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Abstract

Lipid bodies store oils in the form of triacylglycerols. Oleosin, caleosin and steroleosin are unique proteins localized on the surface of
lipid bodies in seed plants. This study has identified genes encoding lipid body proteins oleosin, caleosin and steroleosin in the genomes
of five plants: Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Selaginella moellendorffii and Physcomitrella patens. The protein
sequence alignment indicated that each oleosin protein contains a highly-conserved proline knot motif, and proline knob motif is well
conserved in steroleosin proteins, while caleosin proteins possess the Dx[D/N]xDG-containing calcium-binding motifs. The identification
of motifs (proline knot and knob) and conserved amino acids at active site was further supported by the sequence logos. The phyloge-
netic analysis revealed the presence of magnoliophyte- and bryophyte-specific subgroups. We analyzed the public microarray data for
expression of oleosin, caleosin and steroleosin in Arabidopsis and rice during the vegetative and reproductive stages, or under abiotic
stresses. Our results indicated that genes encoding oleosin, caleosin and steroleosin proteins were expressed predominantly in plant seeds.
This work may facilitate better understanding of the members of lipid-body-membrane proteins in diverse organisms and their gene
expression in model plants Arabidopsis and rice.
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Introduction

Plant seeds store lipids in the form of triacylglycerols
(TAGs) in specialized organelles called lipid bodies [1–3].
The lipid bodies are also referred to as oil-bodies/glob-
ules/vesicles/spherules, oil or fat droplets, or oleosomes
[4–6]. The stored lipids in oilseeds provide energy for the
growth of the germinated seedling [5,7]. The TAG matrix
of the lipid body is surrounded by a layer of phospholipids
and proteins oleosin, caleosin and steroleosin [5,7–10].
These proteins were identified using a proteomic approach
to isolated lipid bodies of plant seeds [6,11–14].

Oleosin is a reliable marker for lipid body [3,6,12,15–17].
The oleosin proteins are present in two weight-forms (L
and H) which coexist in all lipid bodies [18]. H-form can
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be distinguished from the L-form using immunological
methods [6,8,18], due to the presence of an extra stretch
of amino acids at the C-terminal domain of H-form
[3,6,8,18]. The L and H forms of oleosin are well conserved
among diverse plant species [18], although the N- and
C-terminal regions vary in length, leading to oleosin with
diverse molecular weights [19].

The oleosin proteins are expressed in seed and floral
anther [7]. A common feature of all oleosins is to provide
stability to discrete oil-bodies during seed desiccation
[2,3,5,6,12]. The Arabidopsis double mutant of oleosin1-
oleosin2 showed a drastic reduction in seed germination
which was attributed to extreme expansion of oil-bodies
[7]. Similarly, the anther-type oleosins also provide stability
to pollen lipid bodies [20,21] and play a role in the develop-
ment of pollen and the pollen coat [22]. In addition, the
lipid bodies in rice embryo and aleurone layer contain
two forms of oelosin, which provide stability to the oil
bodies [23].
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The hallmark of all oleosins is the proline (Pro) knot
motif, which is Pro-hydrophobic amino acids (5x)-
Ser-Pro- hydrophobic amino acids (3x)-Pro [7]. The Pro
knot is located in the central anchoring domain, which is
highly conserved among diverse plant species [24]. The tar-
geting of oleosin to lipid bodies is facilitated by the Pro
knot [3,25,26].

Caleosin is a lipid body-associated protein involved in
mobilization of stored lipids during seed germination [8–
10,27]. Caleosin was found as a major protein in cycad
oil-bodies without the presence of any oleosin [28]. The
N-terminal domain of caleosin contains single EF-hand
motif for calcium (Ca2+)-binding, and the C-terminal
domain contains a few phosphorylation sites [6,9,17,29].
A less conserved Pro knot motif is also found in caleosin
proteins [6,30].

Steroleosin is a minor lipid body protein that was pro-
posed to mobilize lipid bodies during sesame seed germina-
tion [10]. All steroleosins are characterized by the presence
of a sterol-binding dehydrogenase/reductase domain con-
taining the conserved active site region [S-(12x)-Y-(3x)-K]
for sterol-coupling dehydrogenase activity [10]. Steroleosin
protein contains a Pro knob motif in the middle of the
N-terminal hydrophobic segment [10]. It is still unclear
whether the Pro knob motif plays a role in steroleosin tar-
geting to lipid bodies [10].

It has become a challenge to assemble pertinent infor-
mation from the sequencing data of a wide diversity of
plant genomes. The information is spread over numerous
genome databases and is presented in different formats.
Much of this data originates from high-throughput
studies, and several nucleotide sequences code for hypo-
thetical proteins. Therefore, a comparative genomic
approach to identify individual gene family members is
essential. Moreover, characterizing the gene families is
necessary to investigate the members associated with a
particular gene family to study their evolutionary rela-
tionship. The main purpose of the current study was to
explore the genomes of the model eudicots (Arabidopsis

thaliana, Populus trichocarpa), monocot (Oryza sativa),
lycophyte (Selaginella moellendorffii) and bryophyte
(Physcomitrella patens) to identify genes coding for oleo-
sin, caleosin and steroleosin. Earlier studies have identi-
fied Arabidopsis members for these gene families [5,19].
The data presented here is an extended view to include
the members of O. sativa, P. trichocarpa, S. moellendorffii,
and P. patens.
Results

We aimed to characterize the gene families of oleosin, cal-
eosin and steroleosin in eudicots, monocot, bryophyte and
lycophyte. A comparative genomic approach was used for
identification of genes coding for lipid body proteins
oleosin, caleosin and steroleosin in A. thaliana, O. sativa,
P. trichocarpa, S. moellendorffii and P. patens.
Protein alignment and sequence logos

Table S1 shows the list of oleosin genes found in the gen-
omes of the five plant species examined. These genes were
identified as described in materials and methods. The geno-
mic loci AT5G07530, AT5G07550, AT5G07560 and
AT5G56100 in A. thaliana were not included in the list of
oleosins as they were annotated as glycine-rich protein
oleosin domain, oleosin-like, lipid-binding oleosin and
glycine-rich protein/oleosin, respectively. Therefore, 11
oleosin genes (AtOleo1–11) were identified in A. thaliana

based on a protein alignment (Figure S1). AtOleo1–4 as
annotated in the TAIR database, while AtOleo5–11 were
numbered according to their order of appearance on the
chromosomes. The encoded proteins possessed the con-
served Pro knot motif. Similarly, based on the presence
of well conserved Pro knot motif, the genome-wide studies
have identified oleosin-encoding genes from other species,
including O. sativa (OsOleo1–6, numbered according to
the order of appearance on the chromosomes), P. tricho-

carpa (PtOleo1–5), S. moellendorffii (SmOleo1–3) and
P. patens (PpOleo1 and 2), respectively (Figure S1). We
then constructed sequence logo using 319 oleosin protein
sequences available in the Pfam database (PF01277), which
come from a wide range of plant species, to study the con-
servation of amino acids (Figure S2). The data indicated
the highly conserved prolines (P) of the Pro knot motif
(Figure S2). Additionally, phenylalanine (F) and serine
(S) were relatively conserved in the Pro knot motif too.

The identified members of caleosin gene family in the
five plant species are given in Table S2. Six (AtClo1–6)
and eight (OsClo1–8) caleosin genes were identified in
A. thaliana and O. sativa, respectively. There were two cal-
eosin genes in P. trichocarpa (PtClo1 and 2), P. patens

(PpClo1 and 2), and one in S. moellendorffii (SmClo1)
(Table S2). Protein alignment showed that the Dx[D/
N]xDG motif is well conserved in caleosins (Figure S3).
The sequence logo profile of 216 caleosin proteins from
Pfam identified the Dx[D/N]xDG motif although the rela-
tive contribution of these amino acid residues was low,
compared to histidine (H), F, P and glycine (G) (Figure S4).

Steroleosins identified in the genomes of the five plant
species are listed in Table S3. There were six steroleosin
or hydrosteroid dehydrogenase (HSD1–6) genes in A. tha-

liana (AtSlo1–6) and O. sativa (OsSlo1–6), seven in P.

trichocarpa (PtSlo1–7) as well as P. patens (PpSlo1–7),
and three in S. moellendorffii (SmSlo1–3) (Table S3). The
protein alignment showed the Pro knob motif was present
in steroleosins of all five species (Figure S5), although the
Pro knob motif was absent in OsSlo1. In addition, protein
alignment of steroleosins also indicated that the active site
amino acids S, tyrosine (Y) and lysine (K) were conserved
in Slo1–6 from A. thaliana and Slo1, 2, 4 and 5 from rice.
However, S was substituted by A in Slo3 from rice and in
Slo4 and Slo7 of P. trichocarpa, whereas K was replaced by
asparagine (N) in Slo6 from rice and by glutamic acid (E)
in Slo1 of S. moellendorffii, respectively. Nonetheless, S and
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Y were well conserved in a total of 54,179 steroleosin
protein sequences obtained from Pfam as corroborated
from the sequence logo profile (Figure S6).

Phylogenetic aspects of oleosins, caleosins and steroleosins

Phylogenetic trees were constructed to evaluate the evolu-
tionary relationships among the members of oleosins, caleo-
sins and steroleosins. The phylogenetic tree for 27 oleosin
proteins of the five plant species examined is shown in
Figure 1. Two major groups of oleosin proteins are present
(closed circles). Group-I consisted of oleosins from all the
five plant species, while group-II consisted of oleosins only
from magnoliophyte such as P. trichocarpa, A. thaliana

and O. sativa. Further analysis classified oleosins into three
major subgroups (closed squares, Figure 1). Subgroup-I
consisted of oleosins only from magnoliophyte, subgroup-
II of oleosins from vascular plants including A. thaliana,
P. trichocarpa, O. sativa and S. moellendorffii, and sub-
group-III of oleosins from eudicots including P. trichocarpa
and A. thaliana. Within group-I, the oleosins from bryo-
phyte P. patens are clustered into separate clade (closed
upward triangle, Figure 1). These data suggests that oleosins
might have independently evolved at least four times (in
eudicots, magnoliophytes, vascular plants and bryophyte),
and with convergent evolution in vascular plants (A. thali-

ana, P. trichocarpa, O. sativa and S. moellendorffii).
The phylogeny for 19 caleosin protein sequences of the

five plant species is shown in Figure 2. The caleosin
proteins were phylogenetically classified into two major
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Figure 1 The phylogeny of oleosin proteins

The unrooted phylogeny was bootstrapped to 100 and scaled to 0.1 substitutio
Os, Oryza sativa; Pt, Populus trichocarpa; Pp, Physcomitrella patens; Sm, Sela
groups, I and II (closed circles, Figure 2). The group-I con-
sisted of caleosins from all the five species; and the caleo-
sins from magnoliophyte formed group-II. The caleosins
from bryophyte P. patens and lycophyte S. moellendorffii

emerged as separate clades within group-I. Another sepa-
rate clade within group-I was of caleosins from magnolio-
phyte (closed upward triangles, Figure 2). The data
indicates divergent evolution of caleosins in magnolio-
phyte, lycophyte and bryophyte.

The phylogeny constructed from steroleosin proteins of
the five species is shown in Figure 3. The steroleosin pro-
teins were classified into five major groups, I–V (closed
circles). The steroleosin proteins in group-I were from
P. patens, group-II from all the five species, group-III from
O. sativa, group-IV from A. thaliana, and group-V from
P. trichocarpa. Within group-II, two separate clades were
formed with one from magnoliophyte and the other from
lycophyte S. moellendorffii and bryophyte P. patens, respec-
tively (closed upward triangles). The results indicate that
steroleosins are divergent class of lipid body proteins which
might have independently evolved within the members of
magnoliophyte and bryophyte.

Expression profiles of oleosins, caleosins and steroleosins in

Arabidopsis and rice

The publicly available gene expression microarray datasets
were explored to study expression patterns of oleosins,
caleosins and steroleosins in A. thaliana and O. sativa.
The gene expression of Arabidopsis oleosins, caleosins
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Figure 2 The phylogeny of caleosin proteins

The unrooted phylogeny was bootstrapped to 100 and scaled to 0.05 substitutions. The bootstrap values are given at each node. At, Arabidopsis thaliana;
Os, Oryza sativa; Pt, Populus trichocarpa; Pp, Physcomitrella patens; Sm, Selaginella moellendorffii.
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Figure 3 The phylogeny of steroleosin proteins

The unrooted phylogeny was bootstrapped to 100 and scaled to 0.05 substitutions. The bootstrap values are given at each node. At, Arabidopsis thaliana;
Os, Oryza sativa; Pt, Populus trichocarpa; Pp, Physcomitrella patens; Sm, Selaginella moellendorffii.
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and steroleosins were studied in 12 different samples
(callus, cell culture, cotyledons, hypocotyl, stem, rosette,
shoot apical meristem (SAM), roots, flower, silique, seed
and imbibed seed). According to Levene’s test (0.001 <
P < 0.054), an increased expression of Arabidopsis oleosin
genes (Oleo1–4 and 6–8) was detected in seeds and imbibed
seeds (Figure S7A). The expression of Oleo3 was upregu-
lated in SAM as compared to other oleosin genes (Fig-
ure S7A). The expression of Oleo5 and 9–11 was not
studied due to the unavailability of microarray probes for
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these genes in the TAIR database. Similarly, we examined
the expression of caleosin-coding genes in Arabidopsis.
Expression of Clo3 and Clo4 was upregulated in cell cul-
ture, cotyledons, stem, rosette, SAM, flower and silique
as compared to Clo1 and Clo2 (Figure S7B). An enhanced
expression of Arabidopsis Clo4 was detected in hypocotyl
and root tissue as compared to other Clo genes (Fig-
ure S7B). The expression data of Arabidopsis Clo5 was
found to be identical to Clo4 in the TAIR database.
Expression data was not available for Arabidopsis Clo6 in
the TAIR database. The Arabidopsis steroleosin genes
Slo3, Slo5 and Slo6 showed a higher level of expression
in seed and imbibed seed as compared to Slo4 (Figure S7C).
The data for microarray probes of Slo1 and Slo2 were not
available in the TAIR database.

The rice oligonucleotide array data was explored for
oleosins, caleosins and steroleosins at different vegetative
(cell suspension, shoot, root, leaf, SAM) and reproductive
(inflorescence, anther, stigma, ovary, embryo, endosperm,
seed) stages (Figure 4). The expression of rice Oleo1 was
detected through stages S2–S5 (Figure 4A). The rice Oleo4
was expressed in inflorescence stage-I6, stigma and anther
Figure 4 The heat map showing gene expression of oleosins, caleosins and ster

A. Gene expression of oleosin, caleosin and steroleosin in vegetative (root, l
development. The microarray was performed using tissue samples from O. sati

expression of oleosin, caleosin and steroleosin in cell suspension, shoot, root and
The microarray was performed using tissue samples from O. sativa L. cv. Nipp
oleosin, caleosin and steroleosin genes under abiotic stresses. The control seed
from O. sativa L. cv. IR64. ROAD experiment ID for this panel is GSE6901. T
names are given on the right of the heat map. The tissue samples or stress con
map. The gene expression scale is from 5.0 (downregulation of genes) to 13.0
(Figure 4A and B). The expression of most of the rice oleo-
sin genes (Oleo2, Oleo3, Oleo4 and Oleo6) was upregulated
in cell suspension, embryo, endosperm and seed
(Figure 4B).

The dynamic expression pattern of rice caleosin genes
(Clo1–8) in vegetative and reproductive stages is shown
in Figure 4A. The genes Clo2–5 and Clo8 were upregulated
in seed stages S2–S5; the rice Clo6 was upregulated in
young and mature leaf tissue, and was expressed in seed
stage-S1; the gene Clo7 was upregulated only in inflores-
cence stages I5 and I6 (Figure 4A). The expression level
of rice Clo1, Clo5, Clo7 and Clo8 was upregulated in anther
tissue (Figure 4B). In seed stages-S4 and S5, the expression
of rice steroleosin genes Slo3, Slo4 and Slo6 was upregu-
lated (Figure 4A). The steroleosin genes Slo3 and Slo6 were
upregulated in embryo and endosperm tissue (Figure 4B).

The expression of rice Oleo, Clo and Slo was analyzed in
abiotic conditions of drought, salt and cold stress (Fig-
ure 4C). The expression of Oleo2 was enhanced in drought
and salt stresses; the expression of Clo3 and Clo5 was
upregulated also in drought and salt stress treatments.
Conversely, the expression of Clo2 was down-regulated
oleosins in rice

eaf and SAM) and reproductive (inflorescence and seed) stages of plant
va L. cv. IR64. ROAD experiment ID for this panel is GSE6893. B. Gene

reproductive (stigma, ovary, anther, embryo, endosperm and seed) stages.
onbare. ROAD experiment ID for this panel is GSE7951. C. Expression of
lings were 7-day-old. The microarray was performed using tissue samples
he microarray probe set IDs are given in Table S4. The corresponding gene
ditions for which microarray was performed are given on top of the heat
(upregulation of genes).
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by drought and, to a lesser extent, by salt stress; expression
of Clo6 and Clo8 was slightly down-regulated by drought
and salt stresses, respectively. Additionally, expression of
Slo5 was down-regulated by salt stress, while expression
of the remaining steroleosin genes (Slo1–4 and Slo6)
was consistently low under abiotic stress treatments
(Figure 4C).

Discussion

In this study, the members of gene families of lipid body
proteins oleosin, caleosin and sterolesoin in A. thaliana,
O. sativa, P. trichocarpa, S. moellendorffii and P. patens

were evaluated by protein alignment, phylogenetic analy-
ses, sequence logos and expression profiles. The current
study reveals genes encoding lipid body proteins in model
plants. The phylogenetic classification of these three gene
families has identified several independent clades for cate-
gories of eudicots, monocot, bryophyte and lycophyte
which led to evolutionary comparisons.

High-throughput nucleotide sequencing has led to the
identification of numerous novel protein-coding genes,
some of which remain to be characterized and functionally
assigned. The current study has focused on the in silico

identification of plant lipid-body–membrane proteins for
which the physiological functions remain elusive.

Non-storage plant tissues like floral tapetum, pollen,
and vegetative cells are known to contain oleosin
[3,20,31], which is in agreement with the present study. Six-
teen oleosin genes of Arabidopsis were categorized into five
seed-type oleosins, eight anther-type oleosins, and three
seed-and-anther-type oleosins [5,19]. The present study
has identified 11 genes in the genome of Arabidopsis which
encode oelosin proteins. The loci AT5G07530,
AT5G07550, AT5G07560 and AT5G56100 were not
included as these loci were annotated as glycine-rich pro-
teins although their protein sequences show the conserved
Pro knot motif. The loci AT5G07571 (Oleo9) and
AT5G56100 (glycine-rich protein) from the current study
were not identified by Kim et al. [19]. The loci
AT5G07510, AT5G07520 and AT5G07540 which were
identified as oleosins by Kim et al. [19] were not included
in the current study as they were annotated as glycine-rich
protein 14, 18 and 16, respectively. In Arabidopsis, Oleo1
was the most abundant seed oleosin isoforms [11,32] and
its knockdown resulted in the formation of large lipid
bodies in seeds [5]. The present study showed increased
expression of Oleo1 in seeds and imbibed seeds of Arabid-

opsis. The deficiency of oleosin causes loss of freezing toler-
ance in seeds of Arabidopsis [33]. RNA interference of
soybean oleosin resulted in giant lipid body formation
and impaired seed germination [34]. The expression of
oleosin was spatially and developmentally regulated [5]
and controlled by the transactivator ABI3 [5,35]. The cur-
rent study also provides evidence of the overall increased
expression of oleosins (Oleo1–4 and 6–8) in seeds and
imbibed seeds of Arabidopsis. The exclusive upregulation
of Arabidopsis Oleo3 in SAM suggests its vital role in the
developing plant meristem. The lack of differential expres-
sion of Oleo5, and the differential expression of Oleo1 indi-
cate the developmental-selectivity of oleosin gene
expression in rice.

Caleosin and steroleosin are lipid body proteins that are
involved in cytoplasmic signaling [6]. The abundance of
caleosin and steroleosin transcripts was similar in sesame
seed lipid bodies [10], which is consistent with the present
findings on their expression levels in Arabidopsis seeds.
Caleosins were found in plant seed lipid body, pollen,
shoot, and root tip, in accordance with the current data
of gene expression in Arabidopsis and rice [30,36,37]. Cal-
eosin was expressed in tapetal and germ line cells of olive
anthers [36]. The current study has identified expression
of rice Clo7 to be differentially upregulated in late stages
(I5 and I6) of inflorescence development and anther tissue.
Expression of caleosin is upregulated in seeds and pro-
motes seed dormancy in abscisic acid (ABA) and osmotic
stress conditions [17]. The present study has revealed differ-
ential upregulation of rice Clo4 in seed stages S2–S5. The
study showed high expression levels of Clo8 in roots as
compared to Clo2 and Clo3, implicating a role of Clo2 in
modulating root related traits.

Arabidopsis Clo1 and Clo2 show Ca2+-dependent perox-
ygenase activity [37–39]. Arabidopsis Clo3, also named as
Responsive to Dehydration 20 (RD20), was biochemically
identified as a peroxygenase [40]. RD20 is induced by var-
ious abiotic stress factors [39,40] and gets involved in water
stress responses and plant growth [40]. Expression of Ara-
bidopsis Clo3 was upregulated by ABA treatment and
under stress conditions [38–41]. The current study has iden-
tified upregulation of rice Clo3 by drought and salt stresses
implicating its vital role in response to environmental cues.
The stress-responsive Arabidopsis Clo4 is a negative regula-
tor of ABA responses [42]. The current study has shown an
increased expression of both Clo3 and Clo4 in some of the
vegetative (cotyledons, stem, rosette, and SAM) and repro-
ductive (flower and silique) stages as compared to Clo1 and
Clo2 in Arabidopsis. The current study demonstrates that
some members of caleosin gene family may be involved
in the vegetative to reproductive stage transition.

The caleosins are found in higher plants and fungi
[16,27]. Earlier studies have reported seven caleosin genes
in Arabidopsis (AtClo1–7) [38,39]. The locus AT1G23250,
although annotated as a caleosin-related family protein,
lacks the characteristic Dx[D/N]xDG motif for Ca2+-bind-
ing [43] and therefore was excluded from the current study.

The sterol-binding dehydrogenases/reductases have
been identified as signal transduction components in micro-
organisms and mammals [10]. As reported earlier, Arabid-

opsis genome encodes for eight steroleosin genes [6,10]. The
current study identified six steroleosin genes in Arabidopsis

genome. Sequence comparison shows that the loci
AT5G50690 (HSD7/HSD4) and AT5G50700 (HSD1) are
identical to AT5G50590 (HSD4) and AT5G50600
(HSD1), respectively. Steroleosin is expressed in maturing
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sesame seeds [10]. The present findings also show an
increase in expression of steroleosins (Slo3, Slo5 and
Slo6) in Arabidopsis seeds and imbibed seeds. The current
study in O. sativa shows an increased expression of Slo3,
Slo4 and Slo6 in seeds of Indica cultivar but reduced
expression of Slo4 in seeds of Japonica cultivar. An
increase in expression of steroleosins (Slo3, Slo4 and
Slo6) is also revealed in rice embryo and endosperm. The
current findings demonstrate the upregulation of rice Slo5
in root, shoot and inflorescence implying its crucial role
in a variety of plant functions.

The evolutionary lineage of a particular gene family can
be traced by comparison of gene families with organisms
from different branches of evolution studied in the context
of their phylogeny. The phylogenetic trees were constructed
to examine evolutionary relationship of gene families for
oleosins, caleosins and steroleosins among eudicots, mono-
cot, bryophyte and lycophyte based on a comparative
genomic approach. Our results showed that a group of oel-
osins as well as caleosins in A. thaliana, P. trichocarpa and
O. sativa (magnoliophyte) was evolved along with S. moel-

lendorffii (lycophyte) and P. patens (bryophyte). The other
group of oleosins and caleosins was evolved specifically in
magnoliophyte. Some members of the gene family of
steroleosin have evolved independently in A. thaliana,
P. trichocarpa, O. sativa and P. patens.

This study explores gene families of oleosin, caleosin
and steroleosin from diverse organisms. The dense sam-
pling of members of these gene families provides wide gene
coverage for phylogenetic analysis. The study describes
well-resolved phylogenies of oleosins, caleosins and ster-
oleosins from eudicots, monocot, bryophyte and lycophyte.
This article also provides an in-depth transcriptome pro-
files of lipid body proteins in Arabidopsis and rice. The gene
expression patterns revealed that the oleosin genes are
expressed predominantly in seeds of Arabidopsis and rice.
A more dynamic expression pattern for caleosin genes
was detected which was regulated both spatially and
temporally in rice. This article may provide a better under-
standing of the lipid-body-membrane proteins in magnolio-
phyte, bryophyte and lycophyte.

Materials and methods

Retrieval of sequences

Arabidopsis protein sequences of oleosin, caleosin and ster-
oleosin were downloaded from the Arabidopsis information
resource (TAIR) (http://www.arabidopsis.org) [44]. The
full-length protein sequences of Oryza sativa subsp. Japon-
ica (rice) were downloaded from the rice genome annota-
tion project database (http://rice.plantbiology.msu.edu)
[45]. The protein sequences of P. trichocarpa, P. patens

and S. moellendorffii were retrieved from the Department
of Energy Joint Genome Institute database (http://
www.jgi.doe.gov) [46]. Arabidopsis protein sequences of
steroleosin were used as query against the NCBI protein
database to retrieve corresponding gene family members
of P. trichocarpa and P. patens.

Protein alignments and phylogenetic studies

The full-length protein sequences of oleosin, caleosin and
steroleosin were imported to the ClustalX multiple sequence
alignment program [47]. The neighbor-joining (NJ) method
was adopted to construct unrooted phylogenies of oleosins,
caleosins and steroleosins. The phylogeny was constructed
on alignment file using the molecular evolutionary genetics
analysis (MEGA) 4 software program [48].

Building sequence logos

The sequence logos were built for protein sequences of
oleosins (Pfam ID – PF01277), caleosins (Pfam ID –
PF05042) and steroleosins (Pfam ID – PF00106) based
on the profile Hidden Markow Model (pHMM) [49] of
the Pfam database (http://pfam.janelia.org) [50]. A total
of 319, 216 and 54,179 protein sequences of oleosin, caleo-
sin and steroleosin, respectively, available in the Pfam
database were utilized to generate sequence logos.

Gene expression analysis

The gene expression status of Arabidopsis oleosins, caleosins
and steroleosins at different stages was referred to the Gene-
vestigator response viewer (https://www.genevestiga-
tor.com) [51] of the TAIR database. The gene expression
data of oleosins, caleosins and steroleosins in rice was
downloaded from the rice oligonucleotide array database
(ROAD) (http://www.ricearray.org) [52]. For Figure 4A,
the rice inflorescence represents following stages of develop-
ment: floral organ initiation (I1), meiotic stage (I2 and I3),
microspore stage (I4), vacuolated pollen stage (I5) and
mature pollen stage (I6). The rice seed development
represents following stages: early globular embryo
(0–2 days after pollination) (DAP) (S1), middle and late
globular embryo (3–4 DAP) (S2), embryo morphogenesis
(5–10 DAP) (S3), embryo maturation (11–20 DAP) (S4),
dormancy and desiccation tolerance (21–29 DAP) (S5).
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[49] Schuster-Böckler B, Schultz J, Rahmann S. HMM logos for
visualization of protein families. BMC Bioinformatics 2004;5:7.
[50] Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, et al.
The Pfam protein families database. Nucleic Acids Res
2008;36:D281–8.

[51] Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, et al.
Genevestigator v3: a reference expression database for the meta-
analysis of transcriptomes. Adv Bioinformatics 2008;2008:420747.

[52] Jung KH, Dardick C, Bartley LE, Cao P, Phetsom J, Canlas P, et al.
Refinement of light-responsive transcript lists using rice oligonucleo-
tide arrays: evaluation of gene-redundancy. PLoS One 2008;3:e3337.


	Comparative Genomics of the Lipid-body-membrane Proteins Oleosin,  Caleosin and Steroleosin in Magnoliophyte, Lycophyte and Bryophyte
	Introduction
	Results
	Protein alignment and sequence logos
	Phylogenetic aspects of oleosins, caleosins and steroleosins
	Expression profiles of oleosins, caleosins and steroleosins in Arabidopsis and rice

	Discussion
	Materials and methods
	Retrieval of sequences
	Protein alignments and phylogenetic studies
	Building sequence logos
	Gene expression analysis

	Competing interests
	Acknowledgements
	Supplementary material
	Appendix Supplementary material
	References


