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Simple Summary: Liver cancer is one of the most devastating human malignancies worldwide,
especially in Asia, where over 70% of new cases are diagnosed. Most liver cancers are classified as
hepatocellular carcinoma (HCC). HCC patients usually present at an advanced stage and have very
poor prognosis due to the inaccessibility of curative treatments and ineffective systemic therapies.
Fortunately, recent clinical trials using checkpoint inhibitor (ICI) immunotherapy have obtained
promising results to significantly prolong the overall survival of patients and improve quality of life.
In this review, we summarize the recent efforts of ICI-related clinical trials and also point out the
future directions of ICI-related immunotherapy for HCC.

Abstract: HCC usually arises from a chronic inflammation background, driven by several factors
including fatty liver, HBV/HCV viral infection and metabolic syndrome. Systemic treatment for
advanced HCC remains disappointing due to its strong resistance to chemotherapy and even to
tyrosine kinase inhibitors (TKIs). Recently, the use of ICI therapy has revolutionized the systemic
treatment of advanced HCC. For the first time, clinical trials testing ICIs, anti-CTLA-4 and anti-
PD1/PDL1 reported a survival benefit in patients with sorafenib resistance. However, it took four
more years to find the right combination regimen to use ICI in combination with the anti-angiogenic
agent bevacizumab to substantially prolong overall survival (OS) of patients with advanced HCC
after sorafenib. This review provides a comprehensive history of ICI therapy in HCC, up-to-date
information on the latest ICI clinical trials, and discusses the recent development of novel ICIs that
would potentially lead to a new checkpoint blockade therapy for advanced HCC.
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1. Introduction

Hepatocellular carcinoma is the most prevalent form of liver cancer in the world [1].
Annually, HCC affects approximately 900,000 individuals, and over 70% of new cases are
diagnosed in Asia [2]. The etiology of HCC is complicated due to the multiple risk factors
involved [3]. HCC usually arises from a background of chronic liver disease caused by
alcohol abuse, metabolic syndrome, hepatitis B or C infections and/or aflatoxin exposure
that eventually scars the liver parenchyma, leading to the irreversible condition of liver cir-
rhosis and the subsequent development of HCC [4]. Most HCC patients are diagnosed with
advanced disease, and the majority of them are unresectable due to the early dissemination
of cancer cells inside the liver. HCC tends to grow near blood vessels such as the portal vein
or hepatic vein, which makes surgery an impossible task. α-Fetoprotein (AFP) is commonly
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used as a serum biomarker for early detection of HCC and also for evaluation of the progno-
sis and monitoring of response to therapy [5,6]. Systemic chemotherapy for many years is
ineffective and therefore not an option for HCC, due to the highly resistant nature of HCC.
Locoregional therapies including percutaneous ablation, transarterial chemoembolization
(TACE) and radioembolization serve as the main alternative therapies, but largely depend
on tumor location, burden and other complications [7]. Ablation is the first line option
over surgery for unresectable HCC; however, treatment outcome is still disappointing and
recurrence is often seen. In 2008, a tyrosine kinase inhibitor (TKIs), sorafenib, was the
first approved targeted therapy to be used as a first-line drug to treat advanced HCC [8].
Subsequently, three additional TKIs, lenvatinib, regorafenib and cabozantinib, have been
approved and become available for use in first-line and second-line settings and found
to provide beneficial effects and prolonged survival [9,10]. Despite of the application of
TKI therapy, median survival with advanced HCC remains unsatisfactory at less than
two years [7,11]. Recently, ramucirumab, a therapeutic monoclonal antibody drug that
acts against vascular endothelial growth factor (VEGF) receptor 2, has shown significant
survival benefits in patients with increased AFP (>400 ng/mL) after sorafenib [12]. A
VEGF-neutralizing antibody, bevacinumab, has also proven effective in a single-agent
phase II trial in HCC patients. However, serious bleeding complications were observed in
11% [13].

Immune surveillance plays an important role in identifying and eliminating normal
cells that become malignant. As when fighting invading pathogens, the innate and adap-
tive immune systems work together to form an anti-tumor army to destroy cancer cells.
However, the interplay between cancer cells, stromal cells, and infiltrating immune cells
eventually creates an immunosuppressive tumor microenvironment (TME) that leads to
immune evasion, which was previously considered impossible to reverse. There are two
main aspects explaining the formation of an immunosuppressive TME. First, as HCC
progresses, cancer cells recruit immune cells such as myeloid-derived suppressor cells
(MDSCs) or M2 tumor-associated macrophages (TAMs) and FoxP3+ regulatory T cells
(Treg), which are known to help the tumor grow better, by secreting chemokines, cytokines
and growth factors to form a tumor-promoting niche. As a result, the accumulation of
tumor-promoting immunes cells eventually comprises an area of anti-tumor immunity. Sec-
ond, upregulation of co-inhibitory molecules such as immune checkpoint ligand PDL1 and
increased expression of tolerance-related enzymes such as indoleamine 2,3-deoxygenase
(IDO) and arginase-1 in cancer cells or tumor-infiltrating immune cells also contribute to the
formation of immunosuppressive TME. In addition, downregulation of tumor-associated
antigens (TAAs), also known as tumor antigen escape [14,15], and reduced recognition
of TAAs by immune cells through alterations in the antigen-processing machinery both
play a significant role in the promotion of tumor progression [16]. Therefore, immunother-
apies aiming to reverse and overcome the immunosuppressive TME in order to effectively
enhance the activity of tumor-killing immune cells point out the future direction of HCC
therapy.

2. Tumor Microenvironment of HCC

The liver is the organ responsible for the detoxification of gut-derived blood and
systemic circulation. Therefore, the frequent exposure of liver cells to food antigens and
to microbial products generated by gut bacteria shapes the dynamic complexities of a
liver microenvironment that fosters immune tolerance [17]. This tolerogenic milieu is
maintained by liver antigen-presenting cells (APCs), including resident kuffer cells (KCs),
sinusoidal endothelial cells (SECs) and stellate cells (SCs), through the secretion of an
array of immunosuppressive cytokines, chemokines and growth factors [1]. Kuffer cells
are known to express immunosuppressive cytokine IL-10 and IDO, and prostaglandins to
promote Treg activation [18,19]. Myeloid-derived suppressor cells (MDSCs), dendritic cells
(DCs) and regulatory T cells also produce IL-10 to attenuate the ability of APCs to stimulate
T cells and to promote PDL1 expression in monocytes [20]. TGF-β is a well-known soluble
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factor that attenuates the anti-tumor response by inhibiting the activation of dendritic
cells (DCs) [21] and polarizing macrophages towards the M2 phenotype [22], as well as
inducing Treg cell activation [23]. In HCC TME, TGF-β is mainly produced by cancer cells,
Treg cells and macrophages [17]. High serum TGF-β has been linked to poor prognosis of
patients with HCC after sorafenib treatment [24]. SCs-derived hepatocyte growth factor
(HGF) also promotes the infiltration and accumulation of MDSCs and Treg cells inside
the TME [25,26]. Vascular endothelial growth factor (VEGF) produced by cancer cells or
MDSCs plays an essential role in promoting angiogenesis, leading to the formation of an
abnormal tumor vasculature that not only serves as a barrier for cytotoxic T lymphocytes
(CTLs) but disables them by expressing PDL1 and Fas ligand [27–29]. Aside from its role in
inducing abnormal tumor vasculature, Courau, et al. showed that VEGF and TGF-β could
cooperatively foster immunotolerant TME by blunting the antigen-presenting functions of
DC and generating MDSCs [30].

3. Current and Ongoing Strategies of Immune Checkpoint Blockade for HCC

Co-inhibitory molecules expressed by the effector lymphocytes fall into a category
of immune checkpoint which serves the purpose of preventing overactivation of lympho-
cytes upon the engagement of APCs like DCs or macrophages [31]. To evade immune
surveillance, tumor cells exploit this mechanism to express the corresponding ligands
of co-inhibitory molecules to blunt effector T cells or macrophages. Program death 1
(PD1), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), T cell immunoglobulin and
mucin domain containing-3 (TIM3), lymphocyte-activation gene 3 (LAG3), and siglec-10 are
among the most extensively studied immune checkpoints [32,33]. PD1 has been found to be
expressed by activated T cells, nature killer (NK) cells, MDSCs, monocytes and DCs [34–36].
Its corresponding ligand, PDL1, has been found in tumor cells, stromal cells, and myeloid
lineage cells like macrophages and DCs [36]. CTLA4 is predominantly expressed by Treg
cells and only upregulated in activated T cells [37,38]. In addition, the sialic acid-binding
immunoglobulin (Ig)-like lectins 10 (siglec-10) has recently been identified as a new class
of co-inhibitory molecule expressed by macrophages to interact with its corresponding
ligand, CD24, expressed on the tumor surface [33,39].

Approaches taken to blocking the above-mentioned immune checkpoint receptor/ligand
interactions have been considered as a form of immune checkpoint blockade therapy, illus-
trated in Figure 1.
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3.1. Monotherapy

Here, we summarize the current milestones regarding recent clinical trials testing
ICIs as a potential systemic treatment for advanced HCC (Figure 2). The first immune
checkpoint inhibitor (ICI), ipilimumab, the anti-CTLA-4 monoclonal antibody (mAb), was
approved by the U.S. Food and Drug Administration (FDA) in March 2011 for the treatment
of patients with advanced melanoma [40]. In 2013, a pilot clinical trial involving 20 patients
with advanced HCC and a background of chronic hepatitis C virus (HCV) infection who
received tremelimumab treatment, another anti-CTLA-4 mAb, showed promising results
in terms of safety, antitumor and antiviral activity [41]. This encouraging result has led
to the approval of another ICI, the PD1 inhibitor nivolumab, for the treatment of patients
after sorafenib failure in the CheckMate 040 phase I/II clinical trial. In the CheckMate
040 trial (n = 262), durable objective response rate (ORR), defined as the sum of complete
(CR) and partial (PR) response rates, was observed in 20% (95% CI 15–26) in patients
treated with nivolumab 3 mg/kg in the dose-expansion phase and 15% (95% CI 6–28)
in the dose-escalation phase, The median overall survival (OS) in sorafenib-experienced
patients was 16.5 months. Further, the two-year survival rate among the responders was
over 80% [42]. Soon after, nivolumab was approved by the FDA as a second-line systemic
therapy for advanced HCC after sorafenib. Another PD1 inhibitor, pembrolizumab. was
also shown effective and tolerable in patients with advanced HCC after sorafenib in a
non-randomized, open-label phase II trial. ORR was recorded in 17% 95% CI 11–26) of
patients previously treated with sorafenib [43]. Given the consistent results in terms of
anti-tumor activity and safety from different PD1 mAb, a randomized, double-blind, phase
III trial (KEYNOTE 240) (n = 413) testing pembrolizumab versus placebo after sorafenib
failure was launched in a second-line setting. Median OS was 13.9 months (95% CI 11.6–16)
in the pembrolizumab treatment group and 10.36 months (95% CI 8.3–13.5) in the placebo
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group, and a statistically significant survival benefit was observed (Hazard ration HR 0.78;
p = 0.0238) in the final analysis [44]. Although, OS and progression-free survival (PFS) did
not reach the prespecified criteria, the results were in line with KEYNOTE 224, indicating a
favorable risk-to-benefit ratio in the pembrolizumab group. Table 1 summarizes current
important phase III trials involving ICI therapy as a major treatment modality.
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Table 1. Current phase III trials involving ICI monotherapy and combinations of ICIs and TKI or VEGF inhibitors.

Trial Identifier ICI/Isotype Drug Treatment Arm Eligible Patient/Setting Endpoint Ref.

Monotherapies

NCT02702401 PD1/IgG4 Pembrolizumab 1. Placebo
2. Pembrolizumab Advanced HCC/2L Dec. 2022 [44]

NCT02576509 PD1/IgG4 Nivolumab
Sorafenib

1. Sorafenib
2. Nivolumab Advanced HCC/1L June 2021 [45]

NCT03755739 PD1/IgG4 Pembrolizumab
1. Peripheral in fusion

Advanced HCC/1L Nov. 2021 Ongoing
2. Artery infusion

3. Intra-tumor infusion

NCT03062358 PD1/IgG4 Pembrolizumab 1. Placebo
2. Pembrolizumab Advanced HCC/2L Jan. 2022 Ongoing

NCT03412773 PD1/IgG4 Tislelizumab 1. Placebo
2. Tislelizumab Unresectable HCC/1L May 2022 [46]

Combination therapies of ICI and TKI or anti-angiogenic agents

NCT03298451
PD1
CTLA-4
(IgG4)

Durvalumab
Tremelimumab

1. Sorafenib
2. Tremelimumab
3. Tremelimumab plus
durvalumab

HCC BCLC stage B not
eligible for locoregional
therapy/1L

June 2021 [47]
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Table 1. Cont.

Trial Identifier ICI/Isotype Drug Treatment Arm Eligible Patient/Setting Endpoint Ref.

Combination therapies of ICI and TKI or anti-angiogenic agents

NCT03794440 PD1/IgG4
VEGF/IgG1

Sintilimab
Bevacizumab
biosimilar

1. Sorafenib
2. Sintilimab plus
Bevacizumab biosimilar

Advanced HCC/1L Dec. 2022 [48]

NCT03847428 PDL1/IgG1
VEGF/IgG1

Durvalumab
Bevacizumab

1. Combination with
resection/MWA
2. Resection/MWA alone

HCC eligible for curative
resection/MWA/2L June 2023 [49]

NCT03713593 PD1/IgG4
VEGFR

Pembrolizumab
Lenvatinib

1. Lenvatinib
2. Pembrolizumab Advanced HCC/1L July 2022 [50]

NCT03764293 PD1/IgG4
TKI

Camrelizumab
Apatinib 1. Apatinib Advanced HCC/1L Jan. 2022 Ongoing

NCT03434379 PDL1/IgG1
VEGF/IgG1

Atezolizumab
Bevacizumab

1. Sorafenib
2. Atezolizumab plus
Bevacizumab

Advanced HCC/1L June 2022 [51]

HCC: Hepatocellular carcinoma; BCLC: Barcelona Clinic Liver Cancer; 2L: second-line therapy; 1L: first-line therapy; CTLA-4: Cytotoxic
T-lymphocyte-associated antigen 4; MWA: Microwave ablation; PD1: Programmed cell death protein 1; VEGF: Vascular endothelial growth
factor; VEGFR: vascular endothelial growth factor receptor.

In 2019, the phase III study CheckMate 459 compared the clinical efficacy and safety
of nivolumab with sorafenib in 743 patients with treatment-naïve advanced HCC in a
first-line setting [52]. Patients were randomized at a 1:1 ratio to either the nivolumab
or sorafenib arm, with a follow-up of 22.8 months. ORR was 15% for patients who
received nivolumab and 7% for those who received sorafenib. Prolonged survival was
observed in patients after nivolumab, with a median OS of 16.4 months (95% CI 13.9–18.4),
compared to patients after sorafenib with median OS of 14.7 months (95% CI 11.9–17.2)
(HR 0.85; 95% CI 0.72–1.02; p = 0.0752). Although the predefined threshold of statistical
significance for OS was not met (HR 0.84, p = 0.0419) [53], other end point parameters
favored nivolumab over sorafenib, with a better disease control (median 7.5 months versus
5.7 months) and safety profile with fewer treatment-related adverse effects (22% versus
49%). Long-term follow-up of CheckMate 459 has also shown that first-line nivolumab
monotherapy demonstrated clinical meaningful benefit in patients with advanced HCC
at a minimum follow-up of 33.6 months, and that nivolumab had a more favorable safety
profile and better preservation of liver function over the course of treatment as compared
with sorafenib [53]. Given the promising results from the initial attempts with ICIs in HCC,
different mAb targeting PD1/PDL1 have been developed and approved by the U.S. FDA
for the treatment of patients with advanced HCC, and a number of combination strategies
have been considered and tested in current clinical trials [47–51]. (Table 1).

3.2. Combination Therapy

In the CheckMate 040 randomized, open-label, multicohort phase I/II trial testing
nivolumab plus ipilimumab in patients with unresectable HCC after sorafenib, patients
were randomized at a 1:1:1 ratio to three treatment arms: (A) nivolumab 1 mg/kg plusip-
ilimumab 3 mg/kg every three weeks (4 doses in total) followed by nivolumab 240 mg;
(B) nivolumab 3 mg/kg plus ipilimumab 1 mg/kg followed by nivolumab 240mg; or (C)
nivolumab 3 mg/kg every two weeks plus ipilimumab 1 mg/kg every 6 weeks. Although
this study reported higher rates of adverse events with combination therapy of nivolumab
and ipilimumab than previously reported in nivolumab monotherapy [42], nivolumab
plus ipilimumab had manageable safety, promising objective response rate, and durable
response with 32% (16 of 50 patients) ORRs in arm A, 31% (15 of 49 patients) in arm B, and
31% (15 of 49) in arm C. Patients in arm A had the best median OS of 22.8 months, and
highest 30-month survival rate of 44% with better health improvement compared to that in
the other two arms [45]. Four patients in arm A (4 of 49 patients) had a complete response,
as did three patients in arm B (3 of 49 patients) [45]. Based on this clinical finding, the
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arm A regimen received accelerated approval by the U.S. FDA and further investigation of
this regimen as first-line treatment for HCC is underway. Moreover, these results showed
that the PD1/PDL1 and CTLA-4 pathways have a distinct role in modulating immune
activity [54], and also confirmed that CTLA-4 blockade is effective in HCC, as in previous
clinical trials [41,55]. Unlike PD1 and PDL1 inhibitors, dosing and timing seem crucial for
anti-CTLA-4 therapy.

Another clinical trial attempting to target both PD1 and CTLA-4 with the different
mAbs durvalumab (a PD1 inhibitor) and tremelimumab (a CTLA-4 inhibitor) in unre-
sectable HCC also showed promising results; the combination regimen (tremelimumab
300 mg plus durvalumab 1,500 mg followed by durvalumab 1500 mg once every four
weeks) had the best benefit-to-risk profile, with one patient having a complete response
(1.3%, 1/75 patients), 17 patients a partial response (22.7%, 17/75 patients), and 16 patients
stable (21.3%, 16/75 patients) [56]. Based on the phase I/II results, the randomized phase III
HIMALAYA is now under way to assess the efficacy and safety of durvalumab plus treme-
limumab both in combination and as monotherapy versus sorafenib in treatment-naïve
patients with unresectable HCC [47].

Although experiences from ICI clinical trials show that no more than 20% of patients
respond to ICI monotherapy, the treatment efficacy and ORRs of ICI therapy are still far
better than previous TKI-related targeted therapies [57]. Moreover, combined therapy
using nivolumab and ipilimumab has displayed the best ORR (32%) compared to any form
of systemic treatment for HCC.

3.3. Combination Therapy of ICIs and VEGF Inhibitor

VEGF secreted by cancer cells is important in fostering an immunosuppressive TME,
not only because of its role in recruiting endothelial cells to promote tumor angiogenesis
(leading to the formation of abnormal tumor vasculature), but also for its suppressive role
in inhibiting the differentiation and maturation of DCs. [29]. In addition, VEGF is also
known for its suppressive role in inhibiting the differentiation and maturation of DCs [58].
Therefore, strategies aiming at combining anti-VEGF related signaling with ICI therapy
could be the ideal regimen to further overcome the immunosuppressive nature of the TME
by inducing tumor vascular normalization as well as enhancing DC maturation, optimizing
the treatment efficacy of ICI therapy. Recently, two clinical trials that used anti-VEGF and
anti-VEGFR2 antibodies, respectively, as add-on therapies to ICI monotherapy in HCC
have shown encouraging results (Table 2). In IMbrave150, a global, randomized, open-label
phase III clinical trial, 501 patients were randomized at a 2:1 ratio to receive a standard dose
of atezolizumab (1200 mg) followed by a high dose (15 mg/kg) of bevacizumab (anti-VEGF
antibody) every three weeks, or sorafenib. This trial did not include atezolizumab or
bevacizumab monotherapy [51]. This study met its primary end points (both PFS and
OS) at the first interim analysis after a median follow-up of 8.6 months, and therefore
stopped. Survival in the patient arm receiving atezolizumab plus bevacizumab still had
not been reached at the time the first interim ended; however, improved OS (HR 0.58; 95%
CI 0.42–0.79; p = 0.00006) and improved PFS (HR 0.59; 95% CI 0.47–0.76; p < 0.00001) were
observed. It was the first time that a phase III trial study had outperformed sorafenib in
a first-line setting. Furthermore, updated OS data from IMbrave150 showed even more
promising results. The median OS was 19.2 months in the combination therapy arm
versus 13.4 months in the sorafenib arm. A survival benefit with combination therapy over
sorafenib was observed; 52% of patients who received atezolizumab plus bevacizumab
and 40% of patients who received sorafenib had survived after 18 months. The updated
ORR in the combination therapy arm was 29.8% (95% CI 24.8–35.0) according to RECIST
1.1 criteria, which was superior to that in the sorafenib arm (11.3%; 95% CI 6.9–17.3), and
18 patients (5.5%, 18/326 patients) in the atezolizumab plus bevacizumab group had a
complete response, as compared to no patients in the sorafenib group. Notably, patient
health-related quality of life was also significantly improved. A longer median time to
deterioration was observed in the combination treatment arm than in the sorafenib arm,
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11.2 months versus 3.6 months (HR 0.63, 95% CI 0.46–0.85), respectively [59]. More recently,
a similar result was also obtained from a phase II/III trial in China testing a combination
of another ICI, sintilimab, and IBI305, a bevacizumab biosimilar, versus sorafenib as a
front-line treatment for patients with unresectable HBV-associated HCC [48]. This study
also proved that patients with combination treatment (median OS: not reached) also
survived much longer than patients with sorafenib (median OS: 10.4 months). Due to
the lack of a single-agent arm in the above studies, it is uncertain whether anti-PD1 or
anti-VEGF therapy contributed more to the survival benefit of the combination treatment.
Nevertheless, the previous phase 1b study showed that the response rates and PFS of
the atezolizumab plus bevacizumab arm were significantly better than the bevacizumab
treatment arm, suggesting that anti-PD1 may be an indispensable factor in designing future
combined regimens for HCC [60].

Table 2. Safety profiles of immune checkpoint inhibitors for HCC.

PD1/PDL1 Combination Agent
TRAE (%)

Total Grade ≥ 3 Treatment
Discontinuation Severe Ref.

Monotherapies
Nivolumab 83 25 6 6 [42]

Pembrolizumab
(200 mg every 3 weeks) 73 26 17 15 [43]

Camrelizumab
(3 mg/kg every 2 or 3 weeks) NR 22 4 11 [61]

Durvalumab
(1500 mg every 4 weeks) 60 20 8 11 [62]

Tremelimumab
(750 mg every 4 week) 84 43 13 25 [62]

Atezolizumab
(1200 mg every 3 weeks) 41 5 2 3 [60]

Combination therapies of two immune checkpoint inhibitors
Durvalumab

(1500 mg every 4 weeks)
Tremelimumab

(300 mg single dose) 82 35 11 16 [62]

Durvalumab
(1500 mg every 4 weeks)

Tremelimumab
(75 mg every 4 weeks ×4) 69 24 6 14 [62]

Nivolumab
(3 mg/kg every 3 weeks)

Ipilimumab
(1 mg/kg every 3 weeks) 71 29 6 18 [45]

Nivolumab
(1 mg/kg every 3 weeks)

Ipilimumab
(3 mg/kg every 3 week) 94 53 22 22 [45]

Combination therapies of an immune checkpoint inhibitor and a TKI
Pembrolizumab

(200 mg every 3 weeks)
Lenvatinib

(8 or 12 mg/day) 94 80 10 59 [63]

Nivolumab
(240 mg every 2 weeks)

Cabozantinib
(40 mg/day) 89 47 NR NR [64]

Nivolumab
(240 mg every 2 weeks)

Ipilimumab
(1 mg/kg every 6 weeks plus

cabozantinib 40 mg/day)
94 71 15.5 NA [64]

Combination therapies of an immune checkpoint inhibitor and anti-VEGF agent
Atezolizumab

(1200 mg every 3 weeks)
Bevacizumab

(15 mg/kg every 3 weeks) 88 39 NR 24 [60]

Atezolizumab
(1200 mg every 3 weeks)

Bevacizumab
(15 mg/kg every 3 weeks) 84 98 15 17 [51]

TRAE: Treatment-related adverse effect; HCC: Hepatocellular carcinoma; VEGF: vascular endothelia growth factor; TKI: Tyrosine kinase
inhibitor; NR: Not reported.

3.4. Potential Novel Checkpoint Inhibitors

Aside from PD1/PDL1 and CTLA-4, here we discuss other important co-inhibitory
molecules expressed by T cells which have been identified as potential immune checkpoints
that modulate T cell activation. T-cell immunoglobulin and mucin-domain containing-3
(TIM3) is a membrane-bound protein that is originally expressed in CD8+ cytotoxic T cells
and interferon-γ-producing CD4+ T helper 1 (Th1) cells [65]. Initially, the function of TIM3
was associated with autoimmune disease. Blocking of TIM3 with TIM3-specific antibody
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or administration of TIM-3 immunoglobulin (Ig) fusion protein resulted in Th1 cell and
macrophage hyperactivation in an experimental autoimmune encephalomyelitis (EAE)
mouse model [66]. Later, TIM3 expression was found in several immune cells, including
Treg cells [67], myeloid cells [68], natural killer (NK) cells [69] and dendritic cells (DCs) [65].
Notably, co-expression of TIM3 and PD1 has been observed in dysfunctional Th1 cells that
express low levels of IL-2 and IFN-γ in the preclinical model [70]. A synergistic anti-tumor
effect of combined anti-PD1 and anti-TIM3 immunotherapy has been observed in solid
tumors in mouse models [70,71]. Therefore, combination treatment of TIM3 and PD1 or
CTLA-4 inhibitor could serve as an attractive ICI regimen for HCC. Recently, a phase
II trial assessing the efficacy and safety of anti-PD1 and anti-TIM3 combination therapy
(NCT03680508) has been launched; the results are still being awaited.

Another potential immune checkpoint is lymphocyte-activation gene 3 (LAG3). The
structure of LAG3 is closely related to CD4, and they share the same ligand, MHC-II [72].
LAG3 expression is found on activated CD4+ T cells [73], CD8+ cells [74], Treg cells [75]
and plasmacytoid dendritic cells (pDCs) [76]. High levels of LAG3 have been found in
tumor-infiltrating lymphocytes (TILs) [77]. Unlike PDL1, high expression of LAG3 has
been found in several solid tumors, including HCC [78]. LAG3 also has been shown to
have a negative impact on autoimmunity. Loss of LAG3 significantly accelerates disease
progression of type 1 diabetes in Non-Obese-Diabetic (NOD) mouse models [79], and is
associated with autoimmune disease. Importantly, interplay between LAG3 and other
immune checkpoints has been noted. LAG3 could work cooperatively with PD1 or CTLA-4
to suppress MHC-II-mediated T cell receptor (TCR) signaling and subsequent T cell action,
making it an ideal target for ICI therapy [78,80]. In an ovarian cancer model, a synergistic
anti-tumor effect of combinatory treatment of LAG3 and PD1 mAb shed light on future
potential combination therapies [80]. Several clinical trials are ongoing to evaluate the
clinical benefits of LAG3 mAb and a soluble LAG3 Ig as well as combination therapy
using anti-LAG3 and anti-PD1 mAb in an array of human malignancies [81,82]. Given
that upregulation of LAG3 has been found in tumor-infiltrating CD8+ T cells and HCC
cells [78,83], potential clinical trials for HCC can be expected in the near future.

Another important aspect to examine is that compensatory upregulation of TIM3 and
LAG3 may confer resistance to anti-PD1/PDL1 treatment. In a preclinical mouse model,
Oweida et al. demonstrated that TIM3 upregulation was observed in tumor-infiltrating
CD4 and CD8 T cells in murine head and neck squamous cell carcinoma (HNSCC) tumors
treated with radiotherapy (RT) and anti-PDL1 therapy. Combined treatment with anti-
TIM3, anti-PDL1 and RT led to the promotion of T cell cytotoxicity, decreased Treg and
significant tumor regression as compared with anti-PDL1 plus RT treatment [84]. In an
effort to address the resistance mechanisms of PD1 blockade, Limagne et al. showed that
accumulation of galetin-9-expressing monocytic MDSCs (mMDSCs) and TIM3-expressing
CD8 T cells was found in lung cancer patients with resistance to anti-PD1 therapy, and
may play a crucial role in resistance to PD1 blockade. They demonstrated that anti-TIM3
antibody in vitro could reverse resistance to anti-PD1 in peripheral blood mononuclear
cells (PBMCs) isolated from lung cancer patients. Moreover, galetin-9-expressing mMDSCs
could impede TIM3+ CD8 T cell activity to reduce anti-PD1 treatment efficacy [85]. In
addition, Jikova et al. analyzed fresh HCC biopsies and peripheral blood samples from
21 HCC patients treated with sorafenib or PD1/PDL1 blockade therapy to show that non-
responders tended to have TIM3 and LAG3 upregulation on circulating T cells compared
with responders [86].

Taken together, blocking the compensatory upregulation of other checkpoint inhibitors
such as TIM3 and LAG3 after anti-PD1/PDL1 treatment could be an important pharma-
ceutical strategy to overcome primary and secondary resistance to PD1/PDL1 blockade in
patients with advanced HCC in the future.
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4. Challenges and Opportunities in ICI Therapy for HCC
4.1. Management of ICI-Related Immune-Mediated Adverse Effects (IMAEs)

Inhibitory checkpoint molecules expressed by immune cells are to intended to serve
as a brake for immune cell overactivation. Therefore, blocking the inhibitory functions
of checkpoint molecules will inevitably lead to developing a range of immune-mediated
adverse events (IMAEs) including hepatitis, colitis pneumonitis, etc. [87]. The detailed
management of autoimmune-specific IMAEs in patients with ICIs therapy has been previ-
ously reviewed by Brahmer, et al. [88]. Although HCC usually develops from a background
of chronic inflammation induced by HBV/HCV or alcohol, the overall incidence of IMAE
in HCC patients receiving ICI therapy is similar to those of patients with other cancer
types [89]. Currently, the majority of IMAEs caused by ICI therapy can be relieved by
administration of corticosteroids in combination with mycophenolate mofetil or azathio-
prine [89]. Here, we summarize latest safety profiles of ICIs for HCC (Table 2). As compared
to sorafenib treatment, HCC patients receiving nivolumab treatment not only had more
durable disease control (median 7.5 months vs. 5.7 months) but also had a better safety
profile, with fewer treatment-related adverse effects (TRAES) over grade 3 (22% vs. 49%).
However, the use of anti-CTLA-4 agents has often seen more serious IMAEs than that
of anti-PD1/PL1 agents. Dose-related adverse effects were frequently observed in HCC
patients, causing treatment discontinuation [45]. In the CheckMate040 phase II trial, 50%
of patients were treated with corticosteroids in the anti-CTLA-4 high dose group while
only 24% in low dose group received corticosteroids [42]. This phenomenon was also
observed to a lesser extent in the treatment of patients with other cancer types, such as
melanoma and lung cancer [90]. On the other hand, safety profiles between anti-PD1 and
anti-PDL1 therapy were comparable [91]. Dual blockade of PD1 and CTLA-4 displayed
superior treatment efficacy to each monotherapy alone; however, it came at the cost of an
increased rate of hepatic TRAE in the early phase of treatment. Fortunately, the conditions
were improved in most of patients after six weeks, suggesting no signs of synergistic
toxicities [45]. Overall, PD1/PDL1 inhibitors result in less serious TRAE than CTLA-4
inhibitors. Therefore, dosing and timing for anti-CTLA-4 therapy seems critical in treating
patients with HCC.

4.2. Possible Predictive Factors for Response to Anti-PD1/PDL1 Therapy

Given that the action mechanism of PD1/PDL1 inhibitors is to block PD1/PDL inter-
action between tumor cells and immune cells (Figure 1), PDL1 expression status has served
as a biomarker for predicting the treatment outcomes of patients receiving anti-PD1/PDL1
therapy. Recent meta-analysis indicates that a survival benefit from ICI therapy was ob-
served in cancer patients with the up-regulation of PDL1 expression (PDL1 > 1% score
index), but not in those with <1% PDL1 [92]. Survival benefit between patients with >1%
and ≥50% PDL1 was slightly improved, but not statistically significant. Therefore, PDL1
expression status must be taken into account in the context of ICI therapy.

Interestingly, this seems to not be the case in the recent ICI clinical trials for advanced
HCC. As indicated in KEYNOTE-240 phase III trial, HCC patients with PDL1 expression
in either tumor cells or stroma cells had a similar response to pembrolizumab treatment
as compared to those with no PDL1 expression (median survival 16.1 months versus 16.7
months) [44]. In the CheckMate 040 trial, tumor responses were also independent of PDL1
status [93]. Other cellular factors and immune signatures that could serve as biomarkers to
predict ICI immunotherapy outcomes were summarized previously [94].

5. Conclusions

At one time, the introduction of ICIs in advanced HCC was far behind the other
human solid tumors. However, with the substantial exciting data produced from recent
checkpoint blockade clinical trials in advanced HCC, atezolizumab plus bevacizumab
combinatorial treatment is now approved by FDA as the frontline standard of care in
advanced HCC [95,96], and the availability of new ICI combination regimens can be
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expected to significantly increase the treatment efficacy of regional therapy and neoadjuvant
therapy in patients with unresectable disease. Although advanced HCC is still among
the most difficult-to-treat human cancers, the emergence of immune checkpoint blockade
therapies has drastically changed the landscape of clinical treatment of advanced HCC.
The potential novel immune checkpoint inhibitors under development will further add to
the repertoire of ICI therapy. The challenge of treating patients with cirrhosis remains a
difficult task. Nevertheless, treatment of this seemingly incurable disease is now within
reach with ICIs, which offer the best hope of reducing the mortality rates of HCC. The
quest to eradicate this deadly disease is only beginning.
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