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Abstract. We have used digitonin-permeabilized cells
to examine in vitro nuclear export of glucocorticoid re-
ceptors (GRs). In situ biochemical extractions in this
system revealed a distinct subnuclear compartment,
which collects GRs that have been released from chro-
matin and serves as a nuclear export staging area. Unli-
ganded nuclear GRs within this compartment are not
restricted in their subnuclear trafficking as they have
the capacity to recycle to chromatin upon rebinding
hormone. Thus, GRs that release from chromatin do
not require transit through the cytoplasm to regain
functionality. In addition, chromatin-released receptors
export from nuclei of permeabilized cells in an ATP-
and cytosol-independent process that is stimulated by
sodium molybdate, other group VI-A transition metal
oxyanions, and some tyrosine phosphatase inhibitors.

The stimulation of in vitro nuclear export by these com-
pounds is not unique to GR, but is restricted to other
proteins such as the 70- and 90-kD heat shock proteins,
hsp70 and hsp90, respectively, and heterogeneous nu-
clear RNP (hnRNP) A1l. Under analogous conditions,
the 56-kD heat shock protein, hsp56, and hnRNP C do
not export from nuclei of permeabilized cells. If ty-
rosine kinase inhibitors genistein and tyrphostin
AG126 are included to prevent increased tyrosine
phosphorylation, in vitro nuclear export of GR is inhib-
ited. Thus, our results are consistent with the involve-
ment of a phosphotyrosine system in the general regu-
lation of nuclear protein export, even for proteins such
as GR and hnRNP A1 that use distinct nuclear export
pathways.

nuclear receptor superfamily that includes steroid

hormone receptors, the retinoid, thyroid and vita-
min D receptors, and a growing number of “orphan” re-
ceptors whose natural ligands remain largely unknown
(Yamamoto, 1985; Evans, 1988; Mangelsdorf et al., 1995).
Members of this receptor superfamily participate in a wide
variety of physiological processes, primarily through their
functioning as regulated transcription factors for distinct
sets of target genes (Yamamoto, 1985; Tsai and O’Malley,
1994). While the transcriptional regulatory activities of nu-
clear receptors are most often regulated by hormonal
ligand, ligand-independent activation of steroid receptors
has been observed (Denner et al., 1990; Power et al., 1991;
Somers and DeFranco, 1992; Zhang et al., 1994) and may
be relevant in particular physiological settings (Mani et al.,
1994).

THE glucocorticoid receptor (GR)! is a member of a
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Ligand binding to steroid hormone receptors initiates
their transformation from a weak to tight DNA-binding
form (Pratt, 1987). For GRs, this transformation is often
accompanied by hormone-induced nuclear import of cyto-
plasmic receptors (Picard and Yamamoto, 1987; Wikstrom
et al., 1987; Qi et al., 1989; Cidlowski et al., 1990). In con-
trast, for receptors that localize predominantly within the
nucleus when unliganded (i.e., estrogen and progesterone
receptors), ligand binding increases nuclear affinity of the
receptors in the apparent absence of cytoplasmic to nu-
clear translocation (Welshons et al., 1984; Guiochon-Man-
tel et al., 1989; Picard et al., 1990b). The dissociation of
hormone from steroid receptors decreases their affinity
for nuclei, and, for GR in particular, this reduced nuclear
affinity is associated with its efflux from the nucleus and
reappearance within the cytoplasm (Orti et al., 1989; De-
Franco et al., 1991; Sackey et al., 1996).

Nuclear import of steroid receptors, like other karyo-
philic proteins, occurs through nuclear pore complexes
(NPCs) that are embedded within the nuclear envelope
(Akey and Radermacher, 1993; Doye and Hurt, 1995).
Although NPCs accommodate both inward and outward
trafficking of various macromolecules, it was initially
thought that these transport processes were unidirectional
for a given transporting substrate. However, in recent
years, a number of proteins have been found to have the
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capacity to shuttle between the cytoplasmic and nuclear
compartments (Nigg et al., 1991; Gerace, 1992; Newmeyer,
1993). The list of proteins that exhibit this nucleocytoplas-
mic shuttling property includes not only steroid receptors
(Guiochon-Mantel et al., 1991; Chandran and DeFranco,
1992; Dauvois et al., 1993; Madan and DeFranco, 1993),
but also other nuclear proteins such as the heterogeneous
nuclear RNP (hnRNP) A1l (Pinol-Roma and Dreyfuss,
1992), nucleolar proteins nucleolin and B23/No38 (Borer
et al., 1989), the heat-stable inhibitor of cAMP-dependent
protein kinase (Fantozzi et al., 1994), the HIV Rev protein
(Meyer and Malim, 1994), and the 70-kD heat shock pro-
tein, hsp70 (Mandell and Feldherr, 1990). As these pro-
teins exhibit a wide range of activities, different functional
consequences may be imparted by bidirectional nuclear
transport.

Extensive studies on nuclear protein import have led to
the identification of soluble and NPC-associated proteins
(i.e., nucleoporins) that function in distinct steps in the nu-
clear import process. Karyopherin/importin o comprises
one subunit of the receptor for nuclear localization signal
sequences (NLSs) and, along with karyopherin/importin
B, mediates the binding of import-competent proteins to
NPC docking sites (Gorlich et al., 1995; Moroianu et al.,
1995; Rexach and Blobel, 1995; Hurt, 1996). A GTP-bind-
ing protein, Ran/TC4 (Melchior et al., 1993; Moore and
Blobel, 1993), and an associated protein, pp1l0/NF2 (Moore
and Blobel, 1994; Nehrbass and Blobel, 1996), are re-
quired for the translocation of proteins through the NPC.
As the hydrolysis of Ran-bound GTP is required for nu-
clear import and export (Schlenstedt et al., 1995; Rush et al.,
1996), both Ran-specific GTPase activating proteins (e.g.,
rna-1) (Corbett et al., 1995) and guanosine nucleotide ex-
change proteins (e.g., RCC1) (Kadowaki et al., 1993; Ta-
chibana et al., 1994) have an impact on nuclear transport.

While a unifying mechanism of nuclear protein import
seems to be emerging, current views of nuclear protein ex-
port remain disparate. For example, it has been suggested
that protein nuclear export may be restricted primarily by
retention within specific nuclear compartments. In these
cases, nuclear protein export may not require a specific
signal sequence, but merely proceed via a default pathway
into which released nuclear proteins are channeled (Schmidt-
Zachmann et al., 1993). In direct contrast, specific nuclear
export signal sequences (NESs) have been identified within
hnRNP A1 (Michael et al., 1995), protein kinase inhibitor
(Wen et al., 1995), and the HIV Rev protein (Fischer et al.,
1995), demonstrating that nuclear protein export can also
be a signal-mediated, active process. Finally, it has also
been suggested that an NLS may serve a dual role in nu-
clear protein trafficking functioning as both an NLS and
NES (Guiochon-Mantel et al., 1994; Moroianu and Blobel,
1995). These hypotheses may not be mutually exclusive, as
multiple pathways of nuclear protein export may exist and
use distinct soluble factors or nucleoporins.

In contrast to the rapid hormone-dependent nuclear im-
port of GR (t;, ~5-10 min) (Picard and Yamamoto, 1987;
Yang and DeFranco, 1994), nuclear export of GR that fol-
lows hormone withdrawal appears to be a relatively slow
process (Madan and DeFranco, 1993; Sackey et al., 1996).
This protracted export is not related to the rate of hor-
mone dissociation from the receptor, as previous studies
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have shown that the off-rate of natural glucocorticoids
from GR upon hormone withdrawal is quite rapid, having
a typ of ~10 min (Munck and Foley, 1976). Moreover, it
has been reported that glucocorticoid-induced chromatin
reorganization and transcriptional activation of the ty-
rosine aminotransferase gene (TAT) are rapidly reversed
after hormone withdrawal (Reik et al., 1991). Thus, the
rapid dissociation of hormone from the receptor, and the
subsequent rapid inactivation of the receptor’s transcrip-
tional regulatory activity, are not directly coupled to a cor-
responding rapid release of receptors from nuclei.

We report here the results of in vitro studies of GR sub-
nuclear trafficking using digitonin-permeabilized cells. In
situ biochemical extractions were used to define a distinct
subnuclear compartment that collects chromatin-released
receptors and serves as a putative nuclear export staging
area. The subsequent export of these poised receptors is
stimulated in vitro upon treatment of permeabilized cells
with compounds that increase overall protein tyrosine
phosphorylation. The corresponding stimulated export of
select nuclear proteins under these conditions suggests
that some aspects of NPC function may be influenced, ei-
ther directly or indirectly, by a protein phosphotyrosine
system(s).

Materials and Methods
Cells and Cell Culture

The GrH2 rat hepatoma cell line, which expresses elevated levels of GR
(Howard et al., 1990), was maintained at 37°C in DME (Life Technolo-
gies, Bethesda, MD) supplemented with 5% FBS (Irvine Scientific, Santa
Ana, CA). HeLa cells were maintained in DME containing 10% FBS.
VANS556/CHO, a CHO cell line expressing a stably transfected carboxyl-
terminal deletion mutant of GR (Tang and DeFranco, 1996), was main-
tained in DME plus 10% FBS, in the presence of 400 pg/ml G418
(GIBCO BRL, Gaithersburg, MD).

Antibodies

The BuGR2 mAb (Gametchu and Harrison, 1984) and BL.11.124 rabbit
antiserum (Yang and DeFranco, 1994) were used to detect GR. TSTA
(Yang and DeFranco, 1994) and UPS56 (Czar et al., 1995) rabbit antise-
rum were used to detect hsp90 and hsp56 proteins, respectively. Ab-1is a
mouse mADb against the NuMA nuclear matrix protein (Oncogene Sci-
ence, Cambridge, MA). The anti-hnRNP C mAb, 4F4, and anti-hnRNP A1l
mAb, 9H10, were kindly provided by Dr. G. Dreyfuss (University of
Pennsylvania School of Medicine, Philadelphia). The PY20 anti-phospho-
tyrosine mAb was purchased from Transduction Laboratories, Inc. (Lex-
ington, KY).

Hormone Withdrawal

GrH2 cells were grown in DME plus 5% charcoal-stripped FBS for at
least 16 h before treatment with 107 M corticosterone (Sigma Chemical
Co., St. Louis, MO) for 1 h. Cells were briefly rinsed three times in DME
plus 5% stripped FBS, and then incubated with hormone-free medium for
lengths of time indicated.

Cell Permeabilization

Cells were grown on glass coverslips (22 X 22 mm) in 35-mm-diam plastic
petri dishes in 2 ml of indicated medium. After hormone withdrawal, cells
were washed twice with ice-cold transport buffer (20 mM Hepes, pH 7.3,
110 mM KOAc, 5 mM NaOAc, 2 mM Mg(OAc),, 1 mM EGTA, 2 mM
DTT, and 1 pg [each] of protease inhibitors aprotinin, leupeptin, and pep-
statin A per ml) (Yang and DeFranco, 1994), and then permeabilized by
immersing the coverslips in ice-cold transport buffer containing 40 pg of
digitonin (Sigma Chemical Co.) per ml for 5 min. All traces of buffer were
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then removed by aspiration, and the coverslips were washed twice with
ice-cold transport buffer.

In Situ Nuclear Extraction

Hypotonic Buffer Extraction. Permeabilized cells were immersed briefly in
water before treatment with 2 ml of hypotonic (Hypo) buffer (10 mM
Hepes, pH 7.9, 10 mM KCI, 1.5 mM MgCl,, 0.5 mM DTT, 0.1% Triton
X-100, 1 pg/ml of each of protease inhibitors) (Tang and DeFranco, 1996)
for 3 min at 0°C. Cells were then washed twice with transport buffer and
fixed with cold (—20°C) methanol.

Cytoskeletal Buffer Extraction. Permeabilized cells were treated for 5
min on ice with 2 ml of cytoskeletal (CK) buffer (10 mM Pipes, pH 6.8,
100 mM NacCl, 300 mM sucrose, 3 mM MgCl,, 1 mM EGTA, 0.5% Triton
X-100, and protease inhibitors). Cells were then washed twice with trans-
port buffer and fixed with methanol.

Nuclear Extraction from Cell Suspensions

Cells were grown in 60-mm tissue-culture dishes to ~60-70% confluency.
After hormone addition and subsequent hormone withdrawal, cells were
harvested and washed twice with ice-cold transport buffer. Cells were then
permeabilized for 7 min on ice in 1 ml transport buffer containing 80 g/
ml digitonin, after which the suspension was diluted 10-fold with ice-cold
transport buffer. Intact nuclei were recovered by centrifugation at 600 g
and resuspended in the same buffer. Each nuclear suspension was ali-
quoted as indicated. One aliquot (~5-8 X 10° nuclei) was incubated with
300 pl of ice-cold Hypo buffer for 3 min. An identical aliquot of nuclei was
incubated with 300 ul of ice-cold CK buffer for 5 min. The Hypo or CK
buffer extracted nuclei, as well as an aliquot of untreated nuclei, were
washed twice with transport buffer and dissolved in high salt lysis buffer
(10 mM Hepes, pH 7.0, 450 mM NaCl, 5 mM EDTA, 0.05% SDS, 1% Tri-
ton X-100, 2 mM DTT, and protease inhibitors). The lysates were mixed
with 4X SDS sample buffer (132 mM Tris-HCI, pH 6.8, 20% glycerol, 10%
SDS, 10.4% B-mercaptoethanol, 0.02% pyronin Y), boiled for 10 min, and
then subjected to SDS-PAGE.

Chromatin Mini-Cycle

For in vivo mini-cycle experiments, GrH2 cells were treated with 107 M
corticosterone for 1 h, withdrawn from hormone for 30 min, and then
refed with hormone-containing medium for 10 min. Cells were permeabil-
ized using digitonin either on coverslips or in suspension as described
above, and then subjected to Hypo buffer extraction.

For in vitro mini-cycle experiments, permeabilized cells were incubated
with 50 pl of transport mixture (Yang and DeFranco, 1994) that contained
30% HeLa cytosol diluted in transport buffer, 10 mg/ml BSA,2 mM ATP,
S mM creatine phosphate (Sigma Chemical Co.), 20 U/ml of creatine
phosphokinase (Sigma Chemical Co.), and 1 uM corticosterone where in-
dicated. The reaction mixture was incubated at 30°C for 20 min. Intact nu-
clei were subjected to either Hypo or CK buffer extraction, as described
above.

In Vitro Nuclear Export

For in vitro nuclear export assays, permeabilized cells were incubated with
50 pl of transport mixture that contained 10 pg/ml BSA, 2-4 mM ATP,
5 mM creatine phosphate, 20 U/ml creatine phosphokinase, and 20 mM
sodium molybdate (Na,MoQy). In some experiments, sodium molybdate
was replaced by either 20 mM sodium tungstate (Na,WOy,), 7.5 mM sodium
vanadate (Na,VOy), or 50 pg/ml heparin (Sigma Chemical Co.). Likewise,
ATP was sometimes replaced by 4 mM GTP. In addition, 0.25 mM
genistein (Sigma Chemical Co.), 0.2 pg/ml WGA (Sigma Chemical Co.), 1
mM tyrphostin AG126 (Sigma Chemical Co.), or a 1:500 dilution of the
Ab-1 anti-NuMA antibody were also included where indicated. AMP-
PNP (Sigma Chemical Co.) or GTPyS, when included, were used at a final
concentration of 4 mM. After a 20-min incubation at 30°C, intact nuclei on
coverslips were washed twice in transport buffer and fixed with methanol,
and GR was visualized by indirect immunofluorescence (IIF). For suspen-
sion assays, intact nuclei were washed twice with transport buffer supple-
mented with 150 mM NaCl and 20 pM of cytochalasin B (Sigma Chemical
Co.), and then dissolved in high salt lysis buffer for Western blot analysis.

Indirect Immunofluorescence
GR in methanol-fixed cells was visualized by IIF, typically using BuGR2
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as previously described (Yang and DeFranco, 1994). For double staining
of GR and NuMA, methanol-fixed cells were incubated with the BL11.124
anti-GR rabbit serum and the Ab-1 anti-NuMA mAb. A TRITC-coupled
anti-rabbit IgG antibody (Sigma Chemical Co.) and an FITC-coupled anti—
mouse IgG antibody (Boehringer Mannheim Biochemicals, Indianapolis,
IN) were used as secondary antibodies to detect GR and NuMA, respec-
tively. For double staining of hnRNP A1 and hsp56, or double staining of
hnRNP C and hsp90, cells were fixed with 4% paraformaldehyde at room
temperature for 15 min, washed three times in PBS, permeabilized with
—20°C acetone for 5 min, and finally washed three times with PBS. Pri-
mary staining was carried out using the 9H10 anti-hnRNP A1 mAb and
UPS56 anti-hsp56 rabbit serum, or the 4F4 anti-hnRNP C mAb and
TSTA anti-hsp90 rabbit serum. 4',6-diamidino-2-phenylidole (DAPI;
Sigma Chemical Co.) was included in all secondary incubations to stain
DNA. Stained cells were observed by fluorescence microscopy through an
Optiphot-2 microscope (Nikon Inc., Garden City, NY) and photographed
with T-Max 400 film (Eastman-Kodak Co., Rochester, NY).

Western Blot Analysis

GRs from intact or extracted nuclei were detected by Western blot analy-
sis using BUuGR2 as previously described (Yang and DeFranco, 1994). As
internal controls, NuMA and hnRNP A1 were also detected on the same
blots using Ab-1 and 9H10 antibodies, respectively. Phosphotyrosine-con-
taining proteins were detected using the PY20 mAb. In this case, the im-
mobilon membrane was blocked with 5% BSA after Western transfer.
Autoradiographs obtained from enhanced chemiluminescence (ECL;
Amersham Intl., Amersham, UK) detection were quantified using an
XRS 3cx scanner (Millipore Corp. Imaging Systems, Ann Arbor, MI).

Results

GRs Are Rapidly Released from Chromatin
upon Hormone Withdrawal and Accumulate within a
Biochemically Distinct Subnuclear Compartment

Unliganded cytoplasmic GRs undergo rapid nuclear im-
port upon ligand binding (Picard and Yamamoto, 1987;
Yang and DeFranco, 1994). While this regulated translo-
cation through the NPC is reversed upon hormone with-
drawal, the rate of GR nuclear export is considerably
slower than that of receptor import (Madan and De-
Franco, 1993; Sackey et al., 1996). As the dissociation of
natural hormone ligands from GR, such as corticosterone,
is quite rapid upon hormone withdrawal (Munck and Fo-
ley, 1976), hormone release is not kinetically coupled to
receptor nuclear export. We have therefore used a cou-
pled biochemical/cell biological approach to investigate
the mechanisms that might operate to limit GR nuclear
export. Two types of in situ extractions were used to dis-
tinguish GR subpopulations with alternative nuclear affin-
ities. Hypo buffer was used to extract nuclear receptors
bound with low affinity, while CK buffer was used to ex-
tract tightly bound nuclear receptors. CK buffer is com-
monly used as the first extraction step in nuclear matrix
preparations (Tang and DeFranco, 1996). Importantly, by
assessing nuclear localization of receptors in intact and
permeabilized cells, nuclear receptors could be visualized,
irrespective of the relative strength of their interactions
with nuclei.

GrH2 rat hepatoma cells were treated with hormone for
1 h, and then withdrawn from hormone for various lengths
of time. We used the natural glucocorticoid hormone, cor-
ticosterone, rather than synthetic analogs such as dexa-
methasone, since natural hormones rapidly dissociate
from receptors after hormone withdrawal (Munck and
Brinck-Johnsen, 1968). Hormone-withdrawn cells were
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permeabilized with digitonin, and the resultant semiintact
cells were either fixed directly or subjected to different in
situ extractions. GRs were detected by either IIF or West-
ern blot analysis using the BuGR?2 antibody. As internal
controls, NuMA and hnRNP A1 proteins were also de-
tected on the same Western blots. NuMA is a component
of nuclear matrix (Lyderson and Pettijohn, 1980), while
hnRNP A1 is an RNA-binding protein that is also associ-
ated to some extent with the nuclear matrix (Dreyfuss et
al., 1993).

Fig. 1 shows the differential extraction of GR from nu-
clei of hormone-treated vs hormone-withdrawn cells. GRs
accumulated in nuclei after a 1 h of corticosterone treat-
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ment (Fig. 1 a, A, and Fig. 1 b, lane ) and remained nu-
clear after 30 min of hormone withdrawal (Fig. 1 a, D, and
Fig. 1 b, lane 4). While Hypo buffer extraction of perme-
abilized cells removed ~20% of the nuclear GR from hor-
mone-treated cells (Fig. 1 a, B; Figs. 1 b and ¢, lane 2),
80% of nuclear GRs were extracted by Hypo buffer from
hormone-withdrawn cells (Fig. 1 a, E; Fig. 1, b and c, lane
5). Thus, although a brief hormone withdrawal does not
apparently alter the nuclear localization of GRs, unli-
ganded and liganded nuclear receptors differ dramatically
in their nuclear affinity. Importantly, these results also es-
tablish that GR nuclear export is not merely restricted by
high affinity binding of GR to nuclei. GRs in hormone-

Figure 1. Differential extrac-
tion of GR from nuclei of
hormone-treated vs hormone-
withdrawn cells. GrH2 cells
grown in hormone-free me-
dium were treated with 107 M
corticosterone (Cort) for 1 h,
and then either incubated
with hormone for an addi-
tional 30 min (a, A-C; b,
lanes /-3) or withdrawn from
hormone for 30 min (a, D-F;
b, lanes 4-6). Cells were either
permeabilized using digito-
nin (a, A and D; b, lanes I
and 4), or permeabilized and
then subjected to extractions
with either Hypo buffer (a, B
and E; b, lanes 2 and 5) or
CK buffer (a, C and F; b,
lanes 3 and 6). (a) In situ ex-
traction of cells grown on
coverslips. GR was visualized
by IIF using BuGR2. (b) Dif-
ferential extraction of GR
from cells in suspension. Af-
ter permeabilization and ex-
traction in suspension, nu-
clear proteins were resolved
by SDS-PAGE. GR, NuMA,
and hnRNP Al were de-
tected by Western blot analy-
sis and ECL using BuGR2,
the Ab-1 anti-NuMA, and the
9H10 anti-hnRNP A1 mAbs,
respectively. (¢) Quantifica-
tion of results in b by densi-
tometry (mean * SD of four
experiments). The relative
ratio of GR to NuMA in in-
tact nuclei (NE) was set at
100. NE, intact GrH2 nuclei
after permeabilization, not

extracted; Hypo and H, nu-

I
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clei after permeabilization
and Hypo buffer extraction;
CK and C, nuclei after per-
meabilization and CK buffer
extraction.
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treated cells are not artificially trapped within nuclei by
our permeabilization conditions, as a high salt, detergent
wash (i.e., CK buffer) efficiently extracts 80% of nuclear
GR (Fig. 1 a, C and F; Fig. 1, b and c, lanes 3 and 6). DAPI
staining confirmed that nuclei remained intact after this
extraction (not shown). The residual amount of GR that
resists CK extraction (Fig. 1, b and ¢, lane 3) may repre-
sent nuclear matrix—associated receptors (Tang and De-
Franco, 1996).

Hormone-bound GRs are known to associate with chro-
matin upon their import into nuclei (Yamamoto and Al-
berts, 1976). To confirm that hormone-bound nuclear GRs
in Hypo buffer-extracted cells were chromatin bound,
hormone-treated, permeabilized cells were subjected to a
DNase I digestion after the Hypo buffer extraction. In agree-
ment with our previous results, GRs in hormone-treated,
permeabilized cells were resistant to Hypo buffer extraction
(Fig. 2 A). However, treatment of Hypo buffer-extracted
cells with DNase I led to the loss of nearly all GRs from
most nuclei (Fig. 2 E). If the extent of DNase I digestion
was varied, the relative amount of hormone-bound GR
that remained nuclear in Hypo buffer—extracted cells was
correlated with the relative amount of DNA that re-
mained within nuclei (Fig. 2, C and D). The nuclear matrix
protein NuMA was not significantly extracted by either
Hypo buffer or DNase I digestion (not shown), indicating
that the nuclear matrix remained intact under these condi-
tions. Thus, since chromatin-bound receptors in hormone-
treated cells are predominantly resistant to hypotonic ex-
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Hypo
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E
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traction, it appears likely that the sensitivity of GRs to
Hypo buffer extraction in hormone-withdrawn cells is due
to their rapid release from chromatin.

To examine the kinetics of GR release from chromatin
upon hormone withdrawal, we performed a time course
study of GR sensitivity to hypotonic extraction. As shown
previously, GRs in hormone-treated cells are relatively re-
sistant to Hypo buffer extraction (Fig. 3 A). However,
within 10 min of hormone withdrawal, most GRs were ex-
tracted by Hypo buffer (Fig. 3 C). Nuclear GRs appeared
to be maximally extracted within 30 min of hormone with-
drawal (Fig. 3 E). As noted above, in cells permeabilized
after a 30-min hormone withdrawal, GRs localized within
nuclei (Fig. 3 G). These results suggest that, while GRs are
rapidly released from chromatin after dissociation of hor-
mone (i.e., within 30 min), they remain associated with nu-
clei. Importantly, in hormone-withdrawn cells, the kinetics
of bulk GR dissociation from chromatin corresponds pre-
cisely with the reversal of glucocorticoid-induced nuclease
hypersensitivity within chromatin of the glucocorticoid-
responsive TAT gene (Reik et al., 1991). Thus, hormone
withdrawal leads to release of both bulk GRs from chro-
matin, and GRs bound to chromatin at specific target genes.
While the possibility that unliganded nuclear GRs remain
loosely bound to chromatin cannot be excluded, we will
refer to these receptors as localizing within a distinct sub-
nuclear compartment, with the caveat that this has only
been defined biochemically and may not represent a
unique structural component of the nucleus. As will be re-

Figure 2. Hormone-bound
nuclear GR in Hypo buffer—
extracted cells is associated
with chromatin. GrH2 cells
grown on coverslips were
treated with 1 uM of cortico-
sterone for 1 h. After
permeabilization with digito-
nin, nuclei were either ex-
tracted with Hypo buffer (4
and B), or extracted and then
incubated with 100 pg/ml of
RNase-free DNase I for 30
min at room temperature
(C-F).GR (A, C,and E) and
DNA (B, D, and F) in fixed
cells were visualized by IIF
using BuGR2 and DAPI
staining, respectively.
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Figure 3. Time course of GR sensitivity to Hypo buffer extrac-
tion. GrH2 cells grown on coverslips were treated with 1 wM cor-
ticosterone (Cort) for 1 h. Cells were then withdrawn from hor-
mone for either 0 min (A and B), 10 min (C and D), or 30 min
(E-H). After permeabilization, cells were either fixed directly (G
and H) or subjected to Hypo buffer extraction before fixation
(A-F). (A, C, E, and G) GR staining detected by IIF. (B, D, F,
and H) DNA detected by DAPI staining.

vealed below, the subnuclear trafficking of these receptors
is distinguished from that of chromatin-bound receptors.

Unliganded Nuclear GRs Rapidly Regain
Their Capacity to Reassociate with Chromatin upon
Rebinding Hormone

Since the rapid release of GR from chromatin upon hor-
mone withdrawal is not coupled to its rapid nuclear ex-
port, receptors appear to be held within a distinct, low af-
finity subnuclear compartment. Upon prolonged hormone
withdrawal, nuclear GRs redistribute to the cytoplasm
where they eventually regain competence to respond to a
secondary hormone challenge (Qi et al., 1989). Is cytoplas-
mic reentry obligatory for recycled receptors to regain
functionality? Given the effectiveness of the hypotonic ex-
traction in distinguishing between chromatin-bound and
-released receptors, we asked whether GRs could regain
high affinity chromatin binding if charged with hormone
while still resident within nuclei. We therefore applied a
secondary hormone treatment to GrH2 cells, which had
previously been treated with corticosterone for 1 h but
briefly withdrawn from hormone (i.e., 20 min). Nuclear
GRs were detected by either Western blot analysis (Fig.
4 a) or IIF (Fig. 4 b) after either permeabilization and no
extraction (NE), or permeabilization and Hypo buffer ex-
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Figure 4. In vivo recycling of nuclear GRs. GrH2 cells were ei-
ther treated with corticosterone (Cort) for 1 h (a, lanes I and 2; b,
A and B), withdrawn from hormone for 20 min after the 1-h hor-
mone treatment (a, lanes 3 and 4; b, C and D), or treated with
hormone for an additional 10 min after the 20-min withdrawal (a,
lanes 5 and 6; b, E and F). (a) Suspension assay: cells were har-
vested and either permeabilized and not extracted (NE) or per-
meabilized and then extracted with Hypo buffer (H) in suspen-
sion. Nuclear GRs were detected by Western blot analysis.
NuMA and hnRNP A1 proteins were also visualized on the same
blot. (b) Coverslip assay: cells grown on coverslips were directly
permeabilized and either not extracted (NE; A, C, and E) or ex-
tracted with Hypo buffer after permeabilization (Hypo; B, D, and
F). Cells were fixed and GRs were detected by IIF.
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traction (Hypo; H). As shown previously, a 1-h hormone
treatment led to the accumulation of nuclear GRs that
were not extracted by Hypo buffer (Fig. 4 a, lanes / and 2;
Fig. 4 b, A and B). In addition, 20 min after hormone with-
drawal, GRs remained nuclear (Fig. 4 a, lane 3; Fig. 4 b, C)
but were extracted by Hypo buffer (Fig. 4 a, lane 4; Fig. 4
b, D), indicating that most GRs were released from chro-
matin. Interestingly, when hormone-withdrawn cells were
briefly exposed to a 10-min secondary hormone treatment,
GRs regained their resistance to hypotonic extraction
(Fig. 4 a, lanes 5 and 6; Fig. 4 b, E and F). Thus, nuclear
GRs that have been released from chromatin during hor-
mone withdrawal can rebind chromatin upon a secondary
hormone exposure.

Since GR nuclear export is extremely slow, we did not
expect considerable redistribution of receptors from the
nucleus to the cytoplasm during the 20-min hormone with-
drawal and 10-min secondary hormone treatment. How-
ever, to exclude the possibility that the redistribution of
nuclear GRs under our limited hormone withdrawal (i.e.,
20 min) was proceeding undetected, we performed the sec-
ondary hormonal stimulation in permeabilized cells. GrH2
cells were treated with hormone for 1 h, withdrawn from
hormone for 20 min, and then permeabilized and washed
extensively. Hormone was then added along with cytosol
from receptor-negative HeLa cells, ATP, and an energy-
regenerating system, and the permeabilized cells were in-
cubated for 20 min at 30°C. We found that cytosol and
ATP were required to prevent the quantitative association
of GRs with the nuclear matrix that occurred upon in vitro
30°C incubation of permeabilized cells in buffer alone (not
shown). If hormone was not included upon the incubation
of permeabilized cells with cytosol and ATP, GRs re-
mained nuclear yet were extractable by Hypo buffer (Fig.
5, A and B). However, under an identical incubation con-
ducted in the presence of hormone, nuclear GRs regained
their resistance to Hypo buffer extraction (Fig. 5, C and
D), indicating that the receptors were now tightly bound
to chromatin. Therefore, nucleocytoplasmic shuttling of
GR includes not only a nuclear to cytoplasmic cycle (Orti
et al., 1989; DeFranco et al., 1995; Sackey et al., 1996), but
also a nuclear mini-cycle that permits receptors that re-
lease from chromatin to reassociate with chromatin upon
hormone binding without an obligatory passage through
the cytoplasm.

Stimulation of In Vitro GR Nuclear Export
by Molybdate

The observation that, upon successive rounds of hormone
treatment, withdrawal, and restimulation, GR can cycle
between chromatin and a distinct low affinity nuclear com-
partment raises questions regarding the status of GR asso-
ciation with heat shock proteins. In cytosolic extracts, the
binding of hormone to GR requires its association with the
90-kD heat shock protein, hsp90 (Bresnick et al., 1989;
Pratt, 1993). In vivo, the association between hsp90 and
GR is dynamic and influences both ligand binding and nu-
cleocytoplasmic shuttling (Yang and DeFranco, 1996). An
essential aspect of our hypothesized GR nuclear mini-
cycle is the rebinding of hormone to unliganded nuclear
receptors that have been released from chromatin. Is
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Figure 5. In vitro recycling of nuclear GRs. GrH2 cells grown on
coverslips were treated with corticosterone (Cort) for 1 h, and
then withdrawn from hormone for 30 min. Cells were then per-
meabilized and intact nuclei were incubated with 50 pl transport
mixture containing HeLa cytosol, ATP, and an ATP-regenerat-
ing system for 20 min at 30°C, with (C and D) or without (A and
B) 1 pM corticosterone present. Nuclei were then either directly
fixed without extraction (A and C) or extracted with Hypo buffer
before fixation (B and D). GRs were detected by ITF.

hsp90 binding required for nuclear GR to regain the com-
petence to bind hormone?

To test whether hsp90 plays a role in a GR nuclear mini-
cycle, we used sodium molybdate in our permeabilized in
vitro system to alter the dynamics of steroid receptor/
hsp90 complex formation. This compound and related
group VI-A transition metal oxyanions such as tungstate
and vanadate have been shown to stabilize GR/hsp90 com-
plexes (Dahmer et al., 1984). Thus, the GR nuclear mini-
cycle might be disrupted if dynamic interactions between
GR and hsp90 were altered by molybdate. GrH2 cells sub-
jected to an identical hormone withdrawal regimen as de-
scribed previously were permeabilized and then incubated
with cytosol and an ATP-regenerating system in the pres-
ence of sodium molybdate. To our surprise, nuclear GR
levels were dramatically reduced when sodium molybdate
was included in the incubation of hormone-withdrawn
permeabilized cells with cytosol and ATP (not shown). In
fact, a 20-min incubation of hormone-withdrawn perme-
abilized cells at 30°C with 20 mM sodium molybdate and
ATP, in the absence of cytosol, led to a reduction of GR
nuclear staining (Fig. 6 B). DAPI staining confirmed the
integrity of treated nuclei (data not shown).

It must be emphasized that these permeabilized cells
have not been extracted and, as shown in Fig. 6 A, GR is
effectively retained within nuclei of permeabilized cells in-
cubated under identical conditions (i.e., 20-min incubation
at 30°C, with ATP) in the absence of sodium molybdate.
Molybdate exerted no apparent effect on GR nuclear re-
tention at 0°C (Fig. 6 C) or in the absence of ATP (Fig. 6 D).
Nonhydrolyzable analogs ATPyS and AMP-PNP cannot
substitute for ATP (data not shown), demonstrating that
ATP hydrolysis is required for the molybdate effects on
nuclear efflux of GR. We believe that the loss of nuclear
GR in the presence of ATP and sodium molybdate repre-
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sents the export of receptors through the NPC, given its
sensitivity to WGA (Fig. 6 E). In some cells, GR accumu-
lated at the nuclear rim in the presence of molybdate,
ATP, and WGA (Fig. 6 E), which could represent recep-
tors trapped at the NPC in the process of export. If GrH2
cells were maintained in hormone-containing medium be-
fore permeabilization, GRs remained predominantly nu-
clear after molybdate and ATP treatment (Fig. 6 F). Thus,
molybdate stimulation of GR nuclear export requires that
receptors are released from chromatin. In addition, this re-
sult establishes that nuclear GR is not merely leaking from
nuclei that may have been damaged by molybdate treat-
ment. The inability of an anti-NuMA antibody to enter the
nucleus of ATP and molybdate-treated permeabilized
cells (Fig. 6 G) provides independent confirmation of the
integrity of the nuclear envelope. As shown in Fig. 6 H,
this same antibody gained access to nuclei if permeabilized
cells were fixed with methanol after ATP and molybdate
treatment.

The results of the IIF assay were confirmed by Western
blots, which analyzed GR nuclear export from permeabil-
ized cells maintained in suspension. This assay provided a
more quantitative assessment of in vitro GR nuclear ex-
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Figure 6. Stimulation of in
vitro GR nuclear export by
sodium molybdate. Hor-
mone-withdrawn GrH2 cells
(A-E, G, and H) were per-
meabilized and then incu-
bated with 10 mg/ml of BSA
in transport buffer at 30°C
(A, B, and D-H) or 0°C (C)
with the following additions:
(A) ATP; (B and C) ATP
and 20 mM sodium molyb-
date; (D) 20 mM sodium mo-
lybdate; (E) 02 mg/ml
WGA, ATP, and 20 mM so-
dium molybdate; (F) corti-
costerone-treated GrH2
cells were permeabilized and
then incubated for 20 min at
30°C with ATP and 20 mM
sodium molybdate; (G) ATP,
20 mM sodium molybdate,
and the Ab-1 anti-NuMA an-
tibody; and (H) ATP and 20
mM sodium molybdate. In
A-F, cells were fixed with
methanol and subjected to
IIF to detect GR. In G, per-
meabilized cells were fixed
after the incubation de-
scribed above and treated
with a FITC-coupled second-
ary antibody to detect the
Ab-1 anti-NuMA primary
antibody. In H, ATP- and
molybdate-treated  perme-
abilized cells were fixed and
then subjected to IIF with
the Ab-1 antibody to detect
nuclear NuMA.

port that was particularly useful for dose-response analy-
sis of the various compounds tested (Table I). GrH2 cells
were treated with hormone for 1 h, and then either with-
drawn from hormone for 20 min (Fig. 7, lanes 7/-8) or
maintained in hormone-containing medium for an addi-
tional 20 min (Fig. 7, lanes 9-12). After permeabilization,
intact nuclei were incubated with BSA at 30°C for 20 min,
with or without sodium molybdate and/or ATP. Nuclear
suspensions were split into two identical samples after the
in vitro incubation. SDS sample buffer was added to one
sample, which was immediately subjected to SDS-PAGE
and Western blot analysis to reveal overall GR levels and
the integrity of the receptor (Fig. 7, lanes /-4). The other
sample was washed, and GR remaining within nuclei was
visualized by Western blot analysis (Fig. 7, lanes 5-12).
Similar amounts of intact GR were recovered under all
conditions (Fig. 7, lanes /—4), indicating that the reduction
in nuclear GR levels that occurred upon sodium molyb-
date treatment (Fig. 7, lanes 6 and 7) resulted from active
GR nuclear export and not degradation. 20 mM sodium
molybdate was chosen for subsequent assays since it was
effective in the stimulation of GR nuclear export (Table I)
and did not generate abnormal nuclear morphology some-
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Figure 7. (a) Western blot analysis of molybdate-stimulated in
vitro GR nuclear export. (Lanes /-8) GrH2 cells treated with
corticosterone (Cort) for 1 h and then withdrawn from hormone
for 20 min. (Lanes 9-12) GrH2 cells treated with corticosterone
for 80 min. Harvested cells were permeabilized in suspension,
and aliquots of intact nuclei were incubated with 50 pl of reaction
mixture containing 10 mg/ml BSA in transport buffer, 4 mM ATP
(lanes 1, 2, 5, 6, 9, and 10), or 4 mM GTP (lanes 3, 7, and 11) with
an energy-regenerating system, and 20 mM sodium molybdate
where indicated (lanes 2, 3,4, 6, 7, 8, 10, 11, and 12). After a 20-
min incubation at 30°C, each nuclear suspension was split into
two identical samples. One sample was subjected to SDS-PAGE
directly (lanes I-4, Whole). The other identical sample was
washed, and nuclei were recovered and subjected to SDS-PAGE
for detection of the remaining nuclear GR (lanes 5-12, Nuc
Prep). (b) Quantification of GR levels observed in Western blots
by densitometry. GR levels were normalized to the internal con-
trol NuMA protein. (Bars /-8) Average of four experiments;
(bars 9-12) average of two experiments. Whole, whole reaction
mix; Nuc Prep, nuclear pellets.

times associated with higher doses. In the suspension assay
shown in Fig. 7, sodium molybdate treatment in the pres-
ence of ATP led to the export of ~80% of nuclear GR
(lane 6) while, in the presence of GTP, ~40% of nuclear
GR was exported (lane 7). Molybdate alone did not in-
duce GR export in the absence of ATP or GTP (Fig. 7,
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Table 1. Dose—Response Analysis of Protein Tyrosine
Phosphatase and Kinase Inhibitor Effects on In Vitro GR
Nuclear Export

Nuclear GR levels

Treatment Concentration relative to NuMA
None 1
Na,MoO, 5 mM 0.64 = 0.16
20 mM 0.47 £ 0.05
40 mM 0.39 £0.12
Heparin 25 pg/ml 0.80 = 0.10 (n = 2)
50 pg/ml 038 £0.12(n=2)
Na,MoO, (20 mM) 0 0.45 £0.08 (n = 4)
+ genistein 125 uM 0.60 = 0.17
250 pM 0.83 £035(n=4)
500 pM 0.98 £ 030 (n=4)
Na,MoO, (20 mM) 0 0.41 = 0.07
+ tyrphostin AG126 50 uM 040 =0.02 (n =2)
200 pM 0.69 £ 0.04 (n=4)
1000 pM 0.84 = 0.29

Hormone-withdrawn GrH2 cells were permeabilized with digitonin, and then incu-
bated for 20 min at 30°C with 10 mg/ml BSA and 4 mM ATP with an ATP-regenerat-
ing system (see Materials and Methods). During the incubation period, either no addi-
tions were made, or heparin, Na,MoO,, genistein, or tyrphostin AG 126 was added at
the indicated concentrations. The amount of GR remaining in nuclear fractions was
quantified from Western blot analysis. GR levels are expressed relative to the amount
of the nuclear matrix protein NuMA recovered in nuclear fractions, with GR levels in
cells treated with ATP alone arbitrarily set to 1. Each value represents an average of
three independent experiments * SD unless otherwise indicated.

lane 8), or in the presence of nonhydrolyzable ATP or
GTP analogs (i.e., ATPyS, AMP-PNP, or GTP~S, respec-
tively, not shown). Finally, in cells that were not with-
drawn from hormone so that GRs remained tightly bound
to chromatin (Fig. 7, lanes 9-12), molybdate exerted a lim-
ited effect on GR nuclear export. Thus, energy-dependent,
in vitro nuclear export of GRs is most effective when re-
ceptors are released from chromatin.

To more precisely define the nucleotide requirement for
in vitro nuclear export of GRs, different combinations of
nucleotides and nonhydrolyzable nucleotide analogs were
added. AMP-PNP effectively blocked molybdate-stimu-
lated GR nuclear export observed in both ATP- (not
shown) and GTP-treated permeabilized cells (Fig. 8 D),
suggesting that export is mainly an ATP-driven process.
This was corroborated by the fact that GTPyS was ineffec-
tive in preventing ATP-dependent GR nuclear export in
molybdate-treated permeabilized cells (Fig. 8 C).

Molybdate Stimulation of GR Nuclear Export Does
Not Reflect Cotransport of GR-hsp90 Complexes But a
Generalized Effect on Nuclear Export

Since molybdate has been commonly used to stabilize ste-
roid receptor—hsp90 complexes, we set out to determine
whether this effect was related to the in vitro stimulation
of GR nuclear export. When hormone-withdrawn, perme-
abilized GrH2 cells were treated with sodium molybdate,
rapid ATP-dependent nuclear export of hsp90 and GR
was observed (not shown), suggesting that GR and hsp90
might be coexported from nuclei. However, hsp90 nuclear
export was not dependent on coexport of GR since hsp90
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still showed significant export in hormone-treated GrH2
cells in which GRs were not effectively exported (not
shown). We therefore addressed the issue of GR/hsp90 co-
export by examining the export of a GR carboxyl-terminal
deletion mutant that does not associate with hsp90 (i.e.,
VANS5S56; Tang and DeFranco, 1996). As shown in Fig. 9,
VANSS56 expressed in stably transfected CHO cells also
exhibited ATP-dependent in vitro nuclear export upon so-
dium molybdate treatment (Fig. 9 C). hsp90 nuclear ex-
port was also stimulated by sodium molybdate in the same
cells (Fig. 9 D). These data strongly suggest that the rapid,

VANS556

Figure 9. Molybdate-stimulated in vitro nuclear export of
VANS56 GR and hsp90. CHO cells stably transfected with
VANS556 GR were permeabilized and then incubated with 50 pl
of 10 mg/ml BSA in transport buffer for 20 min at 30°C with the
following additions: (A and B) 4 mM ATP; (C and D) 4 mM ATP
and 20 mM sodium molybdate; (£ and F) 20 mM sodium molyb-
date. GR (A4, C, and E) and hsp90 (B, D, and F) were detected in
fixed cells by costaining with the BuGR2 mAb and TSTA rabbit
serum.
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Figure 8. In vitro nuclear ex-
port of GR is an ATP-driven
process. Hormone-with-
drawn GrH2 cells were per-
meabilized and then incu-
bated with 10 mg/ml of BSA
in transport buffer contain-
ing 20 mM sodium molyb-
date at 30°C with the follow-
ing additions: (A) 4 mM
ATP; (B) 4 mM GTP; (C) 4
mM each of ATP and GTP~S;
(D) 4 mM each of GTP and
AMP-PNP. GR in fixed cells
was detected by IIF.

energy-dependent in vitro nuclear export of unliganded
GR and hsp90 brought about by sodium molybdate treat-
ment is not due to coexport of GR-hsp90 complexes.

Since nuclear export of unliganded GR and that of
hsp90 appear to be independent events which are both
triggered by sodium molybdate, we expanded our analysis
to include hsp56, another GR associated protein, and dis-
tinct members of the heterogeneous ribonuclear protein
family that differ in their nucleocytoplasmic shuttling prop-
erties (i.e., hnRNP A1l and hnRNP C) (Pinol-Roma and
Dreyfuss, 1992). In our assessment of in vitro nuclear ex-
port of hnRNP A1, hnRNP C, and hsp56, we used tung-
state, a group VI-A transition metal oxyanion that was
found to be more effective than molybdate. As shown in
Fig. 10, in the absence of ATP, all four proteins were re-
tained within nuclei of permeabilized cells after a 20-min
incubation with sodium tungstate (Fig. 10, A, C, E, and G).
However, in the presence of ATP, hnRNP A1l (Fig. 10 B)
and hsp 90 (Fig. 10 F) efficiently exported from the nuclei
after incubation with sodium tungstate while, in the same
field of the cells, hsp56 (Fig. 10 D) and hnRNP C (Fig. 10 H),
respectively, were retained within nuclei. Tungstate also
induced rapid in vitro nuclear export of hsp70 (not shown).
hsp90 is distributed in both the cytoplasm and nucleus
(Gasc et al., 1990), indicating that it might be a shuttling
protein, although this has not been experimentally veri-
fied. hsp56 is found predominantly within the nucleus
(Czar et al., 1995) and its nucleocytoplasmic shuttling
properties have not been assessed. The fact that molyb-
date and tungstate effects are exerted on hsp70, a shuttling
protein, and a shuttling hnRNP protein (i.e., hnRNP A1)
suggests that some component of the nuclear export ma-
chinery used by shuttling proteins may be targeted by metal
oxyanions.

Molybdate Effects on In Vitro Nuclear
Export Correlate with its Stimulation of Protein
Tyrosine Phosphorylation

In addition to stabilizing GR-hsp90 complexes, metal oxy-
anions such as molybdate and tungstate exert multiple ef-
fects on cellular functions. Molybdate has been found to
stimulate protein degradation (Modarress et al., 1994), dis-
rupt GR association with specific RNAs (Rossini, 1987),
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and increase cellular cGMP levels by stimulating guany-
late cyclase activity (Barsony and McKoy, 1992). So far,
we have excluded these possibilities as potential reasons
for molybdate-induced, energy-dependent in vitro nuclear
export of GR, by observing that: (a) significant degrada-
tion of GR did not occur after molybdate treatment (Fig.
7, lanes 1-4); (b) RNase A treatment of permeabilized cell
in the absence of molybdate treatment did not lead to GR
nuclear export while efficiently depleting hnRNP A1 from
nuclei (not shown); and (c¢) addition of cGMP to perme-
abilized cells exerted no significant effect on GR nuclear
export (not shown).

Molybdate and tungstate are also potent inhibitors of ty-
rosine phosphatases and, as a result, their treatment leads
to increased protein tyrosine phosphorylation. Two other
tyrosine phosphatase inhibitors, vanadate and heparin,
also induced rapid in vitro nuclear export of GR (Fig. 11,
C and E), while protein serine-phosphatase inhibitors mi-
crocystin (Fig. 11 G) and okadaic acid (not shown) were
ineffective. As shown in Table I, 50 pwg/ml heparin was
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ATP + Tu

Figure 10. Selective effects
of tungstate on in vitro nu-
clear protein export. Perme-
abilized HeLa cells were in-
cubated for 20 min at 30°C
with BSA in transport buffer
containing 20 mM sodium
tungstate, in the absence (A,
C, E, and G) or presence of 4
mM ATP (B, D, F, and H).
Fixed cells were subjected to
costaining to detect either
hnRNP Al (A and B) and
hsp56 (C and D), or hnRNP
C (G and H) and hsp90 (E
and F) in the same fields of
cells.

most effective in stimulating in vitro nuclear export of GR,
while analogous dose-response analysis showed that 7.5
mM sodium vanadate was an optimal concentration for
stimulation of GR export (not shown). Given these re-
sults, we were intrigued by the possibility that molybdate
effects on energy-dependent nuclear export may correlate
with its stimulation of protein tyrosine phosphorylation.
To test this hypothesis, we examined whether molybdate
effects on nuclear export were blocked if tyrosine phos-
phorylation was inhibited. As shown in Fig. 11, molybdate-,
vanadate-, or heparin-induced, ATP-dependent in vitro
nuclear export of GR was inhibited by tyrosine kinase in-
hibitors genistein (Fig. 11, B, D, and F) or tyrphostin
AG126 (Fig. 11 H). Dose-response analyses of genistein
and tyrphostin AG126 effects on molybdate-stimulated
GR nuclear export are shown in Table I. This inhibitory
effect was specific for protein tyrosine kinase inhibitors, as
a protein serine kinase inhibitor, staurosporin, was ineffec-
tive in blocking molybdate effects on GR nuclear export
(not shown).
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To confirm that genistein blocked molybdate-stimulated
protein tyrosine phosphorylation, we performed Western
blots with an anti-phosphotyrosine antibody. These blots
were also costained with GR and NuMA to confirm GR
nuclear export visualized by IIF in Fig. 11. As shown in
Fig. 12, relatively low levels of protein tyrosine phosphory-
lation were observed in permeabilized cells treated with
either ATP (Fig. 12, lane 1) or sodium molybdate alone
(Fig. 12, lane 4). Under these conditions, GR is effectively
retained within nuclei. Treatment of permeabilized cells
with ATP and molybdate dramatically increased the over-
all level of protein tyrosine phosphorylation, and corre-
spondingly stimulated nuclear export of GR (Fig. 12, lane
2). Thus, increased tyrosine phosphorylation induced by
molybdate corresponds with the stimulation of GR nu-
clear export. In agreement with our IIF data (Fig. 11),
genistein blocked molybdate-stimulated GR nuclear ex-
port (Fig. 12, middle). In addition, genistein also decreased
the extent of molybdate-induced protein tyrosine phos-
phorylation in permeabilized cells (Fig. 12, lane 3). Thus,
our results are consistent with the possible involvement of
some protein phosphotyrosine system in the nuclear ex-
port of GR and perhaps other shuttling proteins.

Discussion

In this report we have used an in vitro approach to analyze
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Mo
Genistein
ATP
Vanadate
o 5 Figure 11. In vitro nuclear
Genistein export of GR stimulated by
tyrosine phosphatase inhibi-
tors is blocked by the tyrosine
kinase inhibitors. Permeabi-
lized, hormone-withdrawn
ATP GrH2 cells were incubated
H : with BSA in transport buffer
epflrm containing 4 mM ATP for 20
Genistein min at 30°C, in the absence

(A, C, E, G, and H) or pres-
ence (B, D, and F) of 0.2 mM
genistein. 20 mM sodium mo-
lybdate was included in A, B,
and H, 7.5 mM sodium vana-
date in C and D, 50 pg/ml of
heparin in £ and F, 1 pM mi-
crocystin in G, and 1 mM tyr-
phostin AG126 (AG 126) in
H. GR was detected in fixed
cells by IIF.

GR nuclear export. Steroid receptors have been shown to
export from nuclei in vivo (Guiochon-Mantel et al., 1991;
Chandran and DeFranco, 1992; Dauvois et al., 1993; Madan
and DeFranco, 1993), but before our studies, this transport
process had not been recapitulated in vitro. It has been
known for many years that the tight nuclear binding that
accompanies ligand binding to steroid receptors is rapidly
reversed upon the dissociation of hormone (Munck and
Foley, 1976). While transient heterokaryon assays estab-
lished that GRs have the capacity to export from nuclei,
this translocation appeared to proceed with much slower
kinetics (Madan and DeFranco, 1993; Sackey et al., 1996)
than the rapid hormone-induced nuclear import of recep-
tors that occurs both in vivo (Picard and Yamamoto, 1987)
and in vitro (Yang and DeFranco, 1994). This protracted
nuclear export of GR appeared to be inconsistent with the
rapid loss of high affinity nuclear binding of the receptor
upon hormone dissociation (Munck and Foley, 1976).
However, our results establish that, although GRs are rap-
idly released from chromatin upon hormone withdrawal,
they are held in a distinct low affinity nuclear compart-
ment that appears to serve as a nuclear export staging
area. Unliganded GRs that collect within this staging area
have alternative trafficking fates, as they have the capacity
to either export from nuclei or reassociate with chromatin
upon rebinding hormone.

The kinetics of nuclear GR chromatin cycling is rapid
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Figure 12. Genistein blocks molybdate stimulation of protein ty-
rosine phosphorylation and in vitro nuclear export of GR. Hor-
mone-withdrawn GrH2 cells were permeabilized in suspension,
and recovered nuclei were incubated with the following compo-
nents: 4 mM ATP (lane 7); 4 mM ATP and 20 mM sodium mo-
lybdate (lane 2); ATP, molybdate, and 0.2 mM genistein (lane 3);
and molybdate (lane 4). After a 20-min incubation at 30°C, nuclei
were recovered and nuclear proteins were subjected to SDS-
PAGE. Half of the sample was subjected to Western blot analysis
to detect phosphotyrosine (p-Tyr) using the PY20 anti-phospho-
tyrosine mAb, while the other half of the sample was subjected to
Western blot analysis to detect GR and NuMA.

both in vivo and in vitro. In addition, the reversible chro-
matin binding of bulk GRs, as monitored by our studies, is
consistent with the kinetics of GR association with and
dissociation from chromatin of specific target genes (Reik
et al., 1991; Mymryk and Archer, 1995). Thus, it does not
appear obligatory for unliganded GRs, which have been
released from chromatin, to return to the cytoplasm to re-
gain their hormone- and chromatin-binding capacity. The
energy dependence of this chromatin cycle is consistent
with GR recycling models elaborated by Munck and co-
workers (Orti et al., 1989). However, the reuse of nuclear
receptors in the apparent absence of cytoplasmic transport
raises questions about the role of hsp90 in a nuclear cycle
of hormone dissociation and reassociation. It is well estab-
lished that GRs must be associated with hsp90 to have the
capacity to bind hormone in vitro (Bresnick et al., 1989).
This requirement may also apply in vivo, given the impact
of disruptions in hsp90 function on GR hormone binding
in yeast (Picard et al., 1990a; Bohen and Yamamoto, 1993).
The nucleus possesses a number of chaperone proteins
that participate in steroid receptor folding (Csermely et al.,
1995), but whether these chaperones are required to re-
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constitute functional nuclear receptors is unknown. Unli-
ganded nuclear steroid receptors released from chromatin
in vivo may either maintain their competence to rebind
hormone or use a distinct protein chaperone system to as-
sist in folding transitions that impact their hormone-bind-
ing activity.

During our attempts to develop an in vitro nuclear ex-
port system for GRs, we made the surprising discovery
that treatment of permeabilized cells with molybdate, a
group VI-A transition metal oxyanion, induced a rapid,
temperature- and ATP-dependent nuclear export of unli-
ganded GRs. The molybdate-induced in vitro nuclear ex-
port of GR was greatly facilitated by the release of recep-
tors from chromatin, as minimal effects of molybdate on
GR nuclear export were observed if cells were not with-
drawn from hormone before permeabilization. Thus, once
released from chromatin, unliganded GR may be held in a
low affinity, nuclear export staging area until directed to
the NPC for export. Tungstate and vanadate, two other
group VI-A transition metal oxyanions, were even more
effective in stimulating in vitro GR nuclear export. The
fact that our assays revealed nuclear export of GR was
confirmed by the lack of molybdate effects on GR degra-
dation and the sensitivity of this apparent nuclear export
to WGA. A significant fraction of exporting GRs ap-
peared to be trapped at the nuclear envelope in the pres-
ence of WGA, given the appearance of prominent nuclear
rim staining.

Metal oxyanions are known to stabilize the association
between GR and hsp90, but this appears unlikely to be re-
sponsible for the in vitro stimulation of GR nuclear export
for a number of reasons. First, molybdate and tungstate
treatment of permeabilized cells also stimulated the en-
ergy-dependent nuclear export of a GR mutant that does
not interact with hsp90. Second, metal oxyanion effects on
in vitro nuclear export were not restricted to GR, but also
noted for hsp90, hsp70, and hnRNP Al. Not all nuclear
proteins in permeabilized cells were exported upon metal
oxyanion treatment in the presence of ATP, as hsp56 and
hnRNP C were found to be retained within the nuclei of
cells that supported the export of hnRNP A1 and hsp90,
respectively. The differential sensitivity of hnRNP Al vs
hnRNP C nuclear export to metal oxyanions is notewor-
thy, as these proteins differ in their nucleocytoplasmic
shuttling properties; i.e., hnRNP A1 is a shuttling protein,
while hnRNP C is not (Pinol-Roma and Dreyfuss, 1992).
While the nucleocytoplasmic shuttling properties of other
proteins tested in our assay system, notably hsp90 and
hsp56, have not been established, it is intriguing to con-
sider the possibility that metal oxyanions may be acting to
affect a component of the nuclear export pathway that is
exclusively used by shuttling proteins. GR and hnRNP A1
use different nuclear export pathways, yet export of both
proteins is analogously affected by metal oxyanions in our
in vitro assay system.

While a number of biochemical processes are known to
be affected by group VI-A transition metal oxyanions, the
analogous effects of heparin on GR nuclear export fo-
cused our attention on the protein tyrosine phosphatase
inhibitory properties of these compounds. Indeed, stimu-
lation of in vitro nuclear export of unliganded GR was cor-
related with increased tyrosine phosphorylation of a number
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of proteins present within the permeabilized cell prepara-
tion. An inhibition of protein tyrosine phosphorylation
with tyrosine kinase inhibitors, genistein and tyrphostin
AG126, abolished molybdate effects on GR nuclear ex-
port, further strengthening the correlation between stimu-
lated nuclear export and tyrosine phosphorylation. Protein
phosphorylation has been shown to affect nuclear import,
but, in many cases, this effect is direct as phosphorylation
of some substrates can impact the efficiency of their nu-
clear import (Rihs and Peters, 1989; Rihs et al., 1991). Ex-
amples of both serine/threonine (Rihs and Peters, 1989;
Rihs et al., 1991) and tyrosine (Fu, 1992; Shuai et al., 1993)
phosphorylation effects on nuclear import have been ob-
served. It appears unlikely that direct phosphorylation of
exporting substrates is responsible for accelerated nuclear
export in our assays since GR is not tyrosine phosphory-
lated in vivo (Bodwell et al., 1991) and under our in vitro
assay conditions (data not shown). Furthermore, since so-
dium molybdate treatment also accelerated the energy-
dependent nuclear export of a GR mutant with serine to
alanine substitutions at its seven predominant phosphory-
lation sites (data not shown), it appears unlikely that indi-
rect activation by sodium molybdate of downstream pro-
tein serine/threonine kinases acting on GR is responsible
for this effect.

The ATP dependence of nuclear export observed in our
in vitro system differs from the recently observed GTP-
and ATP-independent nuclear export of NLS-conjugates
in a similar digitonin-permeabilized cell system (Moroianu
and Blobel, 1995). The discrepancy between this report
and ours may reflect the usage of different exporting sub-
strates. Since we examined the export of native shuttling
proteins, ATP hydrolysis may be required for additional
steps in the export pathway, such as release from some re-
tention compartment, which are not obligatory for an
NLS-conjugate. GR NLS-conjugates, while importing effi-
ciently into nuclei, do not associate with the nuclear ma-
trix, even under conditions that lead to dramatic increases
in GR matrix binding (Tang and DeFranco, 1996). Thus,
the subnuclear trafficking of NLS-conjugates clearly dif-
fers from that of the native protein from which the NLS
was derived.

Since GTPyS did not block ATP-dependent in vitro ex-
port of GR, while AMP-PNP inhibited the partial export
observed in GTP-treated permeabilized cells, a role for
Ran in molybdate-stimulated nuclear export appears un-
likely. This is consistent with the lack of a cytosolic re-
quirement for our in vitro nuclear export and also differs
from the observed Ran-dependent nuclear export of an
NLS-conjugate in permeabilized cells (Moroianu and Blo-
bel, 1995). The addition of nuclear import competent cyto-
sol (which contains high levels of Ran) to our permeabil-
ized cells did not lead to in vitro nuclear export of GR in
the absence of molybdate treatment (data not shown), im-
plying that nuclear protein export may not only be limited
to a Ran-dependent pathway. Future studies will be di-
rected toward revealing whether a Ran-independent pro-
tein nuclear export pathway operates under specific condi-
tions in vivo.

The fact that accelerated in vitro nuclear export applied
to proteins that use distinct mechanisms for nuclear export
suggests that this may represent a generalized effect on
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NPC function. In fact, the kinetics of hormone-induced in
vitro nuclear import of GR was also found to be stimulated
by molybdate treatment (Yang, J., and D.B. DeFranco, un-
published observations), suggesting that inward and out-
ward trafficking through the NPC may be sensitive to
molybdate effects. The in vitro system that we have devel-
oped should be amenable to further biochemical and mo-
lecular experiments that may ultimately identify the fac-
tors regulating NPC function in response to molybdate
treatment. Finally, this regulation of subnuclear compart-
mentalization provides a novel level of cross talk between
distinct signal transduction pathways that could have an
important impact on the activity of diverse nuclear pro-
teins that function in transcription, DNA replication, or
RNA splicing.
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