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Abstract: Glycolytic reprogramming is an important metabolic feature in the development of pul-
monary fibrosis. However, the specific mechanism of glycolysis in silicosis is still not clear. In this
study, silicotic models and silica-induced macrophage were used to elucidate the mechanism of
glycolysis induced by silica. Expression levels of the key enzymes in glycolysis and macrophage
activation indicators were analyzed by Western blot, qRT-PCR, IHC, and IF analyses, and by using a
lactate assay kit. We found that silica promotes the expression of the key glycolysis enzymes HK2,
PKM2, LDHA, and macrophage activation factors iNOS, TNF-α, Arg-1, IL-10, and MCP1 in silicotic
rats and silica-induced NR8383 macrophages. The enhancement of glycolysis and macrophage
activation induced by silica was reduced by Ac-SDKP or siRNA-Ldha treatment. This study suggests
that Ac-SDKP treatment can inhibit glycolytic reprogramming in silica-induced lung macrophages
and silicosis.

Keywords: glycolysis; macrophages; silicosis; N-acetyl-seryl-aspartyl-lysyl-proline; inflammation

1. Introduction

Silicosis is a serious and fatal occupational lung disease and is mainly caused by
inhalation of free crystalline silicon dioxide (SiO2) or silica dust [1,2]. Chronic inhalation of
silica into the lungs of rats leads to activation of lung macrophages and lung inflammation,
which promotes a proteolytic phenotype in macrophages and downregulates the elastin
level in lungs, eventually leading to fibrosis [3]. Macrophages involved in the proinflam-
matory response must rapidly provide energy to fuel the inflammatory response, which
is accomplished through glycolysis and high lactate production [4]. Glycolysis is a quick
way to produce ATP, and fatty acids serve as precursors for the synthesis of inflammatory
mediators in macrophages [5].

Studies have shown that fibrotic lung alveolar macrophages augment glycolysis and
increase the expression of multiple key glycolytic mediators in both bleomycin and active
transforming growth factor (TGF)-β1-induced fibrotic mouse lungs [6]. Augmentation
of glycolysis is an early and sustained event during myofibroblast differentiation in lung
fibrosis [7]. Furthermore, the interaction between glycolysis and collagen deposition
has been demonstrated in TGF-β1-induced lung fibroblasts and silica-treated mice [8,9].
Although it is acknowledged that glycolysis occurs in silicosis, the exact mechanism driving
glycolysis in lung macrophages or lung inflammation remains largely unknown.

Our previous studies showed that the mRNA and protein levels of lactate dehydroge-
nase A (LDHA) were upregulated in rats that inhaled silica [10,11], suggesting a potential
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role of LDHA in the glycolysis of silicosis. Increased levels of LDHA and its metabolic prod-
uct, lactate, were found in patients with idiopathic pulmonary fibrosis (IPF). In addition, a
profibrotic feedforward loop was found in IPF patients and myofibroblasts, where LDHA
produces lactate, lactate decreases pH in the extracellular space and activates TGF-β1,
which can further perpetuate fibrotic signaling [12].

N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally present immunoregu-
latory active peptide, which is generated from the N-terminal sequence of its precursor
thymosin β4 (Tβ4) by meprin α [2,13]. Our group found that Ac-SDKP played an anti-
fibrotic role in an experimental silicotic model by inhibiting the epithelial-mesenchymal
transformation [14–16], myofibroblast transformation [17], and macrophage activation and
by alleviating pulmonary inflammation [3]. It has been reported that Ac-SDKP inhibits
diabetic nephropathy and has anti-fibrotic effects by regulating the glycolytic pathway [18].
However, it is still unclear whether Ac-SDKP can also play a therapeutic role in pulmonary
fibrosis by regulating the glycolytic pathway. Therefore, this study explored the regulatory
effect of Ac-SDKP on glycolysis in SiO2-induced macrophages through in vivo and in vitro
experiments.

2. Results
2.1. Differential mRNA Expression Profiles of Key Glycolytic Enzymes in Silicotic Rat Lungs

Our previous study used RNA-sequencing techniques to screen differential expression
of mRNAs in silicotic rats induced by chronic inhalation of crystalline silica particulates [10].
The results showed that certain key glycolytic enzymes were differentially expressed in
silicotic rat lungs, suggesting that changes in metabolic characteristics may be an important
link in promoting the progression of silicosis (Figure 1).

Figure 1. Differential mRNA expression profiles of key glycolytic enzymes in silicotic rat lungs.
Hk2/HK2: hexokinase2, Gpi/GPI: glucose-6-phosphate isomerase, Pfkm: phosphofructokinase mus-
cle, Pfkl: phosphofructokinase liver type, Pfkp: phosphofructokinase platelet, Aldoa/ALDOA: fructose-
bisphosphate aldolase A, Gapdh/GAPDH: glyceraldehyde-3-phosphate dehydrogenase, Pgk1/PGK1:
phosphoglycerate kinase1, Pgam1/PGAM1: phosphoglycerate mutase1, Eno1/ENO1: enolase1,
Pkm/PKM: pyruvate kinase M, Ldha/LDHA: lactate dehydrogenase A, PFK: phosphofructokinase.
* Compared with control group, p < 0.05. C: control 24 w; S: silicosis 24 w.
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2.2. High Expression of Glycolysis in Rats Exposed to Silica

To determine whether the occurrence and development of experimental pulmonary
fibrosis induced by silica are related to glycolysis reprogramming, we performed immuno-
histochemistry (IHC) staining of LDHA in the lung tissues of the control group and the
model group. The results showed that silicon nodules gradually formed in relation to the
exposure time of silica to rats, and LDHA was positively expressed in alveolar macrophages
and silicon nodules (Figure 2A). Immunofluorescence (IF) staining showed that LDHA
was co-expressed with CD68 (a marker of macrophages) in silicotic rats, indicating that the
metabolic activity of LDHA could occur in macrophages (Figure 2B). We also examined
the expression of other key enzymes in the glycolytic pathway and found that the protein
and mRNA expression levels of HK2, pyruvate kinase M2 (PKM2), and LDHA were also
increased in rats with silicosis (Figure 2C). These results showed the existence of the abnor-
mal activation of glycolysis metabolism at different stages of the rat silicosis model, which
may be related to the high expression of key enzymes.

2.3. Enhanced Glycolysis Was the Crucial Metabolic Characteristic of Silicotic Mice

Subsequently, we further investigated whether glycolytic metabolism was also acti-
vated in the mouse silicosis model. We analyzed the expression of LDHA in the mouse
pulmonary fibrosis model established by silica and found that the positive expression of
LDHA was significantly enhanced in the model group (Figure 3A). As shown in Figure 3B,
the protein and mRNA levels of HK2, PKM2, LDHA were significantly upregulated in the
lung tissue of fibrotic mice.

2.4. Silica Treatment Increased the Level of Glycolysis in Macrophages

To investigate the metabolic changes in macrophages, we used the silica-induced
macrophage activation model. We found that with the increase in silica concentration, the
fluorescence intensity of LDHA gradually increased (Figure 4A). As shown in Figure 4B,
silica increased the expression of the key glycolysis enzymes HK2, PKM2, LDHA, and
macrophage activation indicators inducible nitric oxide synthase (iNOS), tumor necrosis
factor-α (TNF-α), arginase-1 (Arg-1), interleukin-10 (IL-10), and monocyte chemoattractant
protein-1(MCP1) in NR8383 cells in a dose-dependent manner. With the increase in silica
dose, the concentrations of extracellular lactate increased gradually (Figure 4C). These
results suggest that the increased glycolysis induced by silica may be a vital metabolic
feature of macrophage activation.

2.5. Ac-SDKP Attenuated the Enhancement of Glycolysis in Macrophages Treated with Silica

We previously demonstrated that Ac-SDKP alleviates the inflammatory response
of macrophages in silicotic rats [3]. In this study, we explored whether Ac-SDKP exerts
anti-inflammatory effects by regulating the energy metabolism of macrophages. We used
Ac-ADKP, a functionally inactive analog of Ac-SDKP (replacement of Ser by Ala in Ac-
SDKP), as a control to evaluate the effects of Ac-SDKP [3].

IF staining results showed that Ac-SDKP treatment could reduce silica-induced co-
expression of MCP1/LDHA and Arg-1/LDHA, whereas Ac-ADKP had no effect (Figure 5A,B).
Western blotting (Figure 5C) indicated that silica activated HK2, PKM2, and LDHA expres-
sion and increased the expression of iNOS, TNF-α, Arg-1, IL-10, and MCP1 in NR8383
macrophages. Ac-SDKP treatment reversed all SiO2-induced effects, whereas Ac-ADKP
had no effect. Then, the concentration of lactate in the cell culture medium was measured.
The results showed that Ac-SDKP reduced the increase in lactate production induced
by silica (Figure 5D). Reactive oxygen species (ROS) are essential for the induction and
maintenance of M1/M2 macrophage polarization [19]. We used a fluorescent probe, 2,7-
dichlorodihydrofluorescein diacetate (DCFH-DA), to detect whether Ac-SDKP regulated
the ROS production in macrophages. The results show that silica significantly increased
the intracellular ROS production and was reversed by Ac-SDKP treatment (Supplementary
Figure S1).
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Figure 2. High expression of glycolysis in rats exposed to silica. (A) Positive expression of LDHA in silicotic rats observed
by IHC staining, bars = 200 µm or 50 µm. (B) The co-expression of CD68 and LDHA in silicotic rats was measured by IF
staining, bar = 50 µm. (C) Protein and mRNA expression levels of HK2, PKM2, and LDHA in silicotic rats measured by
Western blotting and qRT-PCR. Data are presented as the mean ± SD. n = 4 per group. C: control 24 w; S: silicosis 24 w.
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Figure 3. Enhanced glycolysis is the crucial metabolic characteristic of silicotic mice. (A) Expression of LDHA in silicotic
mice measured by IHC staining, bars = 200 µm or 50 µm. (B) Protein and mRNA expression levels of HK2, PKM2, and
LDHA in mouse lungs measured by Western blotting and qRT-PCR. Data are presented as the mean ± SD. n = 5 or 4 per
group. C: control 8 w; S: silicosis 8 w.
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Figure 4. Silica treatment increases the level of glycolysis in macrophages. (A) Changes in LDHA expression in NR8383
cells treated with 50, 100, 200, and 250 µg/mL silica measured by IF staining, bar = 50 µm. (B) Levels of HK2, PKM2, LDHA,
iNOS, TNF-α, Arg-1, IL-10, and MCP1 in NR8383 cells treated with 50, 100, 200, and 250 µg/mL silica measured by Western
blotting. * Compared with control group, p < 0.05. Data are presented as the mean ± SD. n = 4 per group. (C) The lactate
content in the culture medium was detected using a lactate assay kit. *Compared with control group, p < 0.05.
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Figure 5. Ac-SDKP attenuates the enhancement of glycolysis in macrophages treated with silica. (A) The co-expression of
MCP1 and LDHA in NR8383 cells was measured by IF staining, bar= 50 µm; (B) The co-expression of Arg-1 and LDHA
in NR8383 cells was measured by IF staining, bar= 50 µm. (C) Protein expression of HK2, PKM2, LDHA, iNOS, TNF-α,
Arg-1, IL-10, and MCP1 in NR8383 cells treated with or without SiO2, Ac-ADKP, and Ac-SDKP. Data are presented as the
mean ± SD. n = 3 per group. (D) The lactate content in the culture medium was detected using a lactate assay kit. C: control;
S: SiO2; AA: Ac-ADKP: SiO2 and Ac-ADKP; Ac: Ac-SDKP: SiO2 and Ac-SDKP.

2.6. Knockdown of Ldha Inhibited Silica-Induced Macrophage Activation

LDHA is a key enzyme in glycolysis regulation. To further investigate the effect of
LDHA, we knocked down the expression of Ldha using small interfering RNA (siRNA).
The results show that siRNA-Ldha#3 clearly exhibits silencing effect, and it was used in
the subsequent experimental study. After the silica treatment, MCP1 and LDHA or Arg-1
and LDHA were co-expressed in macrophages, and the effects of the silica treatment were
inhibited by knockdown of Ldha (Figure 6A–C). SiRNA-Ldha transfection significantly
inhibited the expression of iNOS, TNF-α, Arg-1, IL-10, and MCP1 at baseline and the
silica stimulation level (Figure 6D). The analysis of lactate concentration showed similar
results (Figure 6E). These results indicate that LDHA is involved in the activation of
NR8383 alveolar macrophages. It is documented that LDHA could promote ROS to induce
inflammation [20]. Therefore, we examined the effect of LDHA on ROS production. The
results show that silica significantly increased the intracellular ROS production and was
reversed by siRNA-Ldha (Supplementary Figure S2).
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Figure 6. Knockdown of Ldha inhibits silica-induced macrophage activation. (A) The co-expression of MCP1 and LDHA in
NR8383 cells was measured by IF staining, bar = 50 µm. (B) The co-expression of Arg-1 and LDHA in NR8383 cells was
measured by IF staining, bar =50 µm. (C) Transient transfection of siRNA-Ldha sequence in macrophages. (D) The protein
levels of iNOS, TNF-α, Arg-1, IL-10, and MCP1 in NR8383 cells transfected with siRNA-Ldha and treated with or without
SiO2 were measured by Western blotting. Data are presented as the mean ± SD. n = 3 per group. (E) The lactate content in
the culture medium was detected using a lactate assay kit. NC: negative control; si-Ldha: siRNA-Ldha.

2.7. Ac-SDKP Attenuated High Glycolytic Activity and Macrophage Activation in Rats Exposed
to Silica

We further explored the regulatory effect of Ac-SDKP on glycolysis in rats exposed to
silica. As shown in Figure 7, key glycolysis enzymes, macrophage activation indicators and
lactate concentrations increased in the lung tissue of rats that inhaled silica for 24 weeks.
Treatment with Ac-SDKP attenuated the increase in glycolytic signaling, macrophage
activation indicators and lactate concentrations in silicotic rats.
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Figure 7. Ac-SDKP attenuates high glycolytic activity and macrophage activation in rats exposed to silica. (A) The expression
of LDHA in rats exposed to silica was measured by IF staining, bar = 50 µm. (B) The lactate content in rat lung tissue was
detected using a lactate assay kit. (C) Levels of HK2, PKM2, LDHA, iNOS, TNF-α, Arg-1, IL-10, and MCP1 in silicotic rats
were measured by Western blotting. Data are presented as the mean ± SD. n = 3 per group. C: control 24 w; S: silicosis 24 w;
Ac: Ac-SDKP treatment 24 w.

3. Discussion

Glycolytic reprogramming promotes pulmonary fibrosis because glycolysis is a major
energy driving force for myofibroblast differentiation [7] and activation of macrophages [6],
both of which contribute to lung inflammation and collagen deposition. Some studies have
suggested the potential role of glycolysis in silicosis. However, the role of glycolysis in
silicosis is still unclear. The lactate levels and the protein expression levels of glycolytic
enzymes, including HK2, phosphofructokinase muscle (PFKM), PKM2, and pyruvate dehy-
drogenase kinase isozyme1 (PDK1), were enhanced in TGF-β1-induced MRC-5 fibroblasts
and in mice exposed to silica [8]. The high levels of HK2 and PKM2 in silicotic mice were
attenuated by triiodothyronine (T3) treatment [9]. These studies showed an abnormal level
of glycolytic reprogramming in mice exposed to silica or TGF-β1 treatment. In our previous
study, we also found that the major glycolytic enzymes were altered in silicotic rats [10].
In the present study, we found increased levels of HK2, PKM2, and LDHA in rats that
inhale silica and in silicotic mice. In addition, we found that the expression of LDHA was
mostly in lung macrophages, accompanied by enhancement of inflammatory indicators,
suggesting that silica promotes inflammation and glycolysis in alveolar macrophages.



Int. J. Mol. Sci. 2021, 22, 10063 10 of 14

It is well documented that classical activated (M1) macrophages mainly rely on gly-
colysis to provide energy and play a proinflammatory role; alternatively activated (M2)
macrophages preferentially utilize oxidative phosphorylation to promote the repair of tis-
sue damage [21]. Furthermore, bone marrow-derived macrophages mainly rely on glycoly-
sis to participate in the inflammatory response, while tissue-resident macrophages mainly
rely on oxidative phosphorylation and are not sensitive to glycolysis [22,23]. However,
accumulating evidence suggests that macrophage metabolism is not as simple as previously
thought [24]. In this study, we found that the markers of M1 and M2 macrophages all
increased in rats exposed to silica for 24 weeks, suggesting lung inflammation regulated by
M1 macrophages and a profibrotic effect regulated by M2 macrophages have vital roles
in this stage of silicosis. The in vitro study also showed increasing levels of iNOS, TNF-α,
Arg-1, IL-10, and MCP1 in NR8383 alveolar macrophages. These results suggest that
glycolysis contributes to the regulation of macrophage in silicosis to promote activation of
M1/M2 macrophages.

In previous studies, the mRNA and protein expression levels of LDHA were increased
in rats that inhaled silica [10,11]. As the key enzyme in glycolysis, LDHA preferentially
converts pyruvate to lactate. The levels of LDHA and its metabolic product, lactate, were
increased in patients with IPF, bleomycin-induced mice, and radiation-induced mice, TGF-
β-induced lung fibroblasts, and cystic fibrosis lung epithelial IB3-1 cells [25–28]. FX11,
a specific LDHA inhibitor, reduced the lipopolysaccharide (LPS)-activated expression of
interleukin-6 (IL-6), iNOS, and cyclooxygenase-2 (COX-2) and suppressed the production
of IL-6 and nitrites [27]. In this study, we also found high levels of LDHA and lactate in
silicotic models, suggesting the potential effect of LDHA on silicosis. Then, we found that
the silencing of Ldha inhibited the high levels of iNOS, TNF-α, Arg-1, IL-10, and MCP1
in NR8383 alveolar macrophages induced by silica exposure. These results show that the
inhibition of glycolysis reduces silica-induced inflammation.

Ac-SDKP is an anti-inflammatory tetrapeptide released from thymosin-β4 by the
sequential action of meprin-α and prolyl oligopeptidase (POP), and it is cleaved by
angiotensin-converting enzyme (ACE) [29]. In preclinical studies, Ac-SDKP protected
from a wide range of lung, kidney, and cardiovascular injury models and demonstrated
anti-inflammatory properties, decreasing the infiltration by macrophages and neutrophils,
nuclear factor kappa-B (NF-κB) activation or inflammatory molecules, as well as antifibrotic
effects [29]. Studies have shown that the anti-fibrosis properties of Ac-SDKP are partly me-
diated by its anti-inflammatory activity, i.e., inhibiting the differentiation of bone marrow
stem cells to macrophages, the activation and migration of macrophages, inflammatory
signaling pathways, and the release of cytokines [30–32]. A recent study also showed that
Ac-SDKP disrupts the defective metabolism-linked mesenchymal transformation to exert
antifibrotic effect on diabetic kidney, and glycolysis inhibitors could elevate Ac-SDKP to
reverse kidney fibrosis [18]. This study showed a potential relationship between Ac-SDKP
and glycolysis and documented that the inhibition of glycolysis reduces organ fibrosis by
increasing the level of Ac-SDKP. In this study, we found that Ac-SDKP treatment inhibited
the enhancement of glycolysis and activation of macrophages induced by silica, suggest-
ing that Ac-SDKP produces anti-inflammatory and anti-fibrotic effects by the inhibition
of glycolysis.

4. Materials and Methods
4.1. Animal Experiments

All procedures used in this study were reviewed and approved by the Committee on
the Ethics of North China University of Science and Technology (LX2019033) and complied
with the US National Institutes of Health Guide for the Care and Use of Laboratory
Animals [3]. Specific pathogen-free (SPF) adult male Wistar rats (160 ± 10 g) were obtained
from Beijing Vital River Laboratory Animal Technology Co. Ltd. Rats were housed in
SPF conditions with a daily light/dark cycle of 12 h light and 12 h darkness. Water and a
standard laboratory diet were given ad libitum [33].
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The silicosis rat model was established using the HOPE-MED8050 dynamic dust
pollution control system (HOPE Industry and Trade, Tianjin, China) [3,34]. The rats were
randomly divided into 3 groups with 10 rats in each group: (1) control group: inhaled
pure air for 16 weeks and treated with 0.9% normal saline for 8 weeks; (2) silicosis group:
inhaled 50± 10 g/m3 of silica (s5631; Sigma-Aldrich, St. Louis, MO, USA; ground and then
heated at 180 ◦C for 6 h) daily for 16 weeks, and then treated with 0.9% normal saline for
8 weeks; and (3) Ac-SDKP treatment group: inhaled silica for 16 weeks, and then treated
with 800 µg/kg/d Ac-SDKP (H-1156; Bachem AG, Torrance, CA, USA) until 24 weeks.
Ac-SDKP or 0.9% saline was delivered at an average flow rate of 0.11 µL/h via mini osmotic
pumps (Alzet 2ML, DURECT, Co. Ltd., USA) implanted into the abdominal cavity of rats.
Lung tissue samples were collected at the end of the experimental periods.

Eight-week-old SPF male C57BL/6 mice were purchased from Vital River Laboratory
Animal Technology. Mice were randomly divided into two groups (n = 6). The control
group mice received 50 µL saline instillation, and mice in the silicosis group received a
one-time dose of SiO2 (5 mg/mouse) [2,35].

4.2. Cell Culture and Treatments

NR8383 alveolar macrophages was purchased from the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China) and cultured in 25 cm2 flasks in Ham’s F-12K
medium (L450KJ; Shanghai BasalMedia Technologies Co., Ltd. Shanghai, China) [2]. After
serum starvation for 24 h, 10 nmol/L Ac-SDKP or 10 nmol/L Ac-ADKP (PCM10745-0912;
Pepmic, Suzhou, China) [3] was added 1 h prior to SiO2 treatment and then the cells were
co-treated for another 24 h in serum-free medium.

4.3. Cell Transfection

Transient transfections were carried out using Lipofectamine 2000 reagent (2319729,
Invitrogen, USA) according to the manufacturer’s instructions [1,36]. The silencing se-
quences of Ldha were designed and synthesized by RiboBio Co., Ltd. (Guangzhou, China).
Cells were subjected to serum starvation for 1 h and then transfected with siRNAs targeting
Ldha or the negative siRNA control. The target sequences of the siRNA-Ldha were derived
from following sequences: (1) siRNA-Ldha GCTTGTGCCATCAGTATCT; (2) siRNA-Ldha
GGGAGAGATGATGGATCTT; and (3) siRNA-Ldha TCCCATTTCCACCATGATT.

4.4. Immunohistochemistry and Immunofluorescence Staining

Immunohistochemistry staining was performed using previously reported proto-
cols [37,38]. The antigen was retrieved using the heat-induced antigen retrieval method,
and then 3% hydrogen peroxide was used to quench the endogenous peroxidases. The
sections were subsequently incubated with the primary antibody against LDHA (1:100 di-
lution, DF6280, Affinity) overnight at 4 ◦C. The following day, the sections were incubated
with the secondary antibody (PV-6000, Beijing Zhongshan Jinqiao Bio-technology Co. Ltd,
China) at 37 ◦C for 30 min. Immunoreactivity was visualized using DAB (ZLI-9018; Beijing
Zhongshan Jinqiao Biotechnology Co. Ltd.). Cells with brown staining were considered
LDHA-positive. Results were visualized by light microscopy. For immunofluorescence
staining, paraffin sections of the lung tissue and cell samples were incubated with LDHA,
CD68 (ab201340, Abcam)/LDHA, MCP1 (RM01549, ABclonal)/LDHA and Arg-1 (610708,
BD)/LDHA overnight at 4 ◦C. The following day, samples were incubated with the sec-
ondary antibody at 37 ◦C for 40 min. Nuclei were stained with DAPI (8961s; Cell Signaling
Technology, Inc., Danvers, MA, USA).

4.5. Western Blotting

Western blotting was performed using published protocols [2,3,33] with antibodies
directed against HK2 (A01389, Boster), PKM2 (BM4601, Boster), LDHA (DF6280, Affinity),
iNOS (ARG56509, arigo), TNF-α (GTX110520, GeneTex), Arg-1 (610708, BD), IL-10 (DF6894,
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Affinity), MCP1 (A7277, ABclonal), α-tubulin (Tub α, GTX112141, GeneTex), and β-actin
(AC026, ABclonal).

4.6. Quantitative Real-Time PCR (qRT-PCR)

Quantitative RT-PCR was performed as described in previous studies [1,34]. The
primer sequences were as follows: Hk2 forward 5′-CGCAGAGGGGACTTTGACATT-3′ and
reverse 5′-GTTCAGTGAGCCCATGTCGAT-3′; Pkm forward 5′-CAGCAACGCTTGTAGTG
CTC-3′ and reverse 5′-GAAGCAAAGCCCAGAGATGC-3′; Ldha forward 5′-TAACCCAG
AACTGGGCACTG-3′ and reverse 5′-ATGGCCCAGGATGTGTAACC-3′; Gapdh forward 5′-
GGTGAAGGTCGGTGTGAACG-3′ and reverse 5′-CTCGCTCCTGGAAGATGGTG-3′; and
Actb forward 5′-GTCGTACCACAGGCATTGTGATGG-3′ and reverse 5′-GCAATGCCTGG
GTACATGGTGG-3′. The results were calculated using the 2−∆∆CT method.

4.7. Lactate Production Measurement

The lactate concentration in the cell culture medium and harvested lung tissue was
measured using a colorimetric assay. A lactate assay kit (Nanjing Jiancheng Bioengineering
Institute) was used according to the manufacturer’s protocols.

4.8. Detection of ROS

The production of ROS was measured by staining cells with a fluorescent probe DCFH-
DA (Cayman Chemical, USA) according to the manufacturer’s instructions. The cells were
loaded with 10 µmol/L DCFH-DA at 37 ◦C for 30 min. Then, the cells were washed twice
with PBS, and the intensity of DCFH-DA fluorescence was measured using a fluorescence
microscope, with an excitation wavelength of 502 nm and an emission wavelength of
523 nm. The mean fluorescence intensity was analyzed using Image-Pro Plus 6.0 (Media
Cybernetics, Rockville, MD, USA).

4.9. Statistical Analysis

SPSS 20.0 statistical software (SPSS Inc., Chicago, IL, USA) was used to analyze
the data. All data were expressed as the mean ± standard deviation (SD). Two-group
comparisons were made using unpaired Student’s t-test. Multiple group comparisons were
performed by one-way analysis of variance followed by Tukey’s post hoc analysis. Results
were considered statistically significant when p < 0.05 at a 95% confidence interval.

5. Conclusions

In summary, we demonstrated that the abnormal activation of glycolysis is accompa-
nied by the process of silicosis, and Ac-SDKP alleviates pulmonary fibrosis by inhibiting the
expression of glycolytic signals in macrophages. Blocking Ldha antagonizes the occurrence
and development of silicosis by inhibiting macrophage activation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms221810063/s1.
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