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Frank Weilbacher2, Stefan Matschke1, Erik Popp2, Michael Kreinest1*

1 BG Trauma Center Ludwigshafen, Department of Trauma Surgery and Orthopaedics, Ludwigshafen,

Germany, 2 University Hospital Heidelberg, Department of Anesthesiology, Heidelberg, Germany

☯ These authors contributed equally to this work.

* michael.kreinest@bgu-ludwigshafen.de

Abstract

Background

Unstable conditions of the craniocervical junction such as atlanto-occipital dislocation

(AOD) or atlanto-axial instability (AAI) are severe injuries with a high risk of tetraplegia or

death. Immobilization by a cervical collar to protect the patient from secondary damage is a

standard procedure in trauma patients. If the application of a cervical collar to a patient with

an unstable craniocervical condition may cause segmental motion and secondary injury to

the spinal cord is unknown.

The aim of the current study is (i) to analyze compression on the dural sac and (ii) to

determine relative motion of the cervical spine during the procedure of applying a cervical

collar in case of ligamentous unstable craniocervical junction.

Methods and findings

Ligamentous AOD as well as AOD combined with ligamentous AAI was simulated in two

newly developed cadaveric trauma models. Compression of the dural sac and segmental

angulation in the upper cervical spine were measured on video fluoroscopy after myelogra-

phy during the application of a cervical collar. Furthermore, overall three-dimensional motion

of the cervical spine was measured by a motion tracking system.

In six cadavers each, the two new trauma models on AOD and AOD combined with AAI

could be implemented. Mean dural sac compression was significantly increased to -1.1 mm

(-1.3 to -0.7 mm) in case of AOD and -1.2 mm (-1.6 to -0.6 mm) in the combined model of

AOD and AAI. Furthermore, there is a significant increased angulation at the C0/C1 level in

the AOD model. Immense three-dimensional movement up to 22.9˚ of cervical spine flexion

was documented during the procedure.
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Conclusion

The current study pointed out that applying a cervical collar in general will cause immense

three-dimensional movement. In case of unstable craniocervical junction, this leads to a

dural sac compression and thus to possible damage to the spinal cord.

Introduction

The craniocervical junction (CCJ) consists of occiput, atlas, axis, and a complex system of sup-

porting ligaments and synovial joints [1, 2]. CCJ injuries have been identified in 30% of 300

patients with cervical spine injuries [3], and CCJ injuries were postmortem diagnosed in

22.6% of 312 deceased traffic victims [4]. Among these, atlanto-occipital dislocation (AOD)

is considered as a severe and fatal injury in cervical spine that only few patients survive

[5–11]. The incidence of AOD may be as high as 6% up to 10% in fatal cervical spine injuries

[12, 13].

The purely severe ligamentous injury of CCJ may occur as an isolated AOD, or as a com-

bined injury. An increasing number of patients suffering from AOD combined with atlanto-

axial instability (AAI) have been reported [9, 10, 14–17]. The combined distractive injury may

result from a high-energy trauma [10]. A previous study suggested that the combination of

AOD and AAI was diagnosed in 35% of patients with CCJ distractive injuries [17]. Distractive

CCJ injury is frequently associated with significant neurological deficits and a high rate of

mortality as a consequence of spinal cord injury, brainstem injury or vascular injury [5, 16,

18]. Since improvements of cervical spine immobilization, increased recognition and more

progressive treatment, mortality rate and neurological deficit of distractive CCJ injury have

diminished in recent years [7, 19].

Traditionally, cervical spine immobilization is a standard procedure in trauma patients and

is recommended by relevant treatment protocols [20] and guidelines [21]. As a common

immobilization technique, cervical collars have been widely applied in pre-hospital care and

emergency department care, specifically intended to restrict the cervical spine in a neutral

position and to protect the cervical spinal cord from secondary injury.

However, there is no supporting evidence that cervical collars can effectively protect the

spine from intervertebral motion within unstable CCJ [22]. Furthermore, a study performed

by Lador et al. demonstrated that the application of a collar may generate intervertebral

motions and may shift the axis of rotation of the unstable cervical spine [23]. Another cadav-

eric study shows an increased distraction after the application of a cervical collar in the pres-

ence of severe distractive CCJ injury [24]. Moreover, the application of a cervical collar is

associated with further disadvantages such as impeded airway management [25, 26] and com-

pression of the jugular veins [27] leading to a significant increase in intracranial pressure [28–

32]. Thus, recent immobilization protocols are more restrictive towards the use of cervical col-

lars [33, 34]. Current literature also reports that there are some deficits concerning the practi-

cal skills of a collar’s application [35] that may lead to reduced spinal immobilization [36]. If

the procedure of applying a cervical collar to a patient with unstable CCJ may cause segmental

motion and secondary injury to the spinal cord is unknown.

Thus, the aim of the current study is (i) to analyze compression on the dural sac and (ii) to

determine relative motion of the cervical spine during the procedure of applying a cervical col-

lar in case of unstable CCJ in two new cadaveric models.

Motion and dural sac compression in the upper cervical spine
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Materials and methods

The study proposal was approved by Ethics Committee of the State Medical Association

Rhineland-Palatinate (Mainz, Germany; Registry No. 837.156.16). The study was registered in

the German Clinical Trials Register (ID: DRKS00010499; S1 Trial Register).

We recruited fresh cadavers from the body donation program at Heidelberg University.

Members of the public donated their body after death and provided written informed consent

for the cadavers to be used in medical research and education.

Eligibility criteria

Fresh cadavers were frozen shortly after mortem and thawed to room temperature for simulat-

ing the elasticity of joints and soft tissues in living situation. Recent studies of cadaver biome-

chanics postulate no significant differences between fresh cadavers and patients towards

cervical spine motion [37–40]. Cadavers with a postmortem interval of less than 5 days were

eligible for the study. Before enrolled, we checked exclusion criteria (cervical spine disease, cer-

vical spine surgical history, neck trauma) by reviewing the medical records of the donors. Fur-

thermore, cervical spine fluoroscopy was performed on every cadaver to exclude degenerative

diseases or injuries to the cervical spine.

Cadaveric CCJ instability models

To our knowledge, there are only few cadaver studies that have formally reported to create an

AOD model or a combined model of AOD and AAI in an intact cadaver so far [23]. Our study

developed two cadaveric models by referring to the anatomical studies about the CCJ.

AOD cadaveric model. Atlanto-occipital (C0/C1) articulation stability is maintained by

the most upper crucial ligaments involving the alar ligaments, the tectorial membrane, and the

atlanto-occipital joint capsule [41, 42]. Disruption of these structures is required in AOD. A

posterior surgery was performed on upper cervical spine (Fig 1A). Cadaver was positioned

prone in hyperflexion. A midline incision of approximately 12 cm was made starting at the

occiput (Fig 1A). To expose occiput and anterior arch of C1, atlanto-occipital membrane was

severed and removed (Fig 1A). Then, atlanto-occipital joint capsules have been prepared (Fig

1A); the joints have been opened and distracted by a small chisel (not shown in Fig 1A). After-

wards, the dural sac was protected to the medial side and tectorial membrane was cut horizon-

tally at the level between basion and dens (Fig 1E) by a small scalpel via both lateral atlanto-

occipital spaces (LAOS, Fig 1A).

The instability of the model was confirmed by lateral video fluoroscopy during flexion and

extension. According to the consensus statement of measurement for upper cervical spine

injuries [43–45], a basion-dental interval (BDI) of more than 12 mm was diagnosed as AOD

(Fig 1C). BDI is measured through the distance between basion and tip of dens [43–45].

Combined model of AOD and AAI. Transverse ligament serves as a stabilizer of atlanto-

axial (C1/C2) articulation by attaching the odontoid process to the anterior arch of C1 [46–

48]. The complete rupture of transverse ligament causes an AAI. A further posterior surgery

was performed on the cadavers with AOD. Atlanto-occipital joints were distracted again.

Then, the dural sac was protected to the medial side and transverse ligaments were cut verti-

cally at the level of the dens by a small scalpel via both lateral atlanto-occipital spaces (LAOS,

Fig 1A). Additionally, atlanto-axial joint capsules were opened and distracted by a small chisel

(not shown in Fig 1A).

The combined model of AOD and AAI was confirmed by lateral video fluoroscopy during

flexion and extension. If atlanto-dens interval (ADI) is measured more than 3 mm AAI is diag-

nosed (Fig 1D) as firstly described by Hinck et al. [49] and widely recommended [43, 50–52].
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The distance at the midpoint line between the posterior border of anterior arch of C1 and ante-

rior border of the dens was measured as ADI.

Myelography and video fluoroscopy

The cadavers were positioned prone and a mini-incision surgery was performed to expose

dural sac in upper thoracic spine via posterior approach. A subarachnoid space puncture was

performed and a tube was placed cranially. Contrast medium (Optiray, 300 mg/ml, Mallinck-

rodt, Germany) was pump injected through the tube into dural sac. Myelography under video

fluoroscopy (Veradius C-Arm, Philips, Netherlands) was used (Fig 1B) to directly measure the

real-time changes of the dural sac’s width during the procedure of applying a cervical collar.

Thus, myelography provides clear information about dural sac compression caused by soft tis-

sues or bony structures [53, 54].

During fluoroscopy, distance of the C-Arm to the cadavers’ cervical spine was set to 30 cm.

Central ray orientation was standardized and a measuring reference was fixed at every

cadaver.

Intervention

All cervical collars (Stifneck Select, Laerdal Medical, Puchheim, Germany) were adjusted to

their correct size before the procedure of application started. All collar applications were per-

formed in random order by two emergency physicians who attended a special training on the

treatment of trauma patients [55]. The intervention providers were blinded from fluoroscopic

images and wireless human motion tracker system during the entire experiment. The baseline

data of all CCJ conditions had been gathered prior to application of the intervention.

Measurements

Width of dural sac. This study was primarily designed to measure the change of the dural

sac’s width (WDS). We assessed the dural sac space by directly measuring width of dural sac in

sagittal plane on myelographic views. WDS was defined as the narrowest distance of the dural

sac in the injured level (C0/C1 or C1/C2) during the procedure of applying a cervical collar

(Fig 1E). Negative values of change in WDS represent the amount of dural sac compression.

Angulation. The angle of intersection of reference lines on each vertebral body was mea-

sured as angulation of each cervical spine segment [37, 56, 57]. Angulation at C0/C1 segment

(Fig 1E, A0) was measured through the angle of intersection between the line drawn from

basion to opisthion and midpoint line of C1. Angulation at C1/C2 segment (Fig 1E; A1) was

measured through the angle of intersection between midpoint line of C1 and inferior endplate

line of C2. The neutral position before any manipulation was recorded as baseline, we defined

flexion as positive values and extension as negative values.

Distraction. Distraction at C1/C2 level was measured through the perpendicular distance

between the posterior ring of C1 and the superior spinolaminar line of C2 [56] (Fig 1E; Di).

The neutral position before any manipulation was recorded as baseline.

Overall motion of cervical spine. Overall motion of cervical spine during the procedure

of cervical collar application was assessed by measuring the changes of the head relative to

the trunk [58] by wireless human motion tracker system (Xsens Technologies, Enschede,

Fig 1. The cadaveric model: Creation, confirmation and measurement. View of the anatomic landmarks to create the cadaver

models (A). Video fluoroscopy and myelography allows analyzation of all bony structures and the dural sac (B) as well as the

confirmation of AOD model (C) and AOD + AAI model (D). Schematic drawing about the measurements in the upper cervical

spine (E) and the placement of the wireless human motion tracker system (F).

https://doi.org/10.1371/journal.pone.0195215.g001
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Netherlands). The 3-Dimension measurements involve extension/flexion as well as rotation

and lateral bending. Two inertial measurement units (IMUs) were placed on the forehead and

sternum of each cadaver, respectively (Fig 1F). The neutral state of each cadaver positioned

supine on a table before maneuvers was marked as baseline. Flexion was defined as positive

values. We assessed rotation and lateral bending using absolute values, regardless of right or

left rotation and right or left lateral bending.

Sample size and statistics

Sample size calculation. The data from preliminary pilot experiments (data not shown)

demonstrate standard deviation (SD) value of 0.2 mm for the change of dural sac’s width dur-

ing the procedure of applying a cervical collar. Mid-sagittal diameter of subarachnoid space at

C0/C1 level is 8–9 mm [59]. A sample size of six cadavers for each model was calculated to

detect a 0.3 mm difference for the change in the width of the dural sac during the procedure of

applying a cervical collar (α = 0.05, power of 90%).

Statistical analysis. Wilcoxon signed rank test was used to make pairwise comparisons in

stable versus unstable CCJ conditions. Mann-Whitney test was used to make non-paired com-

parisons between C0/C1 segment and C1/C2 segment. α< 0.05 was set as significant. All val-

ues are reported as median (range). Data were analyzed using SPSS Statistics 22.0 (IBM,

Ehningen, Germany).

Results

Cadaveric CCJ instability models

In a pilot study, surgical technique was first tested and improved on two formalin-fixed cadav-

ers (data not included in this study). In the current study, six fresh cadavers (one female and

five male) were involved. Age at death was 82 years (76–100 years). All cadavers showed a

physiological range of mobility of the cervical spine. After measuring intact cadavers (stable

CCJ condition), the ligamentous AOD model could be implemented successfully in all six

cadavers confirmed by BDI (Fig 1C). Following the measurements with cadaveric ligamentous

AOD model, a second surgery for combined ligamentous instability of AOD and AAI was per-

formed. This combined model of AOD and AAI could be implemented successfully in all six

cadavers confirmed by ADI (Fig 1D). Dural sac was preserved intact in all cases, confirmed by

myelographic measurements (Fig 1B, 1C and 1D).

Compression on dural sac

Compared to the stable CCJ condition (Fig 2B), application of cervical collars in the AOD

model (Fig 2C) resulted in a significant (p = 0.028) dural sac compression of -1.1 mm (-1.3 to

-0.7 mm) at C0/C1 level (Fig 2E). In the combined model of AOD and AAI (Fig 2D) the dural

sac was significantly (p = 0.028) compressed of -1.2 mm (-1.6 to -0.6 mm) at C0/C1 level com-

pared to the stable CCJ condition (Fig 2E).

The analysis of change in WDS at C1/C2 level did not show any significant compression on

the dural sac in the AOD model as well as in the combined model of AOD and AAI (p = 0.893

and p = 0.833, respectively; Fig 2F).

Relative intervertebral motion

Angulation. Compared with stable CCJ, a significant (p = 0.028) increased angulation

(Fig 1E; A0) of 4.9˚ (3.8–7.0˚) was measured at C0/C1 segment in the AOD model (Fig 3A). In

the more unstable CCJ condition of the combined model with AOD and AAI, there was no
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significant (p = 0.116) difference in the change of angulation at C0/C1 level (Fig 3A). At C1/C2

level, intervertebral motion by the means of angulation (Fig 1E; A1) was not increased in both

of the models (AOD: p = 0.345, AOD + AAI: p = 0.463; Fig 3B).

Distraction. Measuring the distraction (Fig 1E; Di) in the upper cervical spine during the

application of a cervical collar, C1/C2 level was pulled apart 0.91 mm (0.64 to 1.75 mm) in case

of stable CCJ condition. No significant changes have been seen in the AAO model (0.66 mm;

p = 0.273) or in the combined model of AOD and AAI (1.10 mm; p = 0.500) as shown in S1 Fig.

Overall motion of cervical spine

Overall cervical spine movement was measured during collar application. Fig 4A shows a repre-

sentative measurement during the procedure of applying a collar to a cadaver with combined

instability at C0/C1 and C1/C2 level (AOD + AAI): The cervical spine was first extended (blue

line; negative values) before put in flexion. Furthermore, the cervical spine was rotated (red line)

and laterally bended (green line) to the right (positive values). Mean overall cervical spine flexion

during collar application was 12.5˚ (5.4–18.7˚) in cadavers with a stable CCJ (Fig 4B). In case of

AOD or combined instability AOD and AAI, overall cervical spine flexion did not change signifi-

cantly to 15.1˚ (11.8–22.9˚; p = 0.249) and 15.7˚ (9.3–22.1˚; p = 0.249), respectively (Fig 4B).

During the procedure of applying a cervical collar rotation of 11.0˚ (3.6–17.3˚) occurs in

cadavers with stable CCJ condition (Fig 4C). There was no increase of rotation in the AOD

model (10.3˚; 2.3–17.1˚; p = 0.753) or the combined model of AOD and AAI (14.5˚; 3.8–19.1˚;

p = 0.116).

Measuring of lateral bending reveals movement of 7.9˚ (3.9–13.8˚) if CCJ was stable (Fig

4D). In case of instability, 11.4˚ (4.0–16.8˚; p = 0.345) and 9.9˚ (3.4–14.8˚; p = 0.600) lateral

bending motion have been measured in the AOD model and the combine model of AOD and

AAI, respectively (Fig 4D).

Fig 2. Compression of dural sac measurement. Myelographic views from fluoroscopy data showed WDS in neutral position (A,

measured as baseline), and narrowest WDS during cervical collar application on stable CCJ (B), AOD model (C) and combined

model of AOD and AAI (D). Overall changes in WDS at C0/C1 level (E) and C1/C2 level (F).

https://doi.org/10.1371/journal.pone.0195215.g002

Fig 3. Angulation measurement. The change in angulation from baseline at C0/C1 level (A) and C1/C2 level (B) during

cervical collar application.

https://doi.org/10.1371/journal.pone.0195215.g003
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Comparison between the two upper segments of cervical spine

Comparisons for change in WDS and angulation between C0/C1 segment and C1/C2 segment

in each CCJ condition (Table 1) revealed significantly more compression on the dural sac at

the C0/C1 level in both models (AOD: p = 0.002, AOD + AAI: p = 0.002; Fig 5A). Further-

more, intervertebral angulation is significantly increased at C0/C1 level (AOD: p = 0.004,

AOD + AAI: p = 0.002; Fig 5B).

Discussion

Millions of trauma patients are equipped with a cervical collar by emergency medicine person-

nel every year [22]. Usually, in the prehospital setting the existence of a cervical spine injury

reveals unclear. Studies suggest that spinal injuries are the most underestimated injuries in

trauma patients [60, 61]. Thus, application of a cervical collar remains nowadays a standard

Fig 4. Spinal motion measurement. Overall motion of cervical spine during cervical collar application in 3-dimention orientation (A).

Mean values of flexion (B), rotation (C), and lateral bending (D).

https://doi.org/10.1371/journal.pone.0195215.g004
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procedure in prehospital trauma care, recommended by recent protocols [20] and guidelines

[21].

Dural sac compression

One of the most severe injuries of the upper cervical spine is AOD. Current studies suggest

that AOD may be often combined with an additional AAI [9, 10, 14–17]. However, in any case

AOD seems to be responsible for a high mortality [5, 16, 18]. The current study shows that in

case of such a severe ligamentous injury of the upper cervical spine the compression of the

dural sac is significantly increased during the application of a cervical collar. Compression of

the dural sac up to 1.6 mm were measured in the current study. It remains unclear what exact

amount of compression of the dural sac will cause spinal cord damage. Eismont et al. postu-

lated that at the C2 level a reduction of the spinal canal’s width of 2 mm may lead to neurologi-

cal deficits and reduction of 3.4 mm may lead to complete tetraplegia [62]. Since we did not

measure the spinal canal’s width but direct compression on the dural sac, spinal cord damage

in our trauma models during cervical collar application could not be completely ruled out.

Furthermore, additional bony instability such as C1 and C2 fractures that have not been tested

in the current study can increase compression on the spinal canal. Especially in patients

Table 1. Data of the comparison between the two upper segments of the cervical spine in all CCJ conditions.

C0/C1 level C1/C2 level p-value

Change of WDS in stable CCJ [mm] -0.2 (-0.5 to 0.1) -0.1 (-0.4 to 0.1) 0.999

Change of WDS in AOD [mm] -1.1 (-1.3 to -0.7) 0.0 (-0.5 to 0.1) 0.002

Change of WDS in AOD + AAI [mm] -1.2 (-1.6 to -0.6) 0.0 (-0.4 to 0.1) 0.002

Change of angulation in stable CCJ [˚] 3.3 (2.9 to 4.7) 2.1 (1.0 to 4.2) 0.093

Change of angulation in AOD [˚] 4.9 (3.8 to 7.0) 3.1 (1.2 to 4.1) 0.004

Change of angulation in AOD + AAI [˚] 4.4 (3.7 to 5.9) 2.9 (1.1 to 3.4) 0.002

See S1 Table for detailed statistical analysis.

https://doi.org/10.1371/journal.pone.0195215.t001

Fig 5. Comparison between C0/C1 segment and C1/C2 segment. Changes in WDS (A) and angulation (B) at different levels of the upper cervical

spine during cervical collar application.

https://doi.org/10.1371/journal.pone.0195215.g005
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suffering from degenerative conditions such as rheumatoid arthritis or ankylosing spondylitis

spinal canal may be additionally narrowed [63]. However, from clinical experience injuries of

the upper cervical spine that are highly suspected to be unstable due to immense dislocation

and stenosis of the spinal canal could be associated without any neurological deficits [64]. One

reason for this phenomenon could be the mid-sagittal diameter of subarachnoid space within

the dural sac at C0/C1 level that has been reported to be 2.5–5.4 mm in anterior aspect and

3.8–6.5 mm in posterior aspect [59]. According to the results of our study, spinal cord damage

caused by the application of a cervical collar in patients with injury only at C0/C1 level seems

to be unlikely. But taking into account the reported large individual variations in subarachnoid

space diameter general conclusions are not allowed.

Cervical spine motion

As mentioned before, cervical collars are applied to restrict the cervical spine in a neutral posi-

tion and to protect the cervical spinal cord from further movement during transport. Accord-

ing to our results, maximum flexion of the cervical spine up to 22.9˚ has been documented

during the application of a cervical collar by professional emergency doctors in case of liga-

mentous upper cervical spine injury. Furthermore, up to 19.1˚ of rotation and up to 16.8˚ of

lateral bending were measured in our cadaver models during the application of a cervical col-

lar. This overall motion of the cervical spine results in a significant increased angulation at C0/

C1 level. Thus, movement of the cervical spine during collar application can add risks to

patients with AOD. However, even if the collar is applied, further movement of up to more

than 30˚ is possible as reported by the literature [65]. Since patients with rheumatoid arthritis

demonstrated more cord impingement during flexion than during other motions [66],

increased angulation could at C0/C1 level should be avoided.

Other cadaver studies found a severe distraction between C1 and C2 during the application

of a cervical collar in an upper cervical spine injury model [24]. These data could not be con-

firmed by our study. The main reason for this discrepancy may be differences in the traumatic

cadaver model. Ben-Galim et al. added an odontoid fracture to their model [24] whereas the

current study focuses on a ligamentous instability model without any bony fractures.

Cadaveric CCJ instability models

Recent studies of cadaver biomechanics reported a non-significant difference in cervical spine

motion between intact fresh cadavers and living patients in both stable and unstable cervical

spine [37–40]. Thus, results of fresh cadaver studies seem to be of some relevance to the clinical

situation. However, absence of the protective effect of active muscles and some other bio-

mechanical properties of soft tissues and cervical joints in fresh cadavers will never fully repre-

sent living patients.

In the current study we developed two new basic models of ligamentous instability of the

upper cervical spine. Both models have been evaluated by anatomical measurements in fluo-

roscopy images as described by the literature [43–45]. Thus, the current study provides two

traumatic cadaver models for further tests on purely ligamentous instability of the upper cervi-

cal spine. To our knowledge there is no model of ligamentous AOD nor of combined ligamen-

tous instability of AOD and AAI described so far. Since instability of the C0/C1 and C1/C2

levels seem to be a common combination of injury [9, 10, 14–17], further studies should focus

on this combined model. Despite the fact that the spinal canal is wider at the upper level of C0/

C1 [59], significant more compression of the dural sac as well as significant increased angula-

tion have been seen in the direct comparison of the two levels of injury.
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Limitations

Caused by the posterior surgical approach alar ligaments could not be severed. Thus, one of

the major stabilizer of the C0/C1 level [41, 42] is remaining in the described models limiting

the created instability of the upper cervical spine. Furthermore, the current study is limited to

some extend based on the study design: Analysis of the fluoroscopy images could not be

blinded completely towards the CCJ condition since BDI and ADI values were too obvious.

Thus, investigator bias could not be excluded completely.

Conclusion

The current study determined that applying a cervical collar in general will cause immense

three-dimensional movement. In case of instability of the upper cervical spine, this leads to a

dural sac compression and thus to possible damage to the spinal cord. Especially in patients

with a cervical spine injury and additional degenerative cervical spinal stenosis other possibili-

ties of cervical spine immobilization should be considered.
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