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Abstract: (1) The phytohormones gibberellins (GAs) play a crucial role in plant growth and de-
velopment, such as seed germination, flowering, fruiting, and stem elongation. Although many
biological roles of GAs have been studied intensively, the molecular mechanisms of GAs in woody
plants are still unclear. (2) In this study, we investigated the effects of exogenous application of
GAs on Neolamarckia cadamba. (3) The height and biomass of N. cadamba increased after 7 days of
GA treatment, especially on the second internode. Transcriptome analysis showed that although
the majority of genes involved in the GA signaling pathway were up-regulated, the expression of
GA20 oxidase (GA20ox) and GA3 oxidase (GA3ox) was down-regulated in the 3 days GA-treated
group compared to the CK group. The expression of the cell elongation-related basic helix-loop-
helix genes bHLH74 and bHLH49 was up-regulated in the GA-treated group compared with the CK
group. Transcriptional expression levels of transcription factors involved in hormone signaling were
changed, mainly including bHLH, ethylene response factor (ERF), and WRKY families. In addition,
the transcriptional expression level of the key enzymes engaged in the phenylalanine pathway was
downregulated after GA treatment. (4) In brief, our findings reveal the physiological and molecular
mechanisms of exogenous GA treatment stimulation in N. cadamba.

Keywords: GA; Neolamarckia cadamba; physiology; transcriptome analysis

1. Introduction

Phytohormones, including auxin, ethylene, cytokinin, gibberellins (GAs), abscisic
acid (ABA), and brassinosteroids (BRs), participate in various biological processes during
plant development and growth [1,2]. GAs play an important part in the crop green revolu-
tion by being involved in seed germination, flowering, fruit formation, stem elongation,
and other developmental activities [3,4]. The physiological functions of GAs in plant
development and growth have been widely studied. According to the research results in
Arabidopsis, GAs signaling regulates secondary cell wall formation, particularly xylem
expansion and xylem fibers synthesis in hypocotyls, offering a fresh perspective for wood
improvement [5–7]. In Populus, bioactive GAs signaling is detected in developing xylem
and the key enzyme GA20ox promoted cell proliferation [8] and xylem width [6]. Further-
more, GAs were found to be involved in plant photosynthesis regulation by influencing
the expression of photosynthesis genes [9–11].

GAs are primarily generated in plant stem, root, flower, and fruit, and the terpenoid
pathway is involved in their synthesis process [12–14]. Enzymes ENT-COPALYL PY-
ROPHOSPHATE SYNTHASE (CPS), ENT-KAURENE SYNTHASE (KS), ENT-KAURENE
OXIDASE (KO), and ENT-KAURENOIC ACID OXIDASE (KAO) catalyze the conversion
of GERANYLGERANYL DIPHOSPHATE (GGDP) to GA12, and finally GA12 is converted
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to different forms of GAs catalyzed by GA2-oxidase (GA2ox), GA3-oxidase (GA3ox) and
GA20-oxidase (GA20ox) [15–17]. Only a few of the several types of GAs produced in
plants, primarily GA1, GA3, GA4, and GA7, are bioactive regulators that contribute to
plant development and growth via the GAs signal transduction system [18,19]. Several
components of the GAs signaling system, including positive and negative regulators, have
been investigated [20,21].

In the presence of bioactive GAs, proteolytic degradation of DELLA proteins, which
function as a master regulator component and are essential to the GAs signaling path-
way, resulting in an active GA-regulated response [22–24]. Bioactive GAs bind to the
receptor protein GIBBERELLIN INSENSITIVE DWARF1 (GID1) in rice and enhance the
interaction between the DELLA protein, resulting in the degradation of DELLA through
polyubiquitylation. The SCFSLY1/GID2 ubiquitin E3 ligase complex is required for polyu-
biquitination and subsequent degradation by the 26 S proteasome to regulate leaf and
stem elongation [25–27].

Exogenous GA3 treatment in particular enhances xylem development to increase
shoot and root length and alters the expression level of GAs biosynthesis and signaling
pathway genes, as well as other hormones and cell wall associated genes in plants [28],
indicating that GAs play an important role in transcription regulation and crosstalk with
other phytohormone signaling pathways during plant development regulation.

N. cadamba, a fast-growing member of the Rubiaceae family species, can grow into tall
trees in a short time and have been widely planted and utilized in south Asia [29,30]. Previ-
ous research has found that various nutrient levels such as potassium (K), aluminum (Al),
nitrogen (N), and boron (B) have a role in the regulation of N. cadamba growth [31–34].
Here, the response of N. cadamba to exogenous GAs is studied at the physiological and
molecular levels.

We reported that exogenous GAs promote the second internode development by
regulating cell elongation in N. cadamba. RNA-seq data from different GA-treated stages
analysis indicated that both the GA synthesis pathway and GA signaling pathway are
affected. Furthermore, GA treatment altered the expression levels of genes involved in the
phenylalanine pathway, as well as phytohormones and transcription factors Altogether, we
found that exogenous GAs do not alter plant growth and development but do affect the
GA pathway and other phytohormone responses in N. cadamba.

2. Results
2.1. Effect of Exogenous GA Application on N. cadamba Growth

To investigate the effect of exogenous GA on N. cadamba growth, we performed pilot
experiments. Five different concentration gradients levels (0, 25, 50, 75, 100 mg/L) of
GA were tested and 50 mg/L GA was selected as the suitable concentration [11]. Plants
cultivated in a liquid nutrient solution containing exogenous 50 mg/L GA were referred
as the GA group, and they were compared to plants grown under normal conditions
(no exogenous GA, CK group). Although there was no significant difference in plant
height between the GA and CK groups after 3 d, the plant height, particularly the second
internode, was higher in the GA group at 7 d and 14 d (Figure 1A,B). The plant length and
second internode expansion rate in the 7 d GA group were 18.4% and 74.1%, respectively,
which were higher than the CK group. Furthermore, the plant length and second internode
expansion rate in the 14 d GA group were 33.7% and 91.4%, respectively, when compared
to the CK group (Figure 1C). Furthermore, at 7 days, the shoot fresh weight average
increase rates of the CK and GA groups were 21.1% and 53.6%, respectively, and at 14 days,
the shoot fresh weight average increase rates of the CK and GA groups were 53.4% and
105.1%, respectively. At 7 days, the shot dry weight average rise rates for the CK and GA
groups were 29.4% and 55.0%, respectively, and at 14 days, the shoot dry weight average
increase rates for the CK and GA groups were 157.8% and 210.1%, respectively (Figure 1D).
Meanwhile, we measured the fresh and dried weights of the roots and found no significant
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difference between GA and CK. We concluded, tentatively, that exogenous GA increased
the development of N. Cadamba, particularly at the second internode.
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Figure 1. Growth of N. cadamba under exogenously applied 50 µM/L GA group (GA) and CK group
(CK). (A) N. cadamba morphology of GA group and CK group at 7 d and 14 d. (B) The second
internode of N. cadamba morphology of GA group and CK group at 7 d and 14 d. (C,D) Plant height,
length of second internode section, shoot fresh weight increased rate, and shoot dry weight increased
rate of CK group and GA group at different times. Results are mean ± SD of three biological replicates.
Differences between mean values of CK and GA were compared using the student’s t-test (ns, *, **,
and *** denote no significant difference, significant differences at p < 0.05, 0.01 and 0.001).

2.2. Identification of DEGs in N. cadamba in GA Treatment

Based on the physiological changes in 1 d to 14 d N. cadamba plants of the GA group,
we further investigated the underlying molecular mechanism of GA effect on N. cadamba
growth. The total RNA was extracted from the second internode of the CK group and GA
group at 1, 3, 7, and 14 days and named as CK1d, CK3d, CK7d, CK14d, GA1d, GA3d, GA7d,
and GA14d, respectively. After the removal of low quality and short reads, clean reads
mapped over 75% of the N. cadamba reference genome (Table S1). Principal component anal-
ysis (PCA) for all samples revealed that samples from each-group were clustered together,
indicating good correlation among samples (Figure 2A). Twelve commonly differentially
expressed genes (DEGs) of the second internode were identified in four treatment time
points by using a Venn diagram (Figure 2B). There were 1021, 518, 947, and 3146 DEGs in
response to GA treatment and CK at 1 d, 3 d, 7 d, and 14 d, respectively (Figure 2C).
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Figure 2. RNA-seq data analysis of the second internode from CK group and GA group in N. cadamba.
(A) Principal component analysis (PCA) plots of RNA-seq data from N. cadamba second internode
at 1 d, 3 d, 7 d and 14 d of CK group and GA group. (B) Venn diagram showing DEGs common or
unique of the four comparative combinations (CK1d vs. GA1d, CK3d vs. GA3d, CK7d vs. GA7d,
CK14d vs. GA14d). (C) DEGs analysis from RNA-seq data (both up- or down-regulated) for each
comparative combination.

2.3. Expression Profiles of DEGs

To further investigate the effects of exogenous GA on the molecular mechanism of N.
cadamba plant growth, the DEGs were analyzed with GO, KEGG and KOG databases.

DEGs were classified into three main GO categories, namely biological process (BP),
cellular component (CC), and molecular function (MF). Different pathways, including
defense response (GO:0006952), DNA replication (GO:0006260), homeostatic process (GO:
0042592) and cellular homeostasis (GO:0019725) are enriched in the BP category. Thy-
lakoid membrane (GO:0042651) and extracellular region (GO:0005576) pathways were
enriched in the CC category. Additionally, hydrolase activity, acting on tetrapyrrole binding
(GO:0046906); glycosyl bonds (GO:0016798); heme binding (GO:0020037); catalytic activity,
and acting on DNA (GO:0140097) pathways were enriched in the MF category (Figure S1).

Moreover, DEGs enriched in KEGG database pathways were found to be significantly
up- or down-regulated by GA treatment. The DEGs identified in CK1d vs. GA1d were
mainly enriched in the carbon metabolism pathway, and the DEGs from GA3d vs. CK3d,
GA7d vs. CK7d, and GA14d vs. CK14d were mainly enriched in the phytohormone
signaling and phenylpropanoid biosynthesis pathways. According to these results, GA
treatment initially had an impact on carbon metabolism before having a major impact on
phytohormone signaling and phenylpropanoid production (Figure S2).

Furthermore, DEG gene clustering and KOG analysis revealed eight different expres-
sion profiles. Among these, expression profiles 10, 19, 6, and 17 indicated an increas-
ing trend, with signal transduction pathways and translational modifications, protein
turnover, and chaperone proteins being particularly abundant. Expression profile 2 showed
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a declining trend, mainly enriched in RNA processing and modification and transcription,
indicating that the cell division process was affected (Figure S3).

2.4. GA Regulates Cell Elongation in the Second Internode of N. cadamba

We found that GA promoted the growth of N. cadamba and the length of the second
internode was increased (Figure 1B). To further analyze the growth of the second internode,
we first examined the altered xylem anatomy induced by GA treatment. Although cross
section analysis revealed no significant difference between the GA group and CK group at
7 d and 14 d in the xylem structures (Figure 3A), longitudinal section analysis revealed that
the GA group had longer cell type at 7 d and 14 d compared to the CK group (Figure S4).
The cell length from CK group was 75.23 ± 7.98 µm and 64.22 ± 2.96 µm at 7 d and
14 d, while the cell length from GA group was 89.57 ± 10.53 µm and 73.56 ± 3.71 µm at
7 d and 14 d, respectively (Figure 3B,C). These results indicated that GA promoted the
second internode growth by increasing the cell length.
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Figure 3. Effects of GA treatment on the second internode of N. cadamba. (A) Cross-section analysis
of the second internode cell from CK group and GA group at 7 d and 14 d, material stained with
toluidine blue. Arrows indicate phloem, cambium, and xylem. Scale bar, 100 µm. (B) Longitudinal
section of the second internode cell from CK group and GA group at 7 d and 14 d. Material stained
with toluidine blue. Scale bar, 100 µm. (C) The second internode cell length analysis from the CK
group and GA groups at 7 d and 14 d. n = 15 and data are mean ± SD of three biological replicates
as shown. Differences between mean values of CK and GA were compared using student’s t-test
(** and *** denote significant differences at p < 0.01 and 0.001). (D) DEGs related to cell elongation
were analyzed from RNA-seq data. Data are shown with log2 (Fold Change) analysis. Rows and
columns of heatmap represent genes and samples, respectively.
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To further investigate the molecular mechanism of cell elongation in the second intern-
ode in N. cadamba plants treated with GA, the expression level of 10 genes related to cell elon-
gation was analyzed. These genes were up-regulated and significantly changed and include
bHLH74 (evm.TU.Contig555.524 and evm.TU.Contig12.423), bHLH49 (evm.TU.Contig54.415,
evm.TU.Contig154.647, and evm.TU.Contig184.573), FAD_binding_4 (evm.TU.Contig166.1,
evm.TU.Contig969.62, and evm.TU.Contig161.87) and COBRA (evm.TU.Contig66.420 and
evm.TU.Contig52.64) (Figure 3D, Table S2). These results suggested that exogenous GA
application regulates the expression of genes involved in cell elongation in N. cadamba.

2.5. DEGs Related to GA Biosynthesis and Signaling Transduction

From RNA-seq data, 45 genes associated with GA biosynthesis and 24 genes associated
with signaling transduction were identified by analyzing DEGs expression patterns in
N. cadamba (Tables S3 and S4). These DEGs were mainly expressed in GA3d vs. CK3d,
GA7d vs. CK7d, and GA14d vs. CK14d groups.

By analyzing the expression level of DEGs from GA biosynthesis pathway with log2(Fold
Change). The expression level of enzyme ENT-COPALYL DIPHOSPHATE SYNTHASE
(CPS) (evm.TU.Contig69.93, novel.2133, evm.TU.Contig421.376, evm.TU.Contig421.375, and
evm.TU.Contig341.423) gene was found to be up-regulated in CK1d vs. GA1d or down-
regulated in CK14d vs. GA14d. The Enzyme ENT-KAURENE SYNTHASE (KS) enzyme re-
lated gene (evm.TU.Contig117.8, evm.TU.Contig69.98_evm.TU.Contig69.99, evm.TU.Contig333.12,
and evm.TU.Contig917.38) was up-regulated in CK14d vs. GA14d. Likewise ENT-KAURENE
OXIDASE (KO) (evm.TU.Contig555.344, and evm.TU.Contig14.60) showed differential ex-
pression. The enzyme ENT-KAURENOIC ACID OXIDASE (KAO) catalyzed GA precursor,
evm.TU.Contig184.687 and evm.TU.Contig969.25, were found to be up-regulated, while
evm.TU.Contig51.77, evm.TU.Contig797.34, and evm.TU.Contig51.78 were down-regulated in
GA14d vs. CK14d. (Figure. 4) In addition, the expression of GA20ox (evm.TU.Contig256.161,
evm.TU.Contig96.467, evm.TU.Contig471.71, and evm.TU.Contig96.466) was down-regulated,
and GA20ox (evm.TU.Contig477.208 and evm.TU.Contig60.25) was up-regulated in
GA14d vs. CK14d. Furthermore, the expression of GA3ox (evm.TU.Contig21.173 and
evm.TU.Contig46.95) was down-regulated in GA7d vs. CK7d and GA14d vs. CK14d groups
(Figure 4). Moreover, GA2ox acted as an inhibitor in the early steps of GA biosynthesis,
depleting the substrates for bioactive GA and inactivated bioactive GAs [35]. From our
RNA-seq data, GA2ox genes (evm.TU.Contig208.88, evm.TU.Contig35.20, evm.TU.Contig271.154,
evm.TU.Contig188.42, and evm.TU.Contig421.600) were up-regulated in GA14d vs. CK14d, and
(evm.TU.Contig341.656, evm.TU.Contig96.100, evm.TU.Contig394.79, and evm.TU.Contig271.152)
were down-regulated (Figure 4). These results suggested that exogenous GA application
significantly modified the expression of genes related to GA biosynthesis and inhibited
endogenous GA biosynthesis.

By analyzing DEGs related to the GA signaling pathway expression level with
log2(Fold Change), the GA receptor GID1 (evm.TU.Contig421.435, evm.TU.Contig341.502,
and evm.TU.Contig244.13) was up-regulated in GA14d vs. CK14d (Table S5). Notably, the GA
repressor DELLA transcripts showed variable expression patterns as evm.TU.Contig298.41,
evm.TU.Contig553.11, evm.TU.Contig180.295, evm.TU.Contig259.48, evm.TU.Contig447.367,
evm.TU.Contig55.380, evm.TU.Contig184.129, and evm.TU.Contig421.582 were down-regulated
in GA14d vs. CK14d, while evm.TU.Contig331.40 and evm.TU.Contig16.807 were up-
regulated in GA14d vs. CK14d (Figure 5, Table S6). Above all, exogenous GA modulated
the expression pattern of GA signaling regulators mainly by regulating GA receptor GID1
and repressor DELLA.
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Figure 4. Simplified schematic diagram and DEGs heatmap analysis of GA biosynthesis. The GA
biosynthesis components are marked with green background. Data is shown in log2 (Fold Change)
analysis. Heatmap of rows and columns represent genes and samples, respectively. CPS, ENT-
COPALYL DIPHOSPHATE SYNTHASE; KS, ENT-KAURENE SYNTHASE; KO, ENT-KAURENE
OXIDASE; KAO, ENT-KAURENOIC ACID OXIDASE; GA20ox, GA−20 oxidase; GA2ox, GA−2
oxidase; GA3ox, GA−3 oxidase.
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RNA-seq data. Data is shown with log2 (Fold Change) analysis. Heatmap of columns and rows
represent samples and genes, respectively.
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2.6. Exogenous GA Promotes Cell Division and Expansion

Cell division is closely related to plant growth regulation, and the cell cycle regulatory
mechanism can play a direct role in plant morphogenesis and growth [36]. EXPANSINS act
as cell wall expansion proteins and play role in various aspects of plant growth and devel-
opment, and their expression is regulated by hormones [37,38]. EXPANSINS genes mostly
regulate the elongation of the internode length in rice, with OsEXPA4 being preferentially
expressed in the elongation zone of rice internodes [38–40].

The cell division (Table S7) and expansion (Table S8) associated DEGs were analyzed
to further investigate the mechanism by which exogenous GA enhances cell elongation of
the second internode in N. cadamba. Interestingly, most of the DEGs associated with cell
division, CDC5, CDC6, CDC16, CDC20, CDC23, CDC45 and CDC48 were up-regulated in
the GA group, especially in GA7d vs. CK7d and GA14d vs. CK14d groups (Figure 6A).
Furthermore, genes translated to EXPANSINS proteins were significantly up-regulated in
GA1d vs. CK1d, GA7d vs. CK7d, and GA14d vs. CK14d groups (Figure 6B). These results
suggested that exogenous GA regulated the expression of genes related to cell division
and cell expansion to promote cell elongation of the second internode in GA1d vs. CK1d,
GA7d vs. CK7d and GA14d vs. CK14d groups in N. cadamba.
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Figure 6. The analysis of DEGs associated with cell division and expansion on exogenous GA
treatment from RNA-seq data. (A) The analysis of CDCs related to cell division on exogenous
GA treatment. The expression of the mostly CDCs was up-regulated at GA7d vs. CK7d and
GA14d vs. CK14d in N. cadamba. (B) The analysis of genes edited Expansins proteins involved in
cell expansion on exogenous GA treatment. The expression of the mostly EXPANSINS genes was
up-regulated at GA1d vs. CK1d, GA7d vs. CK7d, and GA14d vs. CK14d in N. cadamba. Data is
shown with log2 (Fold Change) analysis. Heatmap of columns and rows represent samples and
genes, respectively.

2.7. DEGs with Phytohormone-Related Genes

Phytohormones often cross-talk to regulate a certain biological process. To examine
the effects of GA treatment on N. cadamba and crosstalk with other phytohormones, we
identified genes associated with phytohormone signaling and found the expression of 349
DEGs involved in auxin, cytokinin, GA, ABA, ethylene, JA, SA, and BR synthesis and
signaling pathways were affected by exogenous GA treatment (Table S9). Among them,
auxin plays a crucial role in cell division and cell expansion [41,42], and we identified
104 auxin-related DEGs that were significantly up-regulated in response to the exogenous
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application of GA (Figure S5). Furthermore, DEGs involved in ethylene signaling, such
as ETR, EIN, and EBF, were up-regulated, and most ERF transcription factors were down-
regulated in GA14d vs. CK14d (Figure 7A). Nineteen DEGs related to JA signaling, JAR1
JAZ, and MYC2 were significantly down-regulated in GA14d vs. CK14d (Figure 7B).
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Figure 7. Effects of GA treatment on the other hormone signaling pathways. (A) RNA-seq data
showed the DEGs of ethylene signaling. (B) RNA-seq data showed the DEGs of JA signaling. Data
are shown with log2 (Fold Change) analysis. Heatmap of columns and rows represent samples and
genes, respectively.

The expression of closely associated genes varied during various cell differentiation phases,
but the expression of 11 BR-related DEGs, evm.TU.Contig477.674 and evm.TU.Contig66.1083,
were up-regulated, while evm.TU.Contig54.286, evm.TU.Contig12.510, evm.TU.Contig600.109,
evm.TU.Contig600.107, and evm.TU.Contig600.108 were down-regulated (Figure S6A). In
addition, BRI1 kinase inhibitor 1 (BKI1) (evm.TU.Contig555.392 and evm.TU.Contig14.98) was
up-regulated. Fourteen SA-related genes, such as TGAL7 (evm.TU.Contig44.177), TGA1
(evm.TU.Contig12.185), TGA2.2 (evm.TU.Contig577.15 and evm.TU.Contig39.234), and TGAL4
(evm.TU.Contig67.30), were down-regulated (Figure S6B). In conclusion, exogenous GA
may affect other hormone signaling pathways to regulate morphology and development
in N. cadamba.

2.8. Assay of DEGs Expression Level by qRT-PCR

Exogenous GA affects internode development to promote cell elongation, as re-
vealed by RNA-seq data analysis of certain important DEGs. To further analyze the
DEGs from the enriched pathway, we used qRT-PCT analysis of the transcript expres-
sion level by (Table S10). Regarding the DEGs from the GA biosynthesis pathway, the
KAO2 edited gene evm. TU.Contig184.687 was up-regulated in all GA groups compared
to CK groups; the GA20ox gene evm.TU.Contig96.466 was down-regulated in GA groups
at 3 d, 7 d, and 14 d compared to CK groups; and the expression of the CPS related
gene evm.TU.Contig421.375 had variable patterns in different GA groups compared to CK
groups (Figure 8A). In addition, DEGs from GA signaling pathway (evm.TU.Contig180.295,
evm.TU.Contig553.11, and evm.TU.Contig331.40) and phenylalanine biosynthesis path-
way (evm.TU.Contig210.8, evm.TU.Contig421.511, and evm.TU.Contig421.510) were up-
regulated in all GA groups compared to CK groups (Figure 8B,C). Likewise, the ex-
pression of DEGs involved in cell division and cell expansion (evm.TU.Contig383.196,
evm.TU.Contig66.420, and evm.TU.Contig154.647) were up-regulated from all GA groups
compared with CK groups (Figure 8D). Phytohormone-related DEGs, particularly those
from the auxin signaling pathway, such as GH3.17 (evm.TU.Contig101.17) and SAURs
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(evm.TU.Contig477.432 and evm.TU.Contig477.431), were found to be up-regulated in all
four GA groups when compared to CK groups (Figure 8E). These results revealed that
exogenous GA plays an important role in regulating the second internode growth and
development of N. cadamba, not only by modulating GA biosynthesis and signaling path-
ways but also through other processes such as phenylalanine biosynthesis, cell division,
cell expansion, and phytohormone-related aspects.
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Figure 8. The analysis of DEGs from different pathways by qRT-PCR. (A) qRT-PCR-based the relative
expression level analysis of genes involved in the GA biosynthesis pathway. (B) qRT-PCR-based the
relative expression level analysis of genes involved in the GA signaling pathway. (C) qRT-PCR-based
the relative expression level analysis of genes involved in the phenylalanine biosynthesis process.
(D) qRT-PCR-based the relative expression level analysis of genes involved in cell division and cell
expansion processes. (E) qRT-PCR-based the relative expression level analysis of genes involved in
the auxin signaling process. CK, normal condition groups without GA treatment. GA, exogenous GA
treatment groups applied 50 mg/L GA. 1d, GA1d vs. CK1d; 3d, GA3d vs. CK3d; 7d, GA7d vs. CK7d;
14d, GA14d vs. CK14d. Data are shown with the mean ± SD of three biological replicates. The
significant differences between CK and GA were compared using student’s t-test (***, p < 0.001).
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2.9. Changes in Related Transcription Factors and Candidate Genes

Transcription factors (TFs) perform critical roles in plant growth and development by
binding to the promoter domains of target genes and influencing transcription processes by
increasing or inhibiting expression levels [43]. To confirm the changes in TFs after GA treat-
ment, 1202 TFs were identified as differentially expressed in GA-treated plants (Table S11).
The TFs included 200 bHLHs, 131 ERFs, 83 bZIPs, 80 WRKYs, and 40 MYBs families.
Notably, the expression of some bHLH, WRKY and MYB family genes was up-regulated
(Figure 9). In addition, we selected 30 potential TFs with log2(|Fold Change|) ≥ 3 (Table 1),
along with TCP8 (evm.TU.Contig63.469), which has been described in the literature to par-
ticipate in DELLA interactions [44]. Moreover, no interaction between the other 29 genes
(bHLH, MYB, bZIP, AP2, and WRKY families) and GA has been identified. These might be
the potential genes related to GA biosynthesis or signaling pathways for future investiga-
tion in N. cadamba.
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Figure 9. Statistics analysis of differentially expressed transcription factors. From the RNA-seq data
analysis, 1202 differentially expressed TFs were significantly enriched, including PIF, BZR1, ARF,
TCP, MYB, WRKY, bZIP, ERF, bHLH and other types of TF families.

Table 1. Thirty transcription factors expression analysis with log2 |Fold Change| ≥3 based on
RNA-seq data.

Gene ID
GA1d

vs.
CK1d

GA3d
vs.

CK3d

GA7d
vs.

CK7d

GA14d
vs.

CK14d
Seq Description TF Family

evm.TU.Contig63.469 2.46 0.64 −1.78 −3.27 TCP family transcription factor TCP

evm.TU.Contig84.232 −2.16 −2.26 −3.17 −3.74 bHLH transcription
factor bHLH051 bHLH

evm.TU.Contig28.410 −2.57 3.21 2.49 3.69 bHLH transcription
factor bHLH025 bHLH

evm.TU.Contig96.268 −2.47 −2.40 −2.24 −3.87 bHLH transcription
factor bHLH051 bHLH

evm.TU.Contig28.419 −0.32 3.45 0.50 −0.39 bHLH transcription
factor bHLH025 bHLH

evm.TU.Contig143.21 −1.97 0.44 1.97 6.37 Transcription factor MYB44 MYB

evm.TU.Contig294.168 2.52 2.44 −1.83 4.61 Transcription factor MYB86 MYB

evm.TU.Contig171.196 2.48 1.85 −3.43 4.71 Transcription factor MYB44 MYB

evm.TU.Contig3.39 0.20 0.90 −4.36 −0.93 MYB-related protein MYB4 MYB
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Table 1. Cont.

Gene ID
GA1d

vs.
CK1d

GA3d
vs.

CK3d

GA7d
vs.

CK7d

GA14d
vs.

CK14d
Seq Description TF Family

evm.TU.Contig279.118 −1.63 1.18 −3.66 4.37 Transcription factor MYB44 MYB

evm.TU.Contig12.430 2.02 2.71 2.30 4.21 bZIP transcription factor 53 bZIP

evm.TU.Contig44.177 0.02 −2.77 −3.79 −2.52 bZIP transcription factor 70 bZIP

evm.TU.Contig906.67 0.45 1.74 1.17 3.32 bZIP transcription factor 39 bZIP

evm.TU.Contig66.454 −0.99 −1.96 −1.80 −6.13 bZIP transcription factor 43 bZIP

evm.TU.Contig81.569 −3.72 −0.45 −1.27 −4.38 Ethylene-responsive
transcription factor 1 B ERF

evm.TU.Contig66.1116 1.02 −0.50 −4.03 0.14 Ethylene-responsive
transcription factor 109 ERF

evm.TU.Contig298.98 0.66 0.72 4.19 4.08 Ethylene-responsive
transcription factor 1 B ERF

evm.TU.Contig81.1174 0.02 2.95 −2.84 −4.41 Ethylene-responsive
transcription factor 098 ERF

evm.TU.Contig383.343 −0.45 −0.70 −3.56 −3.63 Ethylene-responsive
transcription factor 1 A ERF

evm.TU.Contig298.96 0.72 0.25 0.10 3.52 Ethylene-responsive
transcription factor 1 B ERF

evm.TU.Contig600.195 −1.61 0.11 −2.50 −3.49 Ethylene-responsive
transcription factor 017 ERF

evm.TU.Contig45.300 −0.73 0.45 −0.71 −3.38 Ethylene-responsive
transcription factor003 ERF

evm.TU.Contig298.93 −3.10 0.29 −3.44 3.10 Ethylene-responsive
transcription factor 1 B ERF

evm.TU.Contig44.244 −0.11 −1.08 −1.80 −3.17 Ethylene-responsive
transcription factor 1 B ERF

evm.TU.Contig63.244 2.36 −3.51 −0.50 −3.01 Ethylene-responsive
transcription factor 1 B ERF

evm.TU.Contig298.94 1.16 −0.21 0.03 3.60 Ethylene-responsive
transcription factor 1 B ERF

evm.TU.Contig63.37 0.02 −0.40 1.03 −3.20 Ethylene-responsive
transcription factor 018 ERF

evm.TU.Contig294.72 2.46 4.76 −1.83 3.97 Ethylene-responsive
transcription factor 2 ERF

evm.TU.Contig435.24 −0.68 0.15 −4.24 −3.64 WRKY transcription factor 72 WRKY

evm.TU.Contig279.48 0.57 2.46 −3.75 3.77 WRKY transcription factor 69 WRKY

3. Discussion

In this study, we report that exogenous GA regulates the internodal growth in
N. cadamba. In the GA 7 d and GA 14 d groups, cell division and cell expansion are
increased, resulting in increased second internode length. RNA-seq data analysis reveals
that exogenous GA affects the endogenous GA biosynthesis and signaling pathway by reg-
ulating the expression of genes related to these pathways. Furthermore, we also identified
and analyzed the transcriptional expression levels of genes associated with cell division
and cell expansion. The signaling pathways of other phytohormones were also affected by
alteration in the expression of genes involved in their synthesis and signaling pathways.
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GA, as an important plant growth regulator, influences the growth pattern of plants at
different developmental stages. Previous studies have proved that exogenous GA treatment
regulates shoot organ development, promotes the activity of both subapical meristem and
apical meristems, and thereby increases the number of stem units and bud length during
vegetative bud growth in Picea glauca and Pinus sylvestris [45]. Moreover, exogenous GA3
stimulated the mitotic activity of the apical region and increased the rate and duration
of cataphyll, resulting in wider and higher apical meristem formation [46]. However,
exogenous GAs activated cell expansion and cell division in the cambial region, while
they were not involved in xylem differentiation [47]. The application of GAs to plants
under short daylight conditions leads to rapid stem elongation and flower formation [48].
Treatment of kale stem tips with GA1 and GA4 resulted in increased stem elongation [49].
However, the clear mechanism of the effect of exogenous GA application on the growth of
N. Cadamba is still unclear. In the present study, the effects of exogenous GA application on
the growth of N. Cadamba were analyzed in depth at the physiological and molecular levels.

We identified 69 DEGs in the GA biosynthesis and signal transduction pathway, im-
plying that exogenous GA treatment leads to changes in endogenous GA biosynthesis
and signal transduction. Increasing evidence suggests that GA biosynthesis is negatively
regulated by GA activity. This feedback regulation was first discovered in a class of GA-
insensitive semi-dominant dwarf mutants, for example, D8 in maize, GAI in Arabidopsis,
and Rht in wheat [50,51]. These mutants have a phenotype comparable to GA-deficient
dwarfism but have abnormally high amounts of bioactive GA, implying that decreased GA
response leads to increased GA production and that GA activity lowers GA biosynthesis.
The concentration of bioactive GA in GA-responsive tissues is tightly regulated through
biosynthesis, transport, and inactivation. The mechanisms of regulation of GA biosynthe-
sis and inactivation gene expression in higher plants in response to developmental and
environmental signals is an active area of research. This process is largely outlined as
the first step catalyzed by CPS and is thought to be the gateway to the GA biosynthetic
pathway, playing a role in developmental regulation [52], but the synthesis of bioactive GA
is limited by enzymes later in the pathway, particularly GA20ox [53]. In rice, mutations
in the small granules of leucine zipper (HD-ZIP II) transcription factor and dwarf stalks
cause dwarfism, which is associated with increased expression of several GA2ox genes and
decreased expression of OsGA20ox1 and OsGA20ox2, although it is unclear whether this
regulation is direct [54]. Peter Hedden provided a mechanism for GA internal environment
stabilization through transcriptional regulation of GA metabolic genes by the GA signaling
pathway: some GA3ox and GA20ox gene family members are down-regulated by GA sig-
naling, while GA2ox genes are up-regulated [55,56]. Meanwhile, GA signaling promoted
the degradation of the DELLA transcriptional regulator, which together with the transcrip-
tion factor GAF1 up-regulated the expression of genes encoding GA3ox and GA20ox as
well as the GA receptor GID1. We found that most GA20ox and GA3ox expressions were
significantly down-regulated on days 7 and 14 of GA treatment during GA biosynthesis
(Figure 4). This suggests that exogenous application of GA inhibited the expression of
GA20ox and GA3ox, thereby suppressing the synthesis of endogenous active GA. Addi-
tionally, in the GA signaling pathway, we found that GID1-related gene expression was
down-regulated, while DELLA-related gene expression was up-regulated, indicating that
exogenous application of GA had a negative effect on GA signaling (Figure 5).

DELLA binds to light signaling regulator PIFs and BR signaling regulator BZR1 pro-
moters as a repressor in the GAs signaling pathway, and the GA, BR, and light signaling
integrated module, DELLA-BZR1-PIF4, inhibited target gene expression and regulated
hypocotyl elongation. In the presence of GA, DELLA proteins were degraded, and PIFs
and BZR1 were released from the DELLA negative interaction [57–62]. GAs and auxin
work together to regulate vascular tissue formation during secondary cell wall expansion
in plants [63]. Application of GAs promoted auxin polar transport to accumulate auxin
in poplar stems [64]. The module of DELLA protein REPRESSOR of ga1–3 Like 1 (RGL1),
AUXIN RESPONSE FACTOR 7 (ARF7), INDOLE−3-ACETIC ACID 9 (IAA9), and RGL1-
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ARF7-IAA9 are involved in auxin and GA signaling and mediate cambial activity and
development in poplar [65]. DELLA proteins directly interact with ethylene transcrip-
tion factor ETHYLENE INSENSITIVE (EIN3) to inhibit the expression of EIN3 targeted
gene HOOKLESS 1 (HLS1) and regulate apical hook development in Arabidopsis [66,67].
Furthermore, as an activator in the GAs signaling pathway, DELLA interacts with ABA sig-
naling regulators ABI3 and ABI5 to activate expression of the SOMNUS gene and promote
germination under stress conditions [12,68].

Our data showed that after the GA treatment (in 7d and 14d group), there was
a significant increase in height and internodes elongation of N. Cadamba (Figure 1A–C). The
shoot dry weight and shoot fresh weight were also significantly increased compared to
CK (Figure 1D), which indicated that exogenous application of GA resulted in increased
biomass of N. Cadamba. We also found that dry sections of N. Cadamba plants treated with
GA for 7 d and 14 d showed no significant difference in lignification of the layer forming
cells by histochemical staining, while cell length was increased significantly relative to CK
(Figure 3B). GA stimulates cell elongation throughout the life cycle; this role is especially
important because plant morphology is totally determined by cell division and elongation
in the absence of cell mobility [69]. The promotion of stem growth by GA is based on
the increase in cell length and the notion that GA is a regulator of cell elongation has
been confirmed in most plants [70]. bHLH74 is a target gene of the miR396 family and
a member of the basic Helix-Loop-Helix Transcription Factor family, which affects cell
elongation and growth by directly regulating downstream genes, mainly through related
hormone signaling pathways [71,72]. Other members of the bHLH family are also involved
in the regulation of cell elongation growth, such as bHLH49. Our transcriptomic data
showed that the expression of bHLH74 and bHLH49-related genes were significantly up-
regulated in N. Cadamba after short-term GA treatment (7 d, 14 d) (Figure 3D). Notably, this
is consistent with the results of histochemical staining of dry sections showing that GA
treatment resulted in the elongation of cells in the second internode of N. Cadamba plants.

GA acts as a regulator of the cell division and expansion processes to enhance fruit size
by determining the fruit cell number and size [73]. Exogenous GA is also involved in fruit
enlargement through its ability to enhance cell expansion, which is similar to endogenous
GA [74]. The fruit weight of Pyrus pyrifolia increased following GA treatment due to
increases in cell size without cell number changes [75]. To accommodate cell expansion
and to induce plant growth, expansins promote cells to overcome the constraints imposed
by the rigid cell walls [76]. Here, in our study, expansins-related genes were significantly
up-regulated and revealed the application of exogenous GA accelerated cell expansion
(Figure 6B). In addition, in cucumber and tomato, GA production in the cotyledon plays
a vital role in cell division during tissue reunion in the cortex [39]. In parthenocarpic citrus,
the GA synthesis in the ovary walls at anthesis triggers cell division [77]. Our data show
that genes of cell division were up-regulated also under the GA treatment (Figure 6A).

GA interacts with several other phytohormones and shows downstream or overlap-
ping effects with auxin in many developmental responses [78,79]. The induction of cell
elongation is one of the ultimate effects of GA, and to achieve these results, the cooperation
of other hormones such as auxin may be a potential requirement. A recent study showed
that DELLA and auxin proteins promote the accumulation of bioactive GA and indepen-
dently regulate the GA synthesis pathway [80]. In addition, there are positive or negative
interactions between GA and ethylene under different conditions [78]. Research analyses
have shown that the application of exogenous ethylene to plants suppresses the expression
of genes involved in GA metabolism, while GA treatment up-regulates some ethylene
synthesis genes [78]. Consistent with this, we found that auxin-related genes were mostly
up-regulated and interacted with GA to promote cell elongation, while ethylene-related
genes were mostly up-regulated.

Based on our results, we propose a possible model for the physiological and molecular
mechanisms of N. cadamba response to GA (Figure 10) to provide a foundation to further
study the physiological consequences of N. cadamba growth of GA treatment.
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4. Materials and Methods
4.1. Plant Material and Growth Conditions

The Neolamarckia cadamba (N. cadamba) plant material was obtained from South China
Agricultural University (Guangzhou, China). Plant bud tissues were cultured to seedings in
rooting medium (MS basal medium (M519, Phytotech, KS, USA) 3% sucrose, 0.01% inositol,
0.8% agar and 0.1 mg/L NAA) for 15 d in a tissue culture room with the light of 5000 luxe,
and the seedings grown outdoors for 7 d to acclimatize a plant to the growth chamber.
Then, the plants were removed from the medium and cleaned in the liquid medium, fixed
with a sponge and foam board in a hydroponic box, and cultured with pure water in
a growth chamber with 25 ◦C, 16 h-light (30,000 lux light intensity), 8 h-dark and 70% at-
mospheric humidity condition in the greenhouse for 7 days [33]. Plants were cultured with
Hoagland liquid nutrient solution. Additionally, the compositions of the liquid nutrient
solution (4 mM Ca(NO3)2·4H2O, 6 mM KNO3, 2 mM MgSO4·7H2O, 95 µM MnSO4·4H2O,
1 mM NH4H2PO4, 80 µM NaFe-EDTA, 46.3 µM H3BO3, 0.8 µM ZnSO4·7H2O, 0.02 µM
(NH4)6Mo7O24·4H2O and 0.3 µM CuSO4) were mixed and pH adjusted to 5.8.

4.2. GA Treatment

According to the findings of exogenous gibberellin on the growth and living process of
strawberry, when the concentration of GA reaches 50 mg/L, the plants produce runners [81].
We chose to use a GA concentration of 50 mg/L for our experiments. Unified growth plants
were selected and cultured in hydroponic boxes with sponges fixed. Plants were divided
into two groups, the first group with 15 plants was cultured in liquid nutrient solution
with 50 mg/L GA for treatment and named as the GA group, and another group with
15 plants was grown in the basal liquid nutrient solution used as a control and named
as the CK group. Moreover, the liquid nutrient solution was continuously aired using
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an oxygen pump to ensure the plants obtained enough oxygen to grow. Additionally, the
liquid nutrient solution was changed every three days.

4.3. Plant Physiological Parameters Measurement

Plant samples from the CK group and GA group were collected after 7 d and 14 d
cultured. Plant height and the second internode (counted from the top stem) length were
observed and measured with a ruler. The shoot part from different samples was measured
as fresh weight and dried under 65 ◦C condition for 3 d to measure as dry weight. The
fresh/dry weight increasing rate is calculated with the formula ((7 d fresh/dry weight–
0 d fresh/dry weight)/0 d fresh/dry weight, or (14 d fresh/dry weight–7 d fresh/dry
weight)/7 d fresh/dry weight)). Each group samples from different cultured stages were
conducted with three biological repeats at least.

4.4. Microscope Observation

The second internodes from the GA group and CK group after 7 d and 14 d cultured
plants were fixed with 3% agarose in Petri dishes (704001, NEST Biotechnology, Wuxi,
China) and cut to 40 µm thickness samples using a vibrating microtome (Leica VT1000S,
Wetzlar, Germany). Samples were placed on slides, stained with 0.02% toluidine blue
solution for 15 s and washed with ddH2O, and then observed with a scanning imaging
microscopy system (Wanbang Junyi M8, Beijing, China). The cell number and cell area
were analyzed with Image J.

4.5. RNA-Seq Analysis

Plant samples from the second internode of 1, 3, 7, and 14 d cultured GA group and
CK group seedings were collected in liquid nitrogen with three biological repeats. Total
RNA samples were extracted using RNAprep Pure Assay Kit (TIANGEN, Beijing, China).
Novogene Company (Beijing, China) performed the RNA sample quality and transcrip-
tome analysis. RNA-seq and differential expression genes (DEGs) analysis, referencing the
published DNA sequence of N. cadamba [52], were performed using the Edger package in
R software version.3.18 (Novogene Company, Beijing, China). Significant values were ad-
justed using the Benjamini and Hochberg methods with a differential expression threshold
for values of p < 0.05. Heat map analysis of DEGs from different pathways was performed
with TBtools [82]. Finally, the RNA-seq data were submitted to http://bigd.big.ac.cn/gsa/
with submission number CRA007183 accessed on 31 August 2022.

4.6. Differential Expression Genes Pathway Function Analysis

Gene function was annotated based on EuKaryotic Orthologous Groups, Swiss-Prot,
Genomes and Kyoto Encyclopedia of Genes databases. KOG analysis was applied to the
Self-organizing maps (SOM) cluster. The cluster was obtained by the k-means method.
Cluster Profiler R package of R software was used for enrichment analysis of DEGs by
setting a significance value of p < 0.05. Furthermore, a similar package was used for the
estimation of GO enrichment and KEGG pathways analysis.

4.7. Quantitative Real Time PCR Analysis

Total RNAs of the different cultured stages from the GA group and CK group were
used to perform quantitative real time PCR (qRT-PCR). Total RNAs were reverse-transcribed
and qRT-PCR analyses were performed using RT Kit with gDNA remover (AT311, Trans-
Gen Biotech, Beijing, China). Additionally, the expression level of the target genes were
detected with SYBR type qRT-PCR mix (Q511, Vazyme, Nanjing, China). qRT-PCR reaction
performed with LightCycler480 (Roche Molecular Biochemicals, Mannheim, Germany).
Primers (Table S2) were designed using the SAMDC gene from N.cadamba and NCBI
(https://www.ncbi.nlm.nih.gov/, accessed on 31 August 2022) as the reference control
gene and all target genes qRT-PCR analyses were conducted with three technical and
biological repeats.

http://bigd.big.ac.cn/gsa/
https://www.ncbi.nlm.nih.gov/
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