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1  | INTRODUC TION

Deciphering the adaptive architecture has been of long-standing 
interest in evolutionary biology. In contrast to natural populations, 
experimental evolution (EE) provides the possibility to replicate ex-
periments under controlled, identical conditions and to study how 
evolution shapes populations in real time (Kawecki et al., 2012). The 
combination of EE with next-generation sequencing—Evolve and 
Resequence (E&R; Long, Liti, Luptak, & Tenaillon, 2015; Schlötterer, 
Kofler, Versace, Tobler, & Franssen, 2015; Turner, Stewart, Fields, 
Rice, & Tarone, 2011)—has become a popular approach to study 
the genomic response to selection and to identify adaptive loci. 
E&R has been applied to various selection regimes, such as virus 

infection (Martins et al., 2014), host–pathogen coadaptation 
(Papkou et al., 2019), thermal adaptation (Barghi et al., 2019; Orozco-
Terwengel et al., 2012) or body weight (Johansson, Pettersson, 
Siegel, & Carlborg, 2010). A wide range of experimental designs have 
been used, which vary in census population size, replication level, 
history of the ancestral populations, selection regime and number of 
generations (Burke, Liti, & Long, 2014; Castro et al., 2019; Garland 
& Rose, 2009; Hardy et al., 2018; Huang, Wright, & Agrawal, 2014; 
Kawecki et al., 2012; Lang et al., 2013; Michalak, Kang, Schou, 
Garner, & Loeschcke, 2019; Seabra et al., 2019; Turner et al., 2011). 
The duration of published E&R studies ranges from less than 20 gen-
erations (Kelly & Hughes, 2018; Rêgo, Messina, & Gompert, 2019; 
Turner & Miller, 2012), to a few dozen (Johansson et al., 2010; 
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Orozco-Terwengel et al., 2012) and even hundreds of generations 
(Burke et al., 2010). Computer simulations showed that the number 
of generations has a strong influence on the power of E&R studies in 
sexually reproducing organisms, and increasing the number of genera-
tions typically increased it (Baldwin-Brown, Long, & Thornton, 2014; 
Kofler & Schlötterer, 2014; Vlachos & Kofler, 2019). A larger number 
of generations increase the opportunity for more pronounced allele 
frequency changes and more recombination events, which results 
in a more refined mapping resolution (Baldwin-Brown et al., 2014; 
Kessner & Novembre, 2015; Kofler & Schlötterer, 2014). Since sim-
ulations make simplifying assumptions, it is important to scrutinize 
their conclusions with empirical data. Until recently no suitable data 
sets of obligate outcrossing populations were available, which in-
cluded multiple time points, were replicated and had starting allele 
frequencies matching natural populations. We use an E&R experi-
ment (Barghi et al., 2019), which reports allele frequency changes 
in 10 replicates over 60 generations in 10 generation intervals, to 
investigate the impact of the experimental duration on the observed 
genomic response. The time-resolved genomewide polymorphism 
data of this experiment allow to contrast putative selection targets, 
which are inferred at different time points, on three analysis levels 
(candidate SNPs, candidate windows, candidates SNPs shared with 
reconstructed haplotype blocks, Figure 1). By comparing selection 
signatures from different time points of the experiment, we show 
that only a subset of the selection targets are detected at earlier 
generations, which are not representative of the underlying adaptive 
architecture.

2  | MATERIAL S AND METHODS

2.1 | Experimental Drosophila simulans populations

A detailed description of the Drosophila simulans E&R experiment 
can be found in Barghi et al. (2019) and Hsu et al. (2019). Pooled in-
dividuals (Schlötterer, Tobler, Kofler, & Nolte, 2014) from the evolv-
ing populations were sequenced every 10th generation starting with 
the founder population (generation 0) until generation 60 resulting 
in seven sequenced time points. This E&R experiment started from 
202 isofemale lines, which were collected in Tallahassee, Florida. 
10 replicate populations evolved in the laboratory at a “cycling hot” 
temperature regime (12 hr light and 28°C, 12 hr dark and 18°C). 
The census size of the replicates was 1,000 individuals with non-
overlapping generations (Barghi et al., 2019; Barghi, Tobler, Nolte, & 
Schlötterer, 2017; Hsu et al., 2019).

2.2 | Genomic analysis hierarchy

To look for patterns of selection on different scales, we investigated 
the genomic response of the experimental Drosophila populations 
on three different levels: candidate SNPs, candidate SNPs in a win-
dow with a fixed number of SNPs and candidate SNPs shared with 

reconstructed selected haplotype blocks. A detailed description for 
each level is given below, and the different hierarchies are depicted 
in Figure 1. We performed the same analysis steps at different time 
points and compared the resulting time point-specific selection re-
sponses—either pairwise, or across multiple time points—to test the 
congruence in selection patterns. We evaluated the similarity of two 
time points with the Jaccard index—a dimensionless parameter rang-
ing from 0 (no overlap) to 1 (sets are identical)—for both candidate 
SNPs and candidate windows.

F I G U R E  1   Genomic analysis hierarchy: candidate SNPs (a), 
candidate SNPs in a window spanning a fixed number of SNPs 
(b) and candidate SNPs shared with reconstructed haplotype 
blocks (c). (a) Candidate SNPs (squares) were determined for each 
generation and were compared either pairwise (Figure 2), or across 
multiple time points (Figure 4). (b) Window-based approach to 
detect regions enriched for candidate SNPs. The same number of 
random SNPs as candidate SNPs were sampled onto the genome 
repeatedly (1,000 iterations). Windows (marked by vertical 
dashed lines) enriched for candidate SNPs contain at least as many 
candidate SNPs as the 99th percentile of the randomly sampled 
SNPs. Sets of candidate windows were either compared pairwise 
(Figure 2), or across multiple time points (Figure 4). (c) Haplotype 
block discovery rate (HADR) = the fraction of candidate SNPs 
(haplotype block marked by vertical dashed lines) that were also 
discovered at a given time point (framed squares) [Colour figure can 
be viewed at wileyonlinelibrary.com]

(a)

(b)

(c)
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2.2.1 | Identification of candidate SNPs

In the original study, Barghi et al. (2019) applied various filtering steps 
to obtain a robust SNP set from the ancestral population, resulting 

in 5,096,200 SNPs on chromosomes X, 2, 3 and 4. A summary of the 
applied filtering steps can be found in theSupplementary Methods. 
We used the already determined SNP set of the ancestral population 
to study the selection response at different time points. For this, 
we identified “candidate SNPs” based on the frequency difference 
between the ancestral and evolved populations for each of the six 
time points (Figure 1a). To identify SNPs with pronounced allele fre-
quency change, we tested (as in Barghi et al. (2019)) replicates sepa-
rately (Fisher's exact test) and jointly (Cochran–Mantel–Haenszel 
test, CMH) using PoPoolation2 (Kofler, Pandey, & Schlötterer, 2011). 
We chose the CMH test statistic out of a range of approaches that 
allow to identify selected SNPs, because it has been shown recently 
that the CMH test—although not taking intermediate time points 
into account—consistently outperforms other methods regardless of 
the investigated selection scenario (Vlachos et al., 2019). As outlier 
SNPs with extreme read depths had already been removed in the 
original study, additional minimum and maximum read depth restric-
tions were not imposed on the SNP set. Neither of the two chosen 
test statistics to determine candidate SNPs (CMH test, Fisher's exact 
test) account for allele frequency change due to genetic drift. To de-
tect SNPs that show more allele frequency change than expected 
under drift, we performed neutral simulations with Nest (Jónás, 
Taus, Kosiol, Schlötterer, & Futschik, 2016) using estimates of the 
effective population size (Ne) between generation 0 and the focal 
time point (Tables S1–S3). The neutral simulations further used the 
empirical starting allele frequencies and read depths. For the CMH 
test, Ne estimates were averaged across replicates for autosomes 
and the X chromosome separately. For Fisher's exact test, we used 
replicate-specific Ne estimates of the autosomes. Based on these 
neutral simulations, we determined candidate SNPs with a false dis-
covery rate smaller than 5% (Barghi et al., 2019).

We identified 56,166 candidate SNPs in generation 60, com-
pared to 55,199 in Barghi et al. (2019). This small discrepancy can be 
explained by stochastic differences arising from the neutral simula-
tions used to determine the significance threshold. We excluded six 
out of 99 haplotype blocks from Barghi et al. (2019) with <90% of 
the previously reported candidate SNPs.

2.2.2 | Identification of candidate windows

Because of linkage in the experimental populations (Nuzhdin 
& Turner, 2013; Tobler, Franssen, Nolte, & Schlötterer, 2014), 
the first genomic analysis level—the number of candidate SNPs 
(Figure 1a)—will most likely suffer from an excess of candidate loci. 
We used a window-based approach (Figure 1b) as second genomic 
analysis hierarchy to account for a potential excess of candidate 
SNPs. We split the main chromosomes (X, 2 and 3) into non-over-
lapping windows of 5,000 SNPs that are segregating in all gen-
erations and replicates. We chose SNPs instead of base pairs as 
window size measure in order to allow for variation in SNP density 
along the genome. To determine whether a given window displays 
a potential selection response(= it contains more candidate SNPs 

F I G U R E  2   Similarity measures for candidate SNPs, candidate 
SNPs in a window with a fixed number of SNPs and candidate 
SNPs shared with reconstructed selected haplotype blocks (a) 
Jaccard index (J) for pairwise comparisons of candidate sets. The 
top triangle shows candidate window sets, the bottom triangle 
candidate SNP sets. Significant similarities (p-value < .05 after 
multiple testing correction, 10,000 bootstraps) are written in 
bold. (b) The rate at which selected SNPs of 93 haplotype blocks 
from generation 60 were already discovered at earlier generations 
(haplotype discovery rate, HADR) [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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than expected), we sampled the same number of random SNPs as 
candidate SNPs in this window (1,000 iterations) onto the whole 
genome. “Candidate windows” contained at least as many candi-
date SNPs as the 99th percentile of randomly sampled SNPs. We 
received time point-specific candidate window sets (Figure 1b, 
Figure S1), by applying the procedure described above indepen-
dently to candidate SNPs from all time points. To check for the 
robustness of candidate window patterns, we varied the window 
size and allowed SNPs to fix during the experiment, which both 
resulted in qualitatively similar results (Tables S4 and S5).

Candidate windows (=the number of candidate SNPs in a win-
dow) is a summary statistic which ignores the significance of the 
candidate SNPs. If a signal is robust between two time points, we 
expect the same p-value-based ranking of candidate SNPs assum-
ing homogeneous read depth for all sites and time points and that 
candidate SNPs do not fix during the experiment. Although read 
depth heterogeneity among sites will change the confidence in the 
estimates of the allele frequency change, the average dynamics of 
relative significance allow us to determine whether the robustness 
of a putative selection response increases with time. Thus, we also 
evaluated whether candidate SNPs in a given window had a similar 
significance rank. For each candidate window, we created a ROC-like 
curve (similar to Jakšić and Schlötterer (2016)) by ranking the candi-
date SNPs by their p-values—the most significant SNP was assigned 
rank 1—and calculating the overlap in top-ranked SNPs between two 
time points.

2.2.3 | Haplotype block discovery rate (HADR)

The third genomic analysis level is based on reconstructed selected 
haplotype blocks of the original study (Figure 1c): Barghi et al. (2019) 
clustered candidate SNPs from generation 60 into selected haplo-
type blocks based on similar allele frequency trajectories over time 
and replicates (Franssen, Schlötterer, & Barton, 2016) to assess the 
underlying haplotype structure in the experimental populations. The 
reconstructed haplotype blocks were further validated with experi-
mentally phased haplotypes from ancestral and evolved populations 
(Barghi et al., 2019), and 96% of the reconstructed haplotype blocks 
could be confirmed by the experimentally derived haplotypes. This 
suggests that reconstructed haplotype blocks provide a robust set 
of linked candidate SNPs that can be used to investigate time point-
specific patterns of selection.

Taking advantage of this additional confirmation of the candidate 
SNPs in a selected haplotype block, we developed a third measure of 
similarity between time points. We determined the fraction of candi-
date SNPs comprising a haplotype block that were also discovered at 
a given time point (haplotype block discovery rate, HADR, Figure 1c) 
using the poolSeq R-package (Taus, Futschik, & Schlötterer, 2017). 
We note that the inference of selected haplotype blocks at each 
generation does not provide a good alternative to the HADR mea-
sure. It has been shown that the ability of the clustering method to 
group SNPs into haplotype blocks is dependent on the number of 

time points (Franssen et al., 2016). This results in less power at early 
generations where fewer time points are available.

2.3 | Early Detected Haplotype blocks (EDHAs)

We applied various clustering methods (hierarchical clustering 
(Pollard & Laan, 2005), PCA and k-means (Hartigan & Wong, 1979)) 
to group reconstructed haplotype blocks by their HADR patterns 
over time. The hyperparameter k (which determines the number 
of clusters) in the k-means clustering procedure was set to 5 based 
on the gap statistic (Tibshirani, Walther, & Hastie, 2001). Both the 
k-means clustering and the PCA revealed a clearly distinguishable 
group of 10 haplotype blocks with elevated HADR early on in the 
experiment (Figures S2 and S3). We refer to the haplotype blocks 
in this cluster as early detected haplotype blocks (EDHAs). We in-
vestigated whether EDHAs have distinct characteristics that might 
explain why they are early detectable by comparing the following 
features between EDHAs, and non-EDHAs: haplotype block length, 
median starting allele frequency, average recombination rate (Howie, 
Mazzucco, Taus, Nolte, & Schlötterer, 2019), selection coefficient 
(s, estimated with poolSeq (Taus et al., 2017)) in generation 20, s in 
generation 60, selection coefficient ratio rs = s20/s60 and number of 
rising replicates in generation 20 and ingeneration 60. To avoid that 
non-responding replicates bias the selection coefficient estimates 
downwards, we averaged selection coefficients over replicates that 
passed a certain allele frequency change threshold. Following Barghi 
et al. (2019), we classified a haplotype block as replicate-specific, if 
the allele frequency of candidate SNPs from a haplotype block in-
creases on average by at least 10%. To test the robustness of the 
replicate-specific rising behaviour, we also used 5%, 15% and 20% 
thresholds, which all resulted in qualitatively similar results.

2.4 | Simulation of an E&R experiment

2.4.1 | Simulation with linkage

Despite the selected haplotype blocks were inferred with high con-
fidence by Barghi et al. (2019), we were interested to confirm our 
conclusions with a simulated data set for which the selection targets 
are known. Because the distinction between true causative SNPs 
and linked polymorphisms is challenging (Nuzhdin & Turner, 2013; 
Tobler et al., 2014), we obtained a simulated data set that models 
linkage and resembles the Barghi et al. (2019) study using MimicrEE2 
(version 206) (Vlachos & Kofler, 2018). Our ancestral population was 
built from 189 ancestral haplotypes published in Barghi et al. (2019) 
and Howie et al. (2019). We simulated a selective sweep scenario 
with 99 independent selection targets, where each of them is lo-
cated in the inferred selected haplotype block, has the same starting 
frequency, and selection coefficient (both estimated as the median 
from all selected SNPs in the block; Barghi et al., 2019). Since we 
were primarily interested in the early genomic responses after the 
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populations have been exposed to a new environment, we rea-
soned that selective sweeps approximate the selection trajecto-
ries for a polygenic trait with stabilizing selection (as presented in 
Barghi et al., 2019) rather well (Chevin & Hospital, 2008; Höllinger, 
Pennings, & Hermisson, 2019; Jain & Stephan, 2017a, 2017b). Using 
the Drosophila simulans recombination rate map (Howie et al., 2019), 
we simulated 10 outcrossing populations with constant census size 
adapting for 60 non-overlapping generations. We sampled the read 
depth for each site from a Poisson distribution with λ equal to the 
average read depth for each population and time point as reported 
in Barghi et al. (2019). For each site, we applied binomial sampling 
with the determined read depth and true allele frequency to mimic 
the sampling of reads out of a DNA pool (Jónás et al., 2016). This 
forward simulation results in a data set very similar to the origi-
nal study that allows us to analyse selection patterns on all three 
genomic analysis hierarchy levels, but in contrast to the empirical 
data, the causative SNPs are known. The identification and analysis 
of candidate SNPs and windows of the simulation followed the pro-
tocol of the empirical data (as described above; Figure 1a,b). Instead 
of relying on the dynamics of selected haplotype blocks (see HADR, 
Figure 1c), we investigated the number of selection targets that can 
be found among statistical outliers across generations. Early de-
tected targets (see EDHAs) were defined as targets that are consist-
ently detected as outlier from generation 20 onwards.

2.4.2 | Simulation without linkage

To explicitly test whether the highly parallel selection signature of 
EDHAs at generation 20 can be explained by synergistic effects of 
drift and selection, we simulated 100,000 codominant, unlinked loci 
in 10 replicate populations with equal starting allele frequency (10%, 
median starting allele frequency reported in Barghi et al. (2019)), 
and selection coefficient (s = 0.05, median selection coefficient 
reported in Barghi et al. (2019)) using the poolSeq R-package (Taus 
et al., 2017). Based on neutral simulations (conducted with the 
poolSeq R-package (Taus et al., 2017), we determined candidate 
loci with a false discovery rate smaller than 5% after 20 generations 
(CMH test; Barghi et al., 2019) and compared the parallelism of can-
didate loci to the parallelism of non-candidate loci. If the synergistic 
effect of drift and selection is causing elevated parallelism, we would 
expect candidate loci to rise in significantly more replicates than 
their non-significant counterparts, despite having the same starting 
allele frequency and selection coefficient.

3  | RESULTS AND DISCUSSION

3.1 | Subsequent time points are more similar for 
advanced generations

We studied the similarity of selection signatures for different 
time points using 10 replicates of a D. simulans population, which 

evolved for 60 generations to a novel hot environment (Barghi 
et al., 2019). With Pool-Seq (Schlötterer et al., 2014) data from 
every 10th generation, we evaluated the selection signature on 
three different levels: candidate SNPs, candidate SNPs in a window 
spanning a fixed number of SNPs, and candidate SNPs shared with 
reconstructed selected haplotype blocks (Figure 1). The similar-
ity of inference between two time points was determined by the 
Jaccard index (J), ranging from 0 (no overlap between two SNP sets) 
to 1 (sets are identical). We found that all candidate SNP sets are 
more similar than expected by chance. The Jaccard index ranged 
from 0.08 (generation 10 vs. generation 60) to 0.40 (generation 50 
vs. generation 60), where subsequent time points are more similar 
than those separated for more than 10 generations (e.g. J = 0.15 
(generation 10 vs. generation 20); J = 0.08 (generation 10 vs. gen-
eration 60)). Furthermore, the similarity of candidate SNP sets from 
subsequent time points increased with time until it ultimately more 
than doubles for the last two generations (J = 0.15 [generation 
10 vs. generation 20]; J = 0.40 [generation 50 vs. generation 60], 
Figure 2a). The monotonic increase in similarity with time shows 
that more similar selection patterns are detected at later genera-
tions. While this suggests that outliers at generation 60 provide 
the most reliable selection signature, we were interested to con-
firm this with computer simulations where all selection targets and 
the type of selection are known. We simulated an E&R experiment 
that resembles the data from Barghi et al. (2019) and repeated our 
analysis on simulated, time-resolved allele frequencies. Again, we 
observed that candidate SNP sets are more similar than expected 
by chance, the majority of subsequent time points are more similar 
than those separated for more than 10 generations, and the simi-
larity of candidate SNP sets from subsequent time points increases 
with time (Figure S4).

Since the analysis of single SNPs suffers from considerable 
stochasticity, and neighbouring SNPs are not independent (Howie 
et al., 2019; Tobler et al., 2014), we repeated the analysis of dif-
ferent time points using non-overlapping windows of 5,000 SNPs 
(Figure 1b). Reasoning that windows containing a target of selection 
will harbour multiple candidate SNPs, we defined selected win-
dows as those, which harbour more candidate SNPs than expected 
by chance. Consistent with higher stochasticity at the SNP level, a 
higher similarity was observed for candidate windows (from J = 0.26 
[generation 10 vs. generation 60] to J = 0.62 [generation 40 vs. gen-
eration 50]). Again, adjacent time points have a higher Jaccard index 
than time points farther apart (J = 0.26 [generation 10 vs. generation 
60]; J = 0.39 [generation 10 vs. generation 20]). The similarity of 
subsequent time points also increases with the duration of the ex-
periment (J = 0.39 [generation 10 vs. generation 20]; J = 0.59 [gen-
eration 50 vs. generation 60], Figure 2a). In contrast to the SNP level, 
the set of selected windows after 10 generations is only significantly 
similar to generation 20, but not to any other generation. Thus, the 
pattern of reduced similarity of selection targets in the early gener-
ations is confirmed at the window level, albeit with different signif-
icance levels. The same pattern was noticed for the simulated E&R 
data (Figure S4).
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For an alternative measure of similarity, we used the ranking of 
candidate SNPs in a specific window based on their p-values and 
compared it between different time points. If a signal is robust be-
tween two time points, we expect the same SNP ranking of segre-
gating SNPs in a selected window. Consistent with the other tests, 
we found that the congruence in candidate SNP ranking increases 
with time in both empirical and simulated data (Figure 3, Figure S5). 
To rule out that rare SNPs are responsible for the dissimilarity be-
tween early and late time points, we calculated similarity measures 
based on SNPs that are segregating at all generations and time 
points. Nevertheless, including SNPs which were lost in at least one 
replicate during the experiment did not result in a pronounced de-
crease in similarity (Figure S6).

The analysis of selected haplotype blocks provides another 
possibility to control for non-independence of single candidate 
SNPs. We calculated the haplotype block discovery rate (HADR, 
Figure 1c)—the fraction of candidate SNPs in a haplotype block that 
are rediscovered at a given time point. Similar to the other analyses, 
we observe higher similarity between later time points (Figure 2b), 
with a pronounced increase of median HADR between genera-
tion 30 (<25%) and 40 (>50%). In the simulated data, the number 
of detected targets monotonically increased until generation 50 
(Figure S7).

Independent of the measure of similarity between time points, 
for both empirical and simulated data, the selection signatures of 
early time points are consistently less similar than those from later 
time points. Under the assumption that the same alleles are under 
positive selection over the whole time span of the experiment, 
this observation highlights that a more reliable identification of 
selection targets requires longer experiments with additional gen-
erations. With the limitation that for empirical data the true tar-
gets of selection are not known, in the Barghi et al. (2019) data a 
particularly striking observation is that a similar number of can-
didate SNPs was detected at each time point despite the number 
of “true” targets increased with the duration of the experiment 
(Table S6). While this suggests that earlier time points harbour 
more false positives, we would like to point out that the low con-
cordance in selection patterns between early, and late generations 
in the experiment could also be caused by a change (or even a 
reversal) in selection. It may be possible that some targets were 
only selected during the first generations and that the strength 
of selection changed later on. This may be caused for example 
either by epistatic interactions, or an unobserved change in our 
experimental environment. While this cannot be ruled out for the 
empirical data, this cannot explain the similarity dynamics in the 
sweep simulation with additive selection, and no epistasis mod-
elled (Figures S4 and S7).

It is important to note that the sweep simulation did not have 
a similar number of candidate SNPs over time, rather the number 
of false positives increased with the duration of the experiment 
(Table S7). We attribute this discrepancy of the simulated and em-
pirical data outcome to the selection regime employed, which af-
fects mainly later generations. Sweep simulations result in haplotype 

blocks with many selection targets (Barghi & Schlötterer, 2020), 
which in turn influences the number of candidate SNPs. Simulations 
of polygenic adaptation can become quite complex and rich in pa-
rameters (Thornton, 2019), which limits the power of computer 
simulations to scrutinize this result further. Rather, experimental 

F I G U R E  3   The rank of candidate SNPs becomes more 
congruent with time. In this ROC-like graph, the ranking of all 
candidate SNPs in candidate windows is compared. Each panel 
shows one intermediate time point compared to generation 60. 
The overlap (in percent) for each candidate window is indicated by 
a separate line. The median overlap (solid black line) monotonically 
increases with experimental duration, demonstrating that the 
ranking of candidate SNPs is more robust for advanced generations. 
The black, dashed lines show the expected overlap in SNP ranking 
if every variant at generation 60 is recapitulated in a previous time 
point
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validation of selection targets in secondary E&R studies (Burny 
et al., 2020) may be used to confirm selection signatures beyond sta-
tistical testing and could serve an important role to test early selec-
tion signatures that cannot be confirmed at later time points.

3.2 | Only few selection targets are shared across 
all generations

More than 27,000 candidate SNPs can be identified at each time 
point (Table S6), but only a small (5%) subset is consistently detected 
at every generation (Figure 4; including rare SNPs see Figure S8). 
The small subset of consistently detected candidate SNPs cannot be 
explained by fixation of candidate SNPs of early generations before 
generation 60—the ratio of fixed candidate SNPs does not exceed 
3.5% at any consecutive time point (Figure S9). Apart from highlight-
ing the more robust selection signatures with an increasing number 
of generations, this analysis raises an important concern about the 
usefulness of meta-analyses on the SNP level. With less than 5% 
of the SNPs being shared in the same selection experiment, it will 
be extremely difficult to compare studies that started from differ-
ent founder populations and were selected for a different number 
of generations.

We repeated the analysis for windows and determined the 
number of selected windows that are shared across all gener-
ations. With 18 out of 74 candidate windows in generation 60 

(24.3%, Figure 4) being detected at all generations, the window 
analysis shows more consistency across time points than a SNP-
based analysis. This observation is independent of window size 
(Tables S4 and S5) and the inclusion of rare SNPs into the analysis 
(Figure S8). Because we observed a similar trend in our simulated 
experiment (Figure S10), we propose that meta-analyses of E&R 
data should be performed on the level of windows, or based on 

F I G U R E  4   Five percent of candidate SNPs in generation 60 
are detected consistently at every generation. The bars depict the 
fraction of candidate SNPs (black) and candidate windows (white) at 
generation 60, which are candidates in all subsequent generations 
(e.g. 40% of generation 60 candidate SNPs are candidates in 
generation 50 and 40). Candidate windows are more consistent 
than candidate SNPs. Figure S8 depicts the ratios for candidate 
sets that are not restricted to SNPs segregating in all generations 
and time points

F I G U R E  5   Early detectable haplotype blocks (EDHAs) differ 
from the other selected haplotype blocks. (a) The ratio of selection 
(rs) coefficients determined for early generations (generation 20, 
s20) and late generations (generation 60, s60) is significantly higher 
for EDHAs. (b) EDHAs rise in more replicates than other haplotype 
blocks after 20 generations. Both observations are robust to 
different allele frequency change thresholds. Values above the 
boxplots represent the two-tailed Mann–Whitney test p-values 
corrected for multiple testing with the Benjamini–Hochberg 
procedure [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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selected haplotype blocks to avoid false negatives due to the high 
stochasticity of SNP-based analyses.

3.3 | Selection signatures detected early in the 
experiment are not representative of the underlying 
adaptive architecture

This study focused on the comparison of selection targets detected 
at early and late time points. Since analyses based on single SNPs 
are very stochastic, we investigated the fraction of candidate SNPs 
comprising a haplotype block that were also discovered at earlier 
time points (HADR, Figure 1c). We detected 10 haplotype blocks 
with elevated HADR in generation 20 (early detected haplotype 
blocks, EDHAs, Figures S2 and S3). We found that EDHAs do not 
differ in their starting allele frequency, haplotype block length, aver-
age recombination rate, absolute selection coefficients or number of 
rising replicates after 60 generations from other haplotype blocks 
(Figure S11). EDHAs are, however, more strongly selected at the be-
ginning of the experiment, but are equally strongly selected as the re-
maining haplotype blocks at later generations (Figure 5a). Consistent 
with stronger selection at earlier time points, the selection signa-
ture of EDHAs is significantly more parallel across replicates after 
20 generations of adaptation in both empirical and simulated data. 
(Figure 5b, Figure S12). We attribute this observation to a phenom-
enon similar to the “winners curse,” that is that loci where stochastic 
effects increased the frequency in multiple replicates to enhance the 
contribution by selection are more likely to be detected. We explic-
itly tested this interpretation with computer simulations. For this, 
we simulated unlinked loci with identical starting frequencies and 
selection coefficients. As expected not all selected loci are detected 
after 20 generations, but detected loci show a more parallel selec-
tion signature than not detected ones despite having the same start-
ing allele frequency, and selection coefficient (Figure S13).

All statistical tests, which are evaluating a parallel selection 
signature across replicates, are more likely to detect selection sig-
natures shared across replicates, even with only moderate allele fre-
quency changes. This “enhanced” parallelism could result in wrong 
or incomplete conclusions about the underlying genetic architecture 
(Höllinger et al., 2019; Jain & Stephan, 2017a; Thornton, 2019). The 
analysis of selection signatures in replicated experiments running 
for only a moderate number of generations is more likely to detect 
parallel than replicate-specific selection signatures. This bias is not 
restricted to our study, but also an experimental study of D. simulans 
populations adapting 10 to 20 generations to a new temperature 
regime (Kelly & Hughes, 2018) found more parallel selection re-
sponses. We propose that additional analyses contrasting selection 
signatures of early and late time points are needed to confirm the en-
richment of parallel selection signatures in short-term experiments.
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