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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNA molecules of about 22 nucleotides which function to
silence the expression of their target genes. Numerous studies have shown that miRNAs are not only key regulators
in important cellular processes but are also drivers in the development of many diseases, especially cancer.
Estrogen receptor positive luminal B is the second most common but the least studied subtype of breast cancer.
Only a few studies have examined the expression profiles of miRNAs in luminal B breast cancer, and their
regulatory roles in cancer progression have yet to be investigated.

Methods: In this study, using polyoma middle T antigen (PyMT) mice, a widely used luminal B breast cancer model,
we profiled microRNA (miRNA) expression at four time points that represent different key developmental stages of
cancer progression. We considered the expression of both miRNAs and messenger RNAs (mRNAs) at these time
points to improve the identification of regulatory targets of miRNAs. By combining gene functional and pathway
annotation with miRNA-mRNA interactions, we created a PyMT-specific tripartite miRNA-mRNA-pathway network
and identified novel functional regulatory programs (FRPs).

Results: We identified 151 differentially expressed miRNAs with a strict dual nature of either upregulation or
downregulation during the whole course of disease progression. Among 82 newly discovered breast-cancer-related
miRNAs, 35 can potentially regulate 271 protein-coding genes based on their sequence complementarity and
expression profiles. We also identified miRNA-mRNA regulatory modules driving specific cancer-related biological
processes.

Conclusions: In this study we profiled the expression of miRNAs during breast cancer progression in the PyMT
mouse model. By integrating miRNA and mRNA expression profiles, we identified differentially expressed miRNAs
and their target genes involved in several hallmarks of cancer. We applied a novel clustering method to an
annotated miRNA-mRNA regulatory network and identified network modules involved in specific cancer-related
biological processes.
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Background

Breast cancer is one of the most common types of can-
cer among American women - about 12 % of women in
the USA will develop invasive breast cancer during their
lifetime - and it is a leading cause of cancer death. It is a
heterogeneous disease, with substantial genotypic and
phenotypic diversity [1]. Depending on the expression
status of estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2
(HER2), it can be classified into four molecular subtypes:
luminal A, luminal B, HER2-positive, and basal-like
(or triple-negative) breast cancer. In a widely used mouse
model of breast cancer, mammary gland-specific expres-
sion of the polyoma middle T (PyMT) oncoprotein under
the control of the MMTV promoter/enhancer in trans-
genic mice (MMTV-PyMT) results in widespread trans-
formation of the mammary epithelium and subsequent
development of multifocal mammary adenocarcinomas
and metastatic lesions in the lymph nodes and in the lungs
[2]. Breast cancer in PyMT mice is particularly noted by
its short latency, high penetrance, and a high incidence of
lung metastasis [3]. Tumor formation and progression in
these mice can be divided into four stages: hyperplasia,
adenoma/mammary intra-epithelial neoplasia, early car-
cinoma, and late carcinoma [4] (we refer to all these four
stages as tumor in this study). Whole-genome array profil-
ing indicates that PyMT tumors most closely resemble the
luminal B subtype of human breast cancer [5], although
end-stage PyMT tumors are ER-negative and PR-negative
[4]. Most genetically engineered mouse models that target
oncogenes such as PyMT do not fully recapitulate several
aspects of the development of human breast cancer.
Not only are transgenes expressed at a level different
from that of the same oncogenes in human breast
cancer, but also throughout the ductal tree [6] they
do not target the cell types that are the cells of origin
in human breast cancer. Despite these limitations, the use
of the PyMT mouse model and other similarly engineered
models has been instrumental in elucidating the genetics
and biology of breast cancer.

In addition to numerous protein-coding genes, many
microRNAs (miRNAs) also play important roles in breast
cancer. Since their discovery over two decades ago, miR-
NAs have been recognized as important regulators of
many key cellular processes including development [7],
cell cycle progression [8], differentiation [9], and apoptosis
[10]. Their dysregulation occurs in various types of cancer
[11] and is associated with different stages and aspects
such as tumor initiation, drug resistance, and metastatic
spread of the disease [12]. While some miRNAs have simi-
lar expression patterns across all cancer types, others are
cell-type-specific and thus could potentially serve as can-
cer biomarkers [13]. A recent study using microarray and
machine learning data analysis identified a small number
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of miRNAs differentially expressed in luminal B breast
cancer [14]. Another study of miRNA expression in differ-
ent breast cancer subtypes also identified positive and
negative miRNA signatures for ER-positive, PR-positive,
and Her2-positive luminal B tumors [15]. From carcino-
genesis to metastasis, like any other types of cancer, the
development of breast cancer is a multistage process.
MiRNAs have been associated with different developmen-
tal stages including epithelial to mesenchymal transition
(EMT), migration, invasion, and angiogenesis of breast
cancer [16].

Affecting approximately 20 % of all patients with breast
cancer, luminal B is the second most common but the
least studied subtype of breast cancer. Only a few studies
have examined the expression profiles of miRNAs in
luminal B breast cancer [17-21], and the regulatory roles
of miRNAs in the progression of the disease have yet to
be investigated. In this study, using a luminal B breast
cancer mouse model we profiled miRNA expression
at four time points that represent different key stages
of cancer progression and identified miRNAs differen-
tially expressed between tumor and normal mammary
gland cells. We considered the expression of both miR-
NAs and messenger RNAs (mRNAs) at multiple time
points to improve the identification of potential targets of
miRNAs. By combining gene functional and pathway an-
notation with miRNA-mRNA interactions, we created a
PyMT-specific tripartite miRNA-mRNA-pathway network
and identified novel functional regulatory programs
(FRPs), that is miRNA-mRNA regulatory modules rele-
vant to the development of luminal B breast cancer. The
identification of novel cancer-related miRNAs and the
FRPs shed new light on the disease mechanisms behind
breast cancers, and will help the development of new
biomarkers for early cancer detection and drug targets for
plausible treatments.

Methods

PyMT samples

F1 female mice (PyMT mice hereafter) heterozygous for
the PyMT transgene were obtained by random breeding
of male PyMT mice (FVB/N-Tg(MMTV-PyVT) 634Mul/
J mice, Stock Number: 002374, the Jackson Laboratory)
with homozygous FVB female mice. After the mice de-
veloped breast cancer, they were used as tumor cases,
while homozygous FVB female mice were used as controls.
Four time points representing progression to malignancy
in the PyMT mouse breast cancer model were sampled:
hyperplasia, adenoma/mammary intraepithelial neoplasia
(MIN), early carcinoma, and late carcinoma with lung me-
tastasis at weeks 6, 8, 10, and 12 respectively [22]. At each
time point, three PyMT mice and three age-matched con-
trols were sacrificed; mammary tumors and normal mam-
mary glands were collected, snap-frozen and kept at -80 °
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C. Thus, in this study we analyzed 24 samples in total, with
three tumor samples as cases and three normal samples as
controls at each of four time points. All tumor samples
were from primary tumors of mammary glands.

All tumor samples from PyMT mice at 6, 8, 10, and
12 weeks of age were examined and confirmed by a
pathologist. Typical morphologic features of those different
tumor stages were observed (Additional file 1: Figure S1).
As expected, tissues from the hyperplasia and adenoma/
MIN stages contain normal mammary gland cells. In
carcinoma samples, fibroblast cells can be a major
concern. We estimated the sample purity by the percent-
age of infiltrating cells. Based on H&E staining, the path-
ology report described less than 5 % stromal and muscle
cells and very few inflammatory cells. In general, we had
greater than 90 % tumor cells in our carcinoma samples,
which surpassed The Cancer Genome Atlas (TCGA)
standard (over 60 % tumor cells for human tumor samples).
Unlike human samples, tumor samples from the PyMT
mice used in this study were filled with tumor epithelial
cells and there were very few infiltrating cells due to the
acute aggressiveness of tumors in PyMT mice.

Small RNA extraction and sequencing

Total RNAs and non-coding RNAs (ncRNAs) were
extracted from frozen samples using the miRNeasy mini
kit (Qiagen, Valencia, CA, USA) according to the manu-
facturer's protocol. The Agilent 2100 Bioanalyzer was used
to check RNA quality. Total RNA was used to create
small RNA libraries using the Illumina TruSeq Small
RNA Library Preparation Kit (version 1). Libraries
were prepared according to the manufacturer's in-
structions. Purified libraries were used to sequence on
Hiseq2500 single-end 1x50 b read-length according
to standard protocols.

Small RNA-sequencing (RNA-seq) and RNA-seq data
analysis

Using a custom-built analysis pipeline, we processed
small RNA-seq data in three steps - adaptor/tag removal,
genomic alignment, and comparison with the miRBase
[23] - to identify transcribed miRNAs and measure their
expression levels. In the first step of data preprocessing,
extraneous sequences - the barcode tag (used for sample
multiplexing) and the Illumina adaptor - were removed
from the 5' and 3' ends, respectively, of each read. After
this trimming step, reads 17 to 27 bases long (the size
range of mature miRNAs) were aligned to the mouse ref-
erence genome assembly (mm10) and RefSeq (release 61)
using Bowtie. The locations of read-to-genome alignments
were compared with those of known miRNA genes
from miRBase. The number of reads that overlap
more than 50 % of an miRBase-defined miRNA was
counted and used as the expression level of this
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miRNA. We used edgeR to identify miRNAs expressed
differentially between tumor and normal samples [24]
(Additional file 2: Table S1).

For RNA-seq data, a separate analysis pipeline was de-
signed and implemented. Sequence reads in FASTQ files
were first trimmed for adapter sequences using quart
[25]. They were aligned to the mouse reference genome
assembly (mm10) using GSNAP [26, 27], which detects
novel splicing events and known splice junctions based
on the ENSEMBL mouse gene annotations [26], and
then assigned to genes using HTSeq-count, a compo-
nent of the HTSeq Python library [28]. Assignments
were made using the union strategy, and alignments
with a quality score lower than 10 were excluded. Genes
differentially expressed between tumor and normal sam-
ples were identified using DESeq [29] (Additional file 2:
Table S2). Finally, differentially expressed miRNAs were
compared with the ones included in the miRCancer
database [30] to identify similar expression in breast
cancer and other cancer types.

Computational miRNA targets prediction

We used the miRNA-mRNA interactions in the M3RNA
Database derived from integration of predicted and
experimentally validated interactions from different
databases [31]. From this database we gathered 1,763,884
potential interactions between 834 miRNAs and 19,876
mRNAs for the whole mouse genome. We tested the cor-
relation between miRNA and mRNA expression to further
reduce the false positives in their predicted interactions.
We first used a quantile-based method to normalize the
counts of small RNA-seq reads from the 24 tumor and
control samples and then computed the Spearman correl-
ation for each pair of miRNA and mRNA predicted to
interact by base pairing. All interactions with non-negative
correlation were filtered out.

To construct miRNA-mRNA bipartite networks we con-
sidered four time points in two different ways, either inde-
pendently or together through transitions (Fig. 1a and b).
In the first approach, at each time point for each miRNA,
only those interactions with potential targets having ec-
topic expression levels of opposite sign remained. In the
second approach, the transition for each miRNA is discre-
tized into three classes. With this aim, transitions (7) in
miRNA pseudo fold-change (¢FCs) expression (tumor
samples over normal samples) between two consecutive
time points (¢ + 1 and t) were calculated:

T; = gFC V) _pFC;®

when ¢FC of miRNA i at a given time point ¢ was
calculated by
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Fig. 1 MicroRNA (miRNA) sequencing data analysis. a Identification of stage-specific differentially expressed miRNA-messenger RNA (mRNA) regulatory
network. At each time point, for a differentially expressed miRNA and one of its mRNA targets predicted based on their sequence complementarity
from the m3RNA database, we calculated the correlation between their expression levels (reads per kilobase million (RPKM)) from all 24 samples. Any
miRNA-mRNA interaction with positive correlation was filtered out. Thus, only miRNA-mRNA pairs with opposite differential expression were
included in the regulatory network for each cancer developmental stage. b Identification of overall transition pattern-specific miRNA-mRNA
regulatory network. We classified miRNAs into 27 groups based on the overall expression patterns of the three consecutive stage transitions. In each
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group, only mRNA-mIiRNA pairs with opposite transition patterns were considered. ¢ Identification of miRNA regulatory modules. We first
annotated genes in a MIRNA-mRNA regulatory network with functional and structural terms from Gene Ontology Biological Process, Kyoto
Encyclopedia of genes and genomes (KEGG) pathways, Panther pathways, and Interpro domains. Using a maximal biclique analysis
followed by bi-clustering, we then identified sets of coherently related genes and annotation terms. The miRNA regulatory modules were

formed by adding miRNAs to corresponding sets that they potentially regulate

®
OF cn _ 085C; if logfC" = 0

i = ® :
—p ¥ if logFC® < 0

Based on their mean y and standard deviation o, they
are discretized into three classes: increase, C;="+"if T; >
#+04x0; no change, C;='0" if y — 04 xo<T;<u+
0.4 x 0; and decrease, C;="-"if T;<u — 0.4 x 0. Because
there are three classes for each of the three transitions
between four consecutive time points, there are 3% =27
different transition patterns: '+++', '++0', '++ -, and so
on. In our downstream analysis, we focused on miRNAs
with a non-increase (involving only '0' or '+ ' transitions)
or non-decrease (involving only '0' or '-' transitions)
trend in their expression. miRNAs and their potential
targets with corresponding opposite transition patterns
(Fig. 2) were used to build the interaction networks,

which were later integrated with functional annotations
and pathways for identification of regulatory modules.
After this filtering process, we compared the potential
interacting miRNAs-mRNAs pairs with those reported
in the CancerMiner study by considering the recurrent
score computed for all types of cancer, the specific score
computed for breast cancers and the minimum score
computed for any of the 11 human cancer types [32].

Functional and pathway enrichment analysis

Pairs of miRNAs and their targeted genes were analyzed
for enrichment of biological functions. Using GeneCodis
[33, 34], we examined Gene Ontology Biological Process
terms [35], Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [36], and Panther Pathways [37] anno-
tations. We used the singular enrichment analysis func-
tionality of the tool and the hypergeometric statistical
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Fig. 2 Transition patterns of microRNA (miRNA) expression during cancer progression. Each gray line, re-based to 0 at week 6, shows the pseudo
fold-changes (@FCs) of a particular miRNA at the four assayed time points. Expression change during each stage transition was discretized into
increase (+), no change (0), or decrease (). All mMiRNAs with the same transition pattern, e.g., p—00, are plotted together in one plot, in which the
transition pattern and the number of miRNAs are given at the top. The red line in each plot indicates the median @FCs. Only positive and negative
patterns without opposite changes are shown here. See Additional file 1: Figure S2 for the whole set of 27 transition patterns
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test to calculate the P values with multi-test correction
by the false discovery rate (FDR) method. As the refer-
ence background for the statistical test, we used the
whole mouse gene set from Ensembl (Release 65).
Enriched terms were manually annotated based on the 10
different hallmarks of cancer proposed by Hanahan and
Weinberg [38]. We considered an additional category
‘neural genetics', as some of the terms seemed to fit in this
description, in agreement with studies relating both cancer
genetics and neuronal disorders such as Alzheimer's disease

[39]. See Additional file 2: Table S3 for correspondence be-
tween enriched terms and categories.

Identification of functional-regulatory programs

Due to the high density of the networks, a simple ap-
proach such as clustering could not provide good results.
Instead, given the functional relatedness of the miRNAs
and mRNAs from a single module, for each network, we
annotated the mRNAs from each module with Gene
Ontology Biological Process terms, Interpro motifs [40],
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KEGG and Panther Pathways and thus extended bipartite
networks into tripartite networks (Fig. 1c). Subnetworks
including only mRNAs and their biological terms were
then searched for statistically significant maximal bicliques
(MBs) or, equivalently, the closed item sets [41]. As Gene-
Codis enrichment analysis is based on the identification of
closed item sets from annotated genes, we used it to
identify the MBs from the annotated mRNAs. Each MB is
a subset of mRNAs and biological terms. In our study, we
only considered MBs that are statistically significant
compared with the whole mouse gene set and used a
biclustering-based method [42] to remove the redundancy
of overlapping genes and biological terms in the initial
MBs. We considered in each case MBs including the
minimum number of genes that maximize the general
silhouette value, guaranteeing less overlap with other MBs
and the best inner coherence. For each week, respectively
we used 8, 7, 7, and 6 as minimum support. We also con-
sidered the miRNAs with positive and negative trending
patterns along the 4 weeks, in both cases we used a mini-
mum support of 4. To reduce false positives, only MBs
with positive silhouette values were further considered.
Finally, we constructed the final FRPs by adding to each
MB the miRNAs connected with the mRNAs included
in that MB.

Results and discussion

Global miRNA expression profiles and potential targets in
PyMT mice

By comparing miRNA expression between tumor and
normal samples at each of the four time points in our
study, we identified 151 differentially expressed miRNAs
at one or more time points during breast cancer pro-
gression in PyMT mice (Fig. 3a). They can be separated
into two groups: 75 miRNAs over-expressed in tumor
and the remaining 76 under-expressed. The 10 most up-
regulated miRNAs at any of the four time points are
miR-9, miR-466a/e/f/p, miR-3105, miR-5128, miR-6539,
miR-6909, and miR-7648. The 10 most inhibited miR-
NAs are miR-1a, miR-133a/b, miR-196a, miR-206, miR-
208b, miR-211, miR-592, miR-653, and miR-1963. There
were 80 differentially expressed miRNAs at two or more
time points and, significantly, all of them had consistent
directions of differential expression at different time
points. This dichotomous differential expression pattern
suggests that these miRNAs function as promoters or
suppressors in PyMT breast cancer development. Our
survey of relevant literature on human and mouse breast
cancer revealed that 70 of the 151 differentially expressed
miRNAs were shown to be differentially expressed in
previous studies (Additional file 1: Supplementary text).
Among them, 30 appeared to act as tumor promoters
and the other 40 as suppressors. The number of over-
expressed miRNAs increases along the four time points.
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Among over-expressed miRNAs, e.g., miR-31, miR-96,
and miR-92b, which are known to be involved in cancer
progression, eight miRNAs (miR-466b/c/p, miR-674, miR-
672, miR-1983, miR-3105, and miR-6539) have not been
shown to play a role in breast cancer progression. We
compared the expression profiles of 94 miRNAs differen-
tially expressed in PyMT mice with their corresponding
human orthologs in miRCancer [30] and found a large de-
gree of concordance in their expression patterns. When
only breast cancer was considered, 77.14 % of the inter-
secting miRNAs shared the same expression direction
(upregulation or downregulation) in cancer in humans
and mice. When all cancer types were considered, the
concordance rate increased to 89.06 %.

By considering both expression profiles and computa-
tional predictions based on sequence complementarity,
we identified a total of 10,334 interactions between 178
miRNAs and 1553 mRNAs. In the dense miRNA-mRNA
bipartite networks formed by these interactions consid-
ering each week independently, miRNAs regulate on
average 46 genes and genes are regulated on average by
6 miRNAs. We used a two-step approach - integrated
predictions followed by expression-based filtering - to
increase the robustness of the bioinformatic prediction
of miRNA targets. We compared the resulting miRNAs-
mRNA interactions with the ones validated and compiled
in CancerMiner [32]. Approximately 60 % of miRNA-
mRNA pairs identified in PyMT mice are consistent with
those appearing either recurrently in 11 different human
cancers or only in human breast cancers. This precision
increases to approximately 100 % when only miRNA-
mRNA interactions that appear in at least one of the 11
human cancers included in CancerMiner are considered

(Fig. 3b).

Novel miRNAs involved in PyMT breast cancer

Among 151 differentially expressed miRNAs that we iden-
tified in breast cancer in PyMT mice, 82 were not previ-
ously known to play a role in breast cancer in either
humans or mice. Of these novel breast cancer miRNAs, 35
were found to potentially regulate 271 genes based on their
sequence complementarity, expression correlation, and ex-
pression change direction (Additional file 2: Table S4). Fur-
ther examination showed that 26 of them could regulate
69 genes that are known to be involved in breast cancer-
related pathways and biological processes. We used Gene
Ontology (GO) Biological Process and KEGG pathways to
annotate these miRNAs based on their potential gene tar-
gets. Among them, 22 potentially regulate targets involved
in cell and focal adhesion functions [GO:0030155, GO:
0007156, KEGG:04510, and KEGG:04514], 10 linked
with cell migration [GO:0016477 and GO:0030335], and 7
related to angiogenesis [GO:0001525] or tight junction
[KEGG:04530]. We also carried out Interpro domains
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analysis and found 14 and 10 miRNAs that regulate
gene targets with Fibronectin, type III domain (IPR003961)
and epidermal growth factor-like domains (IPR006210,
IPR000742, and IPR001881), respectively. This indicates a
direct relationship of the regulatory activity of these novel
miRNAs in cancer processes.

Functional assessment of differential miRNAs regulation

As the tumor develops in PyMT mice, more regulated
genes become involved in cancer-related biological
processes and pathways, including cell adhesion, cell
differentiation, multicellular organismal development,
tight junction, and cell adhesion molecules (Fig. 4 and
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included in the supplementary material (Additional file 2)
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Additional file 2: Table S5), which all include both upregu-
lated and downregulated genes. Such increase confirms
the active growth related to metastasis, especially in weeks
10 and 12, affecting different aspects of the cancer includ-
ing cancer metabolism such as lipid and glucose metabolic
processes. MiRNAs related to angiogenesis are more ac-
tive at the first two time points, in agreement with not
only the essential role of the blood vessel formation in the
early stages of cancer progression but also observations
made in previous studies that the transition from dysplasia
to adenoma in PyMT mice between 5 and 8 weeks coin-
cides with activation of angiogenesis largely mediated by
an influx of macrophages into the tumor tissue [43] in a
vascular endothelial growth factor-dependent manner
[44]. This finding implies that the early activation of
angiogenesis in PyMT mice is probably due to the dysreg-
ulation of miRNAs. For example, miR-182 and miR-148a
are differentially expressed in weeks 6 and 8, and they
regulate ENPEP, EFNB2, S1PR1, and MMP19 - four genes
related to blood vessel morphogenesis or vascular endo-
thelial growth factor (VEGF) signaling.

The comparison between the enriched functional and
pathway terms and the proposed hallmarks of cancer
[38] revealed two key features of the involvement of
miRNAs in breast cancer development (Fig. 5). First,
miRNA regulatory activity is focused on three different
aspects of cancer: activating invasion and metastasis,

sustaining proliferative signaling, and evading growth
suppressors. Second, miRNA regulation is more active
between weeks 8 and 10, during which the tumor transi-
tions from adenoma to carcinoma. The only exception
of cancer hallmarks under miRNA regulation to this
time frame is the induction of angiogenesis, which, as
shown earlier, is more active in the first 2 weeks.

We identified 18 and 26 miRNAs with negative and
positive transition patterns, respectively, along the four
time points and analyzed their gene targets separately.
The majority of enriched pathways are related to gene
targets regulated by miRNAs with higher expression
levels, indicating an increased miRNA regulatory activity
during cancer progression. The enriched pathways in-
clude WNT, hedgehog, and calcium signaling pathways,
which are highly related to breast cancer development
and cell migration [45, 46].

Identification and characterization of FRPs

Regulation of any biological processes involves multiple
miRNAs and their gene targets. We integrated miRNA
target prediction, gene expression profiling, and func-
tional annotation to obtain a global picture of miRNA
gene regulatory programs behind breast cancer develop-
ment and insights into their functional implications.
Data integration enabled us to identify FRPs from the
mRNA-miRNA bipartite network at each time point and
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for miRNAs with positive or negative trends in expres-
sion along the time points (Additional file 2: Table S6).
Some of these programs appear either concurrently
along the whole progression or in certain sequential
phases (Table 1). Interestingly, 7 out of 12 are especially

related to transmembrane processes and the passage of
molecules across the cell membrane. We can infer from
here the importance of this traffic in phases like activat-
ing invasion and metastasis, inducing angiogenesis or
proliferation and the special role of miRNA regulation.

Table 1 Recurrent microRNA (miRNA) regulatory modules in PyMT breast cancer

Module Number Number  Genes regulated during tumor progression
of genes  of miRNAs

ABC transporters 22 69 DNAH8 ABCC5 ABCASA ABCB4 ABCASB

GPCR + cell surface receptor 18 63 ADGRB2 ADGRE5 ADGRG3 ADGRL1 ADGRL4 FZD9 L1CAM

Fatty acid metabolism 16 57 ACSLT ACADL ECHT ECHS1 HPGD PPARA SNCA

Cytokine-cytokine receptor + immune response 50 100 IL1B CX3CR1 PDGFRA GDF5 PDGFRB CXCL15 CXCLT TNFRSF1TA IL7R SBSPON BMP6

Epidermal growth factor 32 87 CIRA CCBET BMPT NPNT NRG4 CD93 DLK1 ADGRES FAT4 WIFT LAMA4 ADGRL4
TLLT ADAM19

Cell adhesion molecules 41 86 JAM3 MPZ PTPRM MPZL1 CADM3 NLGN2

Calcium ion transport 16 56 ATP2C2 GJA4 CACHDT TRPM6 CACNATH RYR2 CYP27B1 CACNATA RAMP2 JPH2

Calcium signaling + GPCR, rhodopsin-like domain 40 80 MYLK NOST PDGFRA AGTRTA PTGER3 HRH1 PDGFRB HTR7 PTGERT HTR4 CACNATH
ADRB3 RYR2 SLC8A2 ADCY3 CACNATA HTR2A LPAR2 S1PR1 TSPO

Fibronectin domain 49 101 CHL1 PHYHIP SPEG EPHA2 MYLK PTPRM MYOM3

GTP-binding + RAS GTPase 22 68 RAB36 RAB3D RABI1S

Angiogenesis 18 52 EPHA2 ANGPT2 JAM3 TNFAIP2 CCBET ENPEP FGF1 CYP1B1 EFNB2 STPRT TGFA
RAMP2 MMP19

Axon guidance + semaphorin domain 23 76 SRGAP3 SEMA4G EPHA2 SEMA3A PLXNAT EFNB1 SEMA3C DPYSL2 NFATC2 RGS3

L1CAM ABLIMZ2 LRRCA4C SLIT3 PLXND1 ITGB3
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Some of them, like epidermal growth factor, angiogen-
esis, cell adhesion molecules, and calcium ion transport
are well-known to be relevant to many different aspects
of cancer. For example, miR-182, miR-141, miR-18b,
miR-200a, miR-17 and, especially, miR-421 appear re-
currently along PyMT cancer progression regulating
genes involved in ABC transporters (DNAH8, ABCCS,
ABCAS8A, ABCB4, and ABCAS8B), which are significant in
cancer research due to their impact in treatment resist-
ance [47].

After we clustered miRNAs according to their expres-
sion profiles (Additional file 2: Table S7), the groups of
miRNAs associated with the most gene targets are the
ones with significant changes in expression only between
weeks 10 and 12, the last two time points. The groups of
miRNAs with positive and negative transitions in their
expression profiles are composed of 12 and 6 miRNAs,
potentially regulating 141 and 49 genes, respectively. We
analyzed the molecular functions of these three groups
of gene targets (Additional file 2: Table S6). MiRNAs
that become active in week 12 are particularly import-
ant, associated with protein phosphorylation, regulation
of epithelial cell proliferation, calcium and WNT signal-
ing pathways, cytoskeletal regulation by rho GTPase,
and transmembrane transports, all of which are linked
to metastasis during tumor progression at that stage. On
the other hand, miRNAs with only decreased activity in
week 12 are associated with transforming growth factor
(TGEF)-p signaling pathway. This is especially interesting
given the metastatic role of this pathway in the later
phases of breast cancer [48].

Fatty acid metabolism and breast cancer progression
One hallmark of cancer is the deregulation of cellular
energetics. Metabolism of tumorigenic cells is altered to
assist their rapid proliferation and growth, invasion, and
metastasis [49]. Despite the diverse behavior of different
types of cancer, they usually share a similar rewiring of
their metabolic pathways [50]. In addition to glycogen
metabolism, of which the regulation and implication in
cancer cell physiology have been extensively studied
[51], fatty acid metabolism is also closely connected to
cancer development due to its central role in energy
storage, membrane proliferation, and generation of sig-
naling molecules [50]. In our study, the FRP associated
with fatty acid metabolism appear especially active in
weeks 8, 10, and 12 of PyMT breast cancer progression.
In total, 31 genes and 67 miRNAs participate in fatty
acid metabolism at any of the progression phases. Only
six (FAAH, ME1, OLRI, PPARG, PPARA, and SNCA) of
them appear to be simultaneously regulated by miRNAs
at three different time points. Using the TCGA dataset
[52], we studied their expression profiles in all breast
cancer subtypes and found that OLRI and FAAH are
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consistently over-expressed while SNCA, MEI, PPARA,
and PPARG are under-expressed in Her2, and luminal A
and B subtypes (Fig. 6a). These six genes are also
expressed in PyMT mice in different phases of cancer
progression or along the whole tumor development
(Fig. 6¢c). MiRNAs persistently regulating these genes in
our model are miR-143, miR-27b, miR-141, miR-200a,
and miR-148a (Fig. 6b).

It is particularly noteworthy that the expression of
PPARA and PPARG are especially inhibited along the
whole cancer progression, especially in week 10. As the
peroxisome proliferator-activated receptors, they play
key roles in fatty acid oxidation [53]. Although PPAR li-
gands in breast cancer cells remain to be identified,
these two genes have been connected to breast cancer
and the effects of using them as targets in plausible
treatment have been studied [54]. In PyMT mice, miR-
200a and miR-148a can regulate their expression, and
thus changes in the expression of these miRNAs will
probably also drive changes in the expression of both
PPAR genes. In our study, we also observed the down-
regulation of MEI and SNCA transcription in PyMT
mice, despite low variability in their expression during
tumor development. ME1 is known to play an active role
in glutamine metabolism, which produces NADPH, a
cofactor important for nucleotide and lipid synthesis
[55]; it has not been implicated in breast cancer by past
studies. SNCA functions as a fatty acid binding protein
and has been identified as a plausible target for early de-
tection or risk assessment of breast cancer [56]. On the
other hand, OLRI and FAAH are over-expressed at dif-
ferent time points during PyMT breast cancer progres-
sion. OLRI has been characterized as an oncogene in
several cell lines, promoting proliferation, migration and
inhibition of apoptosis and lipogenesis [57]. FAAH has
also been reported to be over-expressed in breast cancer
cells and studied as a plausible inhibition target for can-
cer treatment. In our study, sequence analysis showed
that both genes contain sequences targetable by miR-
143. The co-occurrence of the over-expression of OLRI
and FAAH and the under-expression of miR-143
strongly indicates that both genes could be regulated by
this miRNA.

Conclusions

In this study we profiled the expression of miRNAs during
breast cancer progression in the PyMT mouse model
This model closely resembles ER-positive luminal B breast
cancer, a subtype of breast cancer that traditionally is
poorly studied in humans. Instead of a particular cancer
state, we considered the whole disease progression, sam-
pling four time points to represent hyperplasia, adenoma,
early carcinoma, and late carcinoma phases. By integrating
miRNA and mRNA expression profiles, we identified 151
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differentially expressed miRNAs and their target genes in-
volved in the regulatory activities of cancer biology, with a
strict dual nature of either upregulation or downregulation
during the whole disease progression. From the compari-
son with miRCancer as an assessment of concordance with
other miRNA studies as a whole, we observed high-level
agreement in miRNA expression between breast cancer in
PyMT mice and human cancers reported in previous
studies. The expression profiles of several key miRNAs

from PyMT mice in our study matched those from
previously obtained ER-positive cancers, confirming the
luminal B subtype status of the PyMT mouse model, while
different expression profiles of signature miRNAs for
the triple-negative subtype indicated their divergence.
Using this model, we identified 82 novel breast cancer-
related miRNAs, 35 of which can potentially regulate 271
protein-coding genes based on sequence complementarity
and expression profiles. After a comprehensive study, we
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found that a subset of 26 novel miRNAs potentially
regulate 69 genes that are implicated in biological
processes related to cancer biology, including cell and
focal adhesion functions, cell migration, and angiogenesis.
During breast cancer progression in PyMT mice, genes
regulated by significantly over-expressed miRNAs partici-
pate in cell adhesion or cell differentiation, biological pro-
cesses related to the cancer progression and metastasis.
Collated with cancer hallmarks, our study showed that
genes targeted by miRNAs with perturbed expression in
breast cancer in PyMT mice are involved in activating in-
vasion and metastasis, sustaining proliferative signaling,
and evading growth suppressors during the transition
from adenoma to carcinoma. Finally, applying a novel
clustering method to an annotated miRNA-mRNA regula-
tory network, we identified 84 FRPs, all of which are in-
volved in cancer-related biological processes, including
metabolism, endocytosis, transmembrane transport, and
the cellular immune response.
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