO3 crystal with the well-prepared TiO2 surface, we could recognize
in the experimental patterns both Bragg reflection lines and resonance lines (caused by
inelastic events as described in Sections 2.2.2 and 2.2.3). In fact, the Bragg reflection lines,
far away from the shadow edge, can be observed as straight lines; the resonance scattering
is responsible for the appearance of parabolic lines. The difference can be clearly recognized
while rotating the sample. In any case, we were able to detect the effects of both types.

(3) Here, it seems particularly important to consider the question of what happens to
RHEED patterns if the sample is rotated around the axis perpendicular to the surface (i.e.,
if the azimuth of the incident electron beam is varied with respect to the surface lattice).
We observed experimentally (and this was confirmed in the theoretical analysis) that the
distribution of the spots at the screen changes dramatically. Surprisingly, the distribution of
the lines remained relatively stable—most lines moved slowly to the left- or right-hand side,
but their shapes remained similar. However, when the azimuth of the incident beam was
taken 1–7◦ off the symmetry directions of the surface, some lines were easier to recognize.
Namely, the horizontal lines due to the Bragg reflections from the planes parallel to the
surface appeared in the experimental patterns (compare Figures 2a and 3a). Furthermore,



Materials 2021, 14, 7077 11 of 14

oblique lines could be observed in a much wider angular range. It seems that precise
observations of Kikuchi features may be potentially helpful in controlling the preparation
of perovskite substrates and fixing their orientation.

3.2. Formal Connection between Bragg Reflection and Resonance Lines

Additionally, the question of how to theoretically group Kikuchi lines into some
families may be considered. There is no clear answer to this question. For example, it seems
quite natural to group the lines corresponding to subsets of parallel atomic planes. However,
in this paper, we propose another approach. We show that the lines can be grouped into
families associated with reciprocal space rods perpendicular to the surface. Both Bragg
reflection and resonance lines can be included in such a grouping. This requires some
additional explanation. Surface resonances can be directly assigned to rods as discussed in
Section 2.2.3. However, Bragg reflections are generally determined via the Laue equation
referring to 3D reciprocal lattices. In general, different sets of primitive vectors may be
needed to determine the 2D surface lattice and the 3D crystal lattice for the same material.
However, for SrTiO3, with the cubic perovskite structure, the most natural choice is to
use the same vectors in the xy-plane. Subsequently, if we write the vectors G and g
(these vectors were used in the discussion on Kikuchi lines in Sections 2.2.2 and 2.2.3) as
G =

(
Gx, Gy, Gz

)
and g =

(
gx, gy, gz

)
, then we can put Gx = gx and Gy = gy. Accordingly,

in our case, we can easily associate a number of the G vectors with one g vector. Now, we
can check the relation between the Bragg reflection line defined by some vector G and the
resonance line defined by g. We need to rewrite Equations (5) and (8). However, it is now
also useful to ignore the effects due to the refraction. This is because such effects are not
very important in the region far away from the shadow edge of the screen, which makes
our analysis become easier. After some mathematical manipulation, we can write:

K f xGx + K f yGy =
(

G2
x + G2

y + G2
z − 2K f zGz

)
/2, (9)

and
K f xGx + K f yGy =

(
G2

x + G2
y − K2

f z

)
/2. (10)

We can recognize that the left-hand sides are now identical, so we can determine
common points for both lines by analyzing the right-hand sides. Accordingly, we obtain
the following condition:

G2
z − 2K f zGz = −K2

f z , (11)

One can determine that the lines have a common point if

K f z = Gz. (12)

In summary, we found that the Bragg reflection line associated with the vector G has
a common point with the resonance line g if the x and y components of both vectors are
identical. Moreover, observing the plots of lines, it can be seen that these lines are actually
contiguous (see Figure 4).
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Figure 4. A set of Bragg reflection lines and resonance lines that can theoretically be assigned to a
selected reciprocal space rod if the mean potential is ignored. Part (a) is for the −11 rod, while the
results for the −22 rod are shown in part (b). The conditions of the pattern formation are assumed to
be identical to those in Figure 2.

4. Conclusions

We found that for a carefully prepared SrTiO3 surface, regular Kikuchi lines of two
different kinds appear in experimental diffraction patterns. This allows us to suppose that
the observation of Kikuchi effects may be generally useful in controlling the preparation
of perovskitie samples that can be further used as substrates in nanotechnology. It is
worth emphasizing that carrying out observations of the inelastic effects is much easier if
samples can be azimuthally rotated and the diffraction patterns, both for the symmetry
and off-symmetry azimuths, are recorded.

In our opinion, the observations of Kikuchi lines may be particularly helpful in the
case of the use of PLD systems, for which achieving ultra-high vacuum conditions is not
always possible. Actually, there are many systems of this type, because the application of
such conditions is costly and the operation time demanding. Nevertheless, the preparation
of clean, flat surfaces under very low pressures is well understood and can be controlled, for
example, by low-energy electron diffraction measurements of electron spot intensities. This
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is because in ultra-high vacuum chambers, the time of the self-formation of a monolayer
of adatoms at the surface is of the order of a few hours [41]. The situation is less clear
if samples are prepared only under high-vacuum conditions. It is known that complex
oxide substrates with relatively flat surfaces can still be obtained. However, it is necessary
to develop fast methods of structural characterization of such substrates. In our opinion,
observations of Kikuchi effects may be helpful in this respect.
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26. Pawlak, J.; Żywczak, A.; Szwachta, G.; Kanak, J.; Gajewska, M.; Przybylski, M. Structure and magnetism of LSMO/BTO/MgO/LSMO
multilayers. Acta Phys. Pol. A 2018, 133, 548–551. [CrossRef]

27. Korte, U.; Meyer-Ehmsen, G. Diffuse reflection high-energy electron diffraction. Phys. Rev. B 1993, 48, 8345–8355. [CrossRef]
[PubMed]

28. Kambe, K. Theory of Electron Diffraction by Crystals. Z. Naturforsch. Teil A 1967, 22, 422–431. [CrossRef]
29. Mitura, Z. RHEED from epitaxially grown thin films. Surf. Rev. Lett. 1999, 6, 497–516. [CrossRef]
30. Mitura, Z. Comparison of azimuthal plots for reflection high-energy positron diffraction (RHEPD) and reflection high-energy

electron diffraction (RHEED) for Si(111) surface. Acta Cryst. A 2020, 76, 328–333. [CrossRef]
31. Mahan, J.E.; Geib, K.M.; Robinson, G.Y.; Long, R.G. A review of the geometrical fundamentals of reflection high-energy electron

diffraction with application to silicon surfaces. J. Vac. Sci. Technol. A 1990, 8, 3692–3700. [CrossRef]
32. Kokosza, Ł.; Pawlak, J.; Mitura, Z.; Przybylski, M. Simplified determination of RHEED patterns and its explanation shown with

the use of 3D computer graphics. Materials 2021, 14, 3056. [CrossRef]
33. Kittel, C. Introduction to Solid State Physics, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1968.
34. Peng, L.-M. Electron scattering factors of ions and their parameterization. Acta Cryst. A 1998, 54, 481–485. [CrossRef]
35. Doyle, P.A.; Turner, P.S. Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Cryst. A 1968, 24, 390–397. [CrossRef]
36. Miyake, S.; Hayakawa, K. Resonance effects in low and high energy electron diffraction by crystals. Acta Cryst. A 1970, 26, 60–70.

[CrossRef]
37. Ichimiya, A.; Kambe, K.; Lehmpfuhl, G. Observation of the surface state resonance effect by the convergent beam RHEED

technique. J. Phys. Soc. Jpn. 1980, 49, 684–688. [CrossRef]
38. Marten, H.; Meyer-Ehmsen, G. Resonance effects in RHEED from Pt(111). Surf. Sci. 1985, 151, 570–584. [CrossRef]
39. Dudarev, S.L.; Whelan, M.J. Surface resonance scattering of high energy electrons. Phys. Rev. Lett. 1994, 72, 1032–1035. [CrossRef]
40. Ohtake, A.; Ozeki, M.; Yasuda, T.; Hanada, T. Atomic structure of the GaAs(001)−(2 × 4) surface under As flux. Phys. Rev. B 2002,

65, 165315:1–165315:10. [CrossRef]
41. Prutton, M. Introduction to Surface Physics; Oxford University Press: Oxford, UK, 1995.

http://doi.org/10.1515/amm-2015-0363
http://doi.org/10.1063/1.4979865
http://doi.org/10.1515/amm-2016-0179
http://doi.org/10.1021/nl204114t
http://www.ncbi.nlm.nih.gov/pubmed/22300444
http://doi.org/10.1088/0022-3727/43/13/133001
http://doi.org/10.1103/PhysRevMaterials.4.083806
http://doi.org/10.1063/1.4773052
http://doi.org/10.12693/APhysPolA.133.548
http://doi.org/10.1103/PhysRevB.48.8345
http://www.ncbi.nlm.nih.gov/pubmed/10007029
http://doi.org/10.1515/zna-1967-0402
http://doi.org/10.1142/S0218625X99000470
http://doi.org/10.1107/S2053273320001205
http://doi.org/10.1116/1.576481
http://doi.org/10.3390/ma14113056
http://doi.org/10.1107/S0108767398001901
http://doi.org/10.1107/S0567739468000756
http://doi.org/10.1107/S0567739470000074
http://doi.org/10.1143/JPSJ.49.684
http://doi.org/10.1016/0039-6028(85)90394-2
http://doi.org/10.1103/PhysRevLett.72.1032
http://doi.org/10.1103/PhysRevB.65.165315

	Introduction 
	Materials and Methodology 
	Details of Experimental Work 
	Theoretical Approach Applied 
	Set of Bragg Spots 
	Bragg Reflection Lines 
	Resonance Lines 
	Additional Remarks 


	Results and Discussion 
	Interpretation of Experimental Patterns 
	Formal Connection between Bragg Reflection and Resonance Lines 

	Conclusions 
	References

