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Serine protease inhibitors (serpins) family have a complex mechanism of inhibition that re-
quires a large scale conformational change. Antithrombin (AT), a member of serpin super-
family serves as a key regulator of the blood coagulation cascade, deficiency of which leads
to thrombosis. In recent years, a handful of studies have identified small compounds that
retard serpin polymerization but abrogated the normal activity. Here, we screened small
molecules to find potential leads that can reduce AT polymer formation. We identified sim-
ple sugar molecules that successfully blocked polymer formation without a significant loss
of normal activity of AT under specific buffer and temperature conditions. Of these, trehalose
proved to be most promising as it showed a marked decrease in the bead like polymeric
structures of AT shown by electron microscopic analysis. A circular dichroism (CD) analysis
indicated alteration in the secondary structure profile and an increased thermal stability of
AT in the presence of trehalose. Guanidine hydrochloride (GdnHCl)-based unfolding stud-
ies of AT show the formation of a different intermediate in the presence of trehalose. A
time-dependent fluorescence study using 1,1′-bi(4-anilino)naphthalene-5,5′-disulfonic acid
(Bis-ANS) shows that trehalose affects the initial conformational change step in transition
from native to polymer state through its binding to exposed hydrophobic residues on AT
thus making AT less polymerogenic. In conclusion, trehalose holds promise by acting as
an initial scaffold that can be modified to design similar compounds with polymer retarding
propensity.

Introduction
Antithrombin (AT) is the main regulator of the blood coagulation cascade and acts by inhibiting vari-
ous proteases like thrombin, factor IXa, factor Xa and factor XIa [1,2]. Point mutations in AT can lead
to its oligomerization and polymer formation which decreases its levels in plasma and might result in
thrombosis [3–7]. AT belongs to the serine protease inhibitors (serpin) superfamily, members of which
have the same structure and mechanism of inhibition. A serpin is composed of three β-sheets (A–C),
7–9 α-helices (hA-hI) and a mobile reactive center loop (RCL) which is exposed [8,9]. This loop presents
a peptide sequence as a pseudo-substrate for the target proteinase that is cleaved after docking with the
enzyme [10]. A large conformational change then drags the protease from the top to the opposite pole
that leads to the formation of a thermodynamically stable serpin-protease complex [11,12]. However, in
many serpins including AT, this inhibition mechanism renders them susceptible to form inactive ordered
polymers by introducing point mutations that allow the entry of RCL of one molecule into β-sheet A of
another [13–15]. Mutation resulting in polymer formation in α-1antitrypsin (AAT), neuroserpin (NEU),
AT, C1 inhibitor, antichymotrypsin (ACT) and heparin cofactor II (HCF-II) can lead to pathological states
like cirrhosis, emphysema, dementia, thrombosis and angioedema [16].
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Several RCL-based peptides have been used to block polymerization which acts by annealing to the β-sheet A, but
they also abrogates the normal function of serpin [17,18]. In antitrypsin, hydrophobic pocket filling using space filling
variant dramatically reduced the polymer formation [19]. Use of Glycerol, phenyl butyric acid and trimethylamine
N-oxide (TMAO) has been shown as another pharmacological strategy that ameliorated liver cirrhosis [20,21]. Alco-
hols and sugar molecules like glycerol, erythritol and trehalose were effective in reducing the rate of polymerization
of wild-type and mutant NEU [22]. Small molecules can have advantage of being directly administered to prevent
in situ polymerization and reduce cell toxicity [23]. Effective leads that can act at low concentration are desirable;
however, despite advances in understanding the role of these compounds in serpin polymerization, interaction of
these compounds, modulation of conformation and inhibitory mechanism is not clearly established. Here, we re-
port an in vitro screening of small molecules belonging to the sugar, amino acids and methlyamines that lead to the
identification of few potential leads as they successfully retarded AT polymer formation assessed by Native-PAGE.
Among them, the disaccharide trehalose proved to be most promising as it was effective at the lowest concentration
of 1 M. Furthermore, the kinetic and thermal stability data of trehalose was the best among all the other leads. In view
of this, we refined our screening and performed a comprehensive circular dichroism (CD)- and fluorescence-based
structural study of AT with trehalose. The ensuing results indicate that presence of trehalose at concentrations that
reduce polymer formation can induce changes in the overall stability, secondary structure and hydrophobic profile
of AT resulting in reduction of ‘beads on a string like AT polymer’. It is hypothesized that trehalose-based structural
analogs could be developed to be more effective at lower concentrations and act as potential therapeutics to treat
polymerization-based serpinopathies.

Materials and methods
Materials
Hi-Trap heparin high affinity columns were purchased from GE Biosciences and the integrated protein
purification system was from Biorad. Amicon Ultra-15 centrifugal filters were from Millipore. Human
thrombin (IIa) and S-2238 (H-D-Phenylalanyl-L-pipecolyl-L-arginine-p-nitroaniline dihydrochloride) were from
American Diagnostic. Ultrapure guanidine hydrochloride (GdnHCl) was purchased from MP Biomedicals.
1,1′-bi(4-anilino)naphthalene-5,5′-disulfonic acid (Bis-ANS) was from Sigma–Aldrich. Small molecules used in the
study were purchased from Merck.

Preparation of buffers, denaturant (GdnHCl) and fluorophore (Bis-ANS)
For most experiments, PE buffer was used (20 mM sodium phosphate containing 0.1 mM EDTA, pH 7.4). However,
for AT-thrombin activity measurements, 100 mM NaCl and 0.1% of PEG6000 were also added to PE buffer in order
to make it suitable for 96-well plate measurements. After pH adjustment, all the buffers were filtered with 0.22-μm
Millipore syringe filters and stored at 4◦C for use. For preparing GdnHCl stock solution, an appropriate amount of
GdnHCl was weighed and dissolved in PE buffer. After pH adjustment, solution was filtered and the concentration
was determined from the value of difference between the refractive indices of the denaturant and the buffer solution
at room temperature using the following equation [24]:

C = 57.147(�N) + 38.68(�N)2 − 91.6(�N)3 (1)

where C is the concentration of GdnHCl in moles per liter and �N is the difference between the refrac-
tive indices of the denaturant and buffer solutions. In the present study, hydrophobic aromatic fluorescent dye
4-4′dianilino-1,1′-binaphthyl-5,5′- disulfonic acid (bis-ANS) was chosen. Appropriate amount of bis-ANS was pre-
cisely weighed and dissolved in PE buffer. The concentration of bis-ANS was determined spectrophotometrically
using its molar extinction coefficient [25].

Purification of AT from human plasma and induction of polymerization
AT Purification from human plasma was achieved by using Hi-Trap heparin affinity column which was eluted with a
0.15–2.50 M NaCl gradient as described earlier [26]. Concentration of purified AT was determined by measurement
of UV absorbance at 280 nm using molar extinction coefficient of plasma AT [27]. Polymer formation of AT was
induced by heating AT under specific buffer and pH conditions. 100 μg ml−1 of native AT in a total of 1 ml was
incubated at 60◦C in 50 mM Tris buffer and 50 mM KCL, pH 7.4 in the absence and presence of small molecules
(listed in Supplementary Table S1) at different time intervals. Samples were removed at indicated times, snap frozen
and stored at −70◦C for further analysis. Native-PAGE was done to visualize the high molecular weight polymer
bands of AT.
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Thrombin inhibition kinetics by AT
Kinetics of thrombin inhibition by AT in the presence of lead molecules were determined by taking AT in three
different concentrations (100, 200 and 300 nM) in PNE-PEG buffer. These were made to react with thrombin (10 nM)
in the presence of trehalose (1.0 M), sorbitol (1.5 M), mannose (1.5 M each), serine (1.25 M) and TMAO (1.0M) at
given time-points in a 96-well plate. Absorbance was taken at 405 nm after the addition of thrombin substrate S-2238
(0.15 mM). Stoichiometries of thrombin inhibition (SI) by AT in the absence and presence of lead molecules were
determined as described previously [26]. kassoc rates were quantified from the plots obtained. Appropriate thrombin
and S2238 controls/blanks with small molecules in the absence of protein were taken.

Transmission electron microscope analysis
AT polymer formation was assessed in the absence and presence of sorbitol and trehalose for 0 and 90 min. Polymers
were formed by heating AT at 60◦C for 90 min in PE buffer at pH 7.4. Aliquots were withdrawn at 0 and 90 min and
the reaction was quenched by placing the sample on ice. Copper/formvar grids of 300 mesh were prepared for the
samples that were stained negatively with 1.5% (w/v) uranyl acetate and viewed with a magnification of upt o ×50000
with transmission electron microscope (TEM) (FEI Morgagni 268 D with digital camera Image 268 D).

Fluorescence measurements
Fluorescence spectra were recorded on a JASCO 6300 spectrofluorimeter using a 1-cm quartz cell. A slit width of 5
nm was used for both excitation and emission wavelengths. For the bis-ANS fluorescence in probe–protein binding
experiments, samples were excited at wavelength of 385 nm and the emission spectra were recorded from 390 to 600
nm using a scan speed of 100 nm/min in 1-nm steps and an integration time of 5 s. The concentration of AT was 1
μM and the molar ratio of AT to bis-ANS was 1:10. Data were corrected by subtracting the buffer contribution.

Circular dichroism measurements
CD spectra were obtained using an Applied Photophysics spectropolarimeter at 25◦C with 1 nm/10 s signal. The
far-UV CD spectra (200–260 nm) were recorded using a 1 mm path length cell. For the near-UV CD (260–310 nm)
measurements, a 5 mm path length cuvette was used. Far-UV and Near-UV CD spectra of AT in the absence and
presence of effective concentrations of lead molecules were acquired at 25 +− 0.1◦C. Each spectrum was corrected
for blank contribution. Thermal unfolding was performed using a heating rate of 60◦C/h, and the changes in sec-
ondary structure with temperature were measured by monitoring the CD signal at 222 nm. Melting points (Tm) were
calculated as described [20]. Protein concentration was 3 μM and that of trehalose was 1 M.

Raw CD data were converted into the mean residue ellipticity, MRE (deg.cm2 dmol−1) at wavelength λ using the
relation :

MRE = (Mo ∗ θ)
10 ∗ 1 ∗ c

(2)

where (θ) is the observed ellipticity in millidegrees at wavelength λ, Mo is the mean residue weight of the protein, c
is the protein concentration in milligrams per milliliter, and l is the path length of the cell in centimeters.

GdnHCl-induced unfolding transition
Unfolding as a function of GdnHCl concentration was monitored by CD and fluorescence spectroscopy. To AT solu-
tion (500 nM in PE buffer, pH 7.4) in the absence and presence of 1 M trehalose, aliquots of 8.2 M GdnHCl were added
in order to obtain the desired denaturant concentration (0–6 M). These samples were then used for fluorescence and
CD measurements.

Statistical analysis
Data for temperature dependence bis-ANS experiment were analyzed with two-way ANOVA (bonferroni post-tests)
while AT-thrombin activity data were analyzed using linear regression application of GraphPad PRISM software (ver-
sion 5, San Diego, CA, U.S.A.).

Results
Small molecules retards AT polymerization
AT was purified from human plasma as shown in Supplementary Figure S1 and conditions were provided to induce
polymer formation. Supplemenatry Figure S2A shows behavior of native AT under polymerization condition where
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Figure 1. Rate of thrombin inhibition by AT in the absence and presence of small molecules

Kinetics of thrombin inhibition by AT were determined by reacting AT in three different concentrations (100, 200 and 300 nM) with

thrombin (30 nM) in the (A) absence and presence of (B) 1.5 M sorbitol, (C) 1 M trehalose, (D) 1.5 M mannose, (E) 1 M TMAO and

(F) 1.25 M serine at given time-points in a 96-well plate. Absorbance was taken at 405 nm after the addition of thrombin substrate

S-2238 (0.15 mM). Appropriate thrombin and S2238 controls/blanks with small molecules in the absence of protein were taken.

Measurements were carried out at least three times and data were analyzed with linear regression function of GraphPad Prism

v5.0.

an increased polymerization is seen upon longer incubation. Most of the molecules used in the in vitro screening
(Supplementary Table S1) had no effect on AT polymer formation (data not shown). However, five of them namely
trehalose, sorbitol, mannose, serine and TMAO successfully blocked long chain polymers of AT in a concentration
dependent manner as seen on native-PAGE gels (Supplementary Figure S2B–N). The effective concentrations were 1,
1.5, 1.5, 1.25 and 1M for trehalose, sorbitol, mannose, serine and TMAO, respectively. These effective concentrations
respective for each molecule were then carried forward in further experiments.

AT activity and stability in the presence of small molecules
The rates of thrombin inhibition by AT were determined from continuous assays using the change in absorbance at
405 nm resulting from hydrolysis of chromogenic substrate. Figure 1A–F shows the progressive thrombin inhibition
plots for AT in the absence and presence of lead molecules in which residual activity is plotted against time. The
slopes gave us the pseudo-first order (kobs) and second-order rate constants (kapp). SI experiments showed a value
of 1 in the absence and an increased stoichiometry (>1 but <2) in the presence of sugar molecules suggesting a
slowing down of RCL insertion (Supplementary Figure S3). From the values of kapp and SI, overall association rate
constants, kassoc were calculated (Table 1). Antithrombin RCL inserts between strand 3A and 5A of β-sheet A as
strand 4A after protease binding and cleavage. Trehalose, sorbitol and mannose have been shown to bind to the
upper shutter region around strand 6A [28]. Taken together, the results show a slight slowing down of loop insertion
in the presence of lead molecules that concomitantly decreases A-sheet motility thereby diminishing the tendency for
intermolecular loop-sheet interactions based AT polymerization. Next, we measured thermal stability of AT in the
absence and presence of lead sugar molecules (Figure 2). We observed a Tm of 57.9◦C for AT consistent with previous
reports [5,20]. A 10◦C increase in Tm in the presence of 1.5 M sorbitol and 1 M trehalose and a 6◦C increase in Tm
in the presence of 1.5 M mannose was observed. Increase in the Tm is indicative of increase in the overall stability
of native AT. It has been shown that trehalose has the propensity to bind to the native state at elevated temperatures
thus providing a more compatible environment that protects proteins from heat inactivation [29]. This quality of
preferential hydration in trehalose (and other sugars) led to an attainment of stability of AT during the course of
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Table 1 Thrombin inhibition kinetics by AT.

Molecule k(app)*10−3 (M−1s−1) SI k(assoc)*10−3 (M−1s−1)

AT 3.3 +− 0.1 1.0 +− 0.1 3.3 +− 0.1

AT + SOR 2.6 +− 0.2 1.8 +− 0.1 4.7 +− 0.1

AT + MANN 2.7 +− 0.2 1.7 +− 0.1 4.6 +− 0.2

AT + TRE 2.9 +− 0.1 1.5 +− 0.2 4.4 +− 0.1

AT + SER 2.5 +− 0.2 2.1 +− 0.1 5.3 +− 0.1

AT + TMAO 2.3 +− 0.2 2.7 +− 0.2 6.2 +− 0.2

Apparent second-order rate constant (kapp), inhibition stoichiometries (SI) and second-order association rate constants (kassoc) of thrombin inhibition by
AT in the absence and presence of small molecules. Observed pseudo-first-order rate constants, kobs were obtained from the negative slope of a plot of
residual enzyme activity versus time (of thrombin and AT co-incubation). kapp were calculated by dividing kobs by molar concentration of AT. kassoc = kapp*
S.I. Mean +− S.E.M. of three independent experiments is shown. Abbreviations: MANN, mannose; SER, serine; SOR, sorbitol; TMAO, trimethylamine
N-oxide; TRE, trehalose.

Figure 2. Stability of AT in the absence and presence of small molecules

Relative ellipticity change at 222 nm is plotted against temperature over the range of 35–80◦C of 3 μM of AT in the absence and

presence of 1 M trehalose, 1.5 M sorbitol and 1.5 M mannose as described in methods. Relative ellipticities were calculated by

using the relation [θobs − θmin]/[θmax − θmin] [38] where θmin and θmax were fitted values of ellipticity at the lowest and highest

temperatures used in the study, respectively, and θobs is the observed ellipticity at temperature T. Each curve is an average of three

experiments.

denaturation. It seems sorbitol and to a lesser extent mannose also led to an increased stability of AT in a similar
manner.

Trehalose and sorbitol leads to a reduction in the size and shape of AT
polymers
Members of serpin superfamily unlike amyloid fibrils are known to form bead-like polymers that accumulate inside
the cells and result in pathological states like liver cirrhosis [30] and dementia [31]. We examined the nature of AT
molecule in the absence and presence of 1.5 M sorbitol and 1 M trehalose using TEM. Figure 3A shows scattered-AT
monomers at native state that upon incubation at 60◦C for 90 min took the shape of bead-like polymers (Figure 3D).
Treatment with 1.5 M sorbitol (Figure 3E) and 1 M trehalose (Figure 3F) led to a reduction of these polymers. The
results confirmed that the high molecular weight polymers of AT seen on native-PAGE (Supplementary Figure S2A)
were reduced in the presence of these molecules, albeit the effect of sorbitol was not as strong as trehalose. It implies
that if trehalose shields AT, the insertion of RCL will be hampered due to compactness of trehalose bound AT. The ef-
fect can arise either due to trehalose-induced conformational change reducing the exposure of hydrophobic surfaces
or due to trehalose directly interacting with hydrophobic surface creating hinderance for RCL insertion from other
AT molecule to form polymer. In conclusion, TEM analysis showed generation of bead like AT polymers upon heat
incubation owing to significant structural changes with newly exposed hydrophobic surfaces. These polymers get
truncated in the presence of trehalose which shields AT from intermolecular interaction by reducing its hydropho-
bicity thus limiting polymerization since hydrophobicity is a property of serpin polymers [32].
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Figure 3. Electron micrographs showing reduction in the size and shape of AT polymers by sorbitol and trehalose

AT Polymers were formed by heating 10 μM of the protein at 60◦C for 90 min. Samples were stained negatively with 1.5% (w/v)

uranyl acetate, and viewed with a magnification of up to ×50000. AT incubated at (A) 0 min, (D) 90 min; AT incubated in the presence

of 1.5 M sorbitol at (B) 0 min and (E) 90 min and in the presence of 1 M trehalose at (C) 0 min and (F) 90 min. Insets in D–F shows

enlarged view of polymers.
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Figure 4. Effect of trehalose on native state of AT

(A) Bis-ANS fluorescence, (B) Far-UV CD and (C) Near-UV CD spectra of native AT in the absence and presence of 1 M trehalose.

Experimental details are mentioned in Materials and methods section. All measurements were carried out at 25◦C in 20 mM phos-

phate buffer containing 100 mM NaCl and 0.1% EDTA (PNE buffer). The concentration of protein was 1–20 μM and that of trehalose

was 1 M. All the data were corrected for buffer effect. Each curve represents an average of three (for Bis-ANS and Far-UV CD) and

two (for near-UV CD) independent experiments.

Figure 5. GdnHCl-based denaturation profile of AT

GdnHCl (0–6 M)-induced unfolding transition of native AT was measured by the change in the fluorescence signal. Representative

tryptophan fluorescence spectra of AT were recorded in the (A) absence and (B) presence of 1 M trehalose. All the measurements

were carried out with 500 nM of AT incubated with GdnHCl (0–6 M) for 2 h prior to fluorescence measurements at 25◦C in PNE

buffer. An excitation wavelength of 280 nm was used and the scan was recorded from 295 to 440 nm. (C) Emission maxima plot

extrapolated from the chemical denaturation profile of AT by GdnHCl (0–6 M) monitored by intrinsic tryptophan fluorescence in the

absence and presence of 1 M trehalose. Each plot is an average of measurements carried out at least three times.

Effect of trehalose on native, intermediate and unfolded state of AT
To fully explore the role of trehalose in hindering AT polymerization, it was important to understand its effect on
the various states of AT that prevails in solution. For this, we studied the effect of 1 M trehalose on different states of
AT through CD and fluorometric analysis. Bis-ANS binds to proteins and can provide information about the relative
exposure of hydrophobic surfaces [33]. Figure 4A shows the Bis-ANS emission spectra of native AT in the absence and
presence of 1 M trehalose. With trehalose, >2-fold decrease in the emission intensity of AT was observed indicating
a shielding of exposed hydrophobic surfaces of AT on account of trehalose binding. Figure 4B shows the Far-UV CD
spectra of AT indicating an increase in the α-helical content in the presence of 1 M trehalose. Figure 4C shows the
near-UV CD spectra under similar conditions, where we observed an absence of Phe peak and a shift in the tyrosine
and tryptophan peaks to 276 and 287 nm, respectively, indicating an overall change in the tertiary structure of AT.
The data indicates that in the presence of polymer reducing concentration of trehalose (1 M), increased compactness
of AT reduces the overall exposed hydrophobic surface by increasing the α-helical content and altering the tertiary
structure.

Next, we forwarded our study to unfolded states of AT and used the chaotrope GdnHCl to pursue this objective.
Figure 5 shows fluorescence spectra curves of AT in the absence (panel A) and presence of 1 M trehalose (panel B).
We observed that GdnHCl mediated unfolding of native AT showed a decrease in emission intensity with a significant
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Figure 6. Effect of trehalose on intermediate state of AT

(A) Far-UV CD spectra and (B) Bis-ANS fluorescence of AT in the absence and presence of 1 M trehalose was done to observe

conformation of intermediate state. AT was incubated with 2 M GdnHCl for 2 h in the absence and presence of 1 M trehalose prior

to CD and Fluorescence analysis. The concentration of AT was 1 μM and the molar ratio of AT to bis-ANS was 1:10. Data were

corrected by subtracting the buffer contribution. All data points in each plot were obtained from the average value of atleast three

independent experiments.

red shift (Figure 5A). Incubation with 1 M trehalose also showed a similar pattern of reduced fluorescence emission
intensity with a red shift indicating a change in the microenvironment of the tryptophan residues (Figure 5B). Figure
5C shows the emission maxima plot of AT in the absence and presence of 1 M trehalose with increasing GdnHCl
concentration. As can be seen from the plot, a peak centered at 341 nm characterized native AT. The fluorescence
markedly changes when the protein undergoes unfolding, with a shift in the emission maximum to 343 and 347 nm at
2 and 6 M GdnHCl concentrations, respectively. Incubation with 1 M trehalose did not have much effect on emission
maxima of native AT (0 M GdnHCl) and unfolded AT (6 M GdnHCl); however, there was a return of emission
maxima to 340 nm at 2 M GdnHCl. This blue shift of the maximum of fluorescence emission at 2 M suggests that
most of the tryptophan residues have recovered the environment close to the one they have in the native state. Further,
from the plot of AT, we observed two well resolved phases of unfolding: one from 0 to 2 M and another from 3 to
6 M GdnHCl concentration indicating a three state transformation to unfolded state with an intermediate around 2
M GdnHCl. The results agreed with the three state transformation to unfolded state of AT shown previously [34]. In
the presence of 1 M trehalose, however, we observed the formation of a different intermediate structure with native
AT like characteristics. To further investigate the impact of trehalose on intermediate state of AT, we acquired far-UV
CD spectra of AT as shown in Figure 6A. It can be seen that in the presence of 2 M GdnHCl, trehalose increases
the α-helical content of AT by approximately 6% (Supplementary Table S2). Although the effect is small, the trend
agrees with the interpretation that trehalose affects intermediate state of AT. A fluorescence emission spectra in the
absence and presence of 1 M trehalose along with bis-ANS and 2 M GdnHCl is shown in Figure 6B. The results
show a massive increase in emission intensity of AT folding intermediate as compared with native control (see also
Figure 4A). Further, incubation with 1 M trehalose shows a reduction in the exposure of hydrophobic surface of the
intermediate as compared with the 2 M GdnHCl incubated AT. The fluorescent intensity of AT intermediate in the
absence of trehalose is more than the fluorescent intensity for the native AT (Figure 4A), implying that the overall
surface hydrophobicity of AT intermediate is more than the native and that trehalose decreases both of them.

Time dependence of polymerization
Bis-ANS binding at various time points under the polymerization condition was done to assess the relative exposure
of hydrophobic surfaces during the course of polymer formation. Figure 7 shows the binding of bis-ANS to AT during

8 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. Time dependence of AT studied by bis-ANS fluorescence

Time course of AT polymerization in the (A) absence and (B) presence of 1 M trehalose. 2 μM AT in a total of 1 ml in PNE buffer

was incubated at 60◦C at indicated times in the absence and presence of 1 M trehalose. Samples were removed post-incubation

and increase in fluorescence was measured at 485 nm after excitation of samples at 385 nm in bis-ANS. (C) Fluoresence intensity

versus time plot. Average points from three separate experiments each with five scans were used to plot the graphs. Data were

analyzed with two-way ANOVA (bonferroni post tests) and a P-value ≤0.01 was considered significant.

polymerization in the absence (panel A) and presence of 1 M trehalose (panel B). The result in Figure 7A shows a
rapid increase in emission intensity of AT on account of bis-ANS binding followed by a decrease in emission intensity
with 90 min being the point of lowest intensity. The data show a gradual increase in exposure of hydrophobic core,
which is an indication of conformational deformation due to partial unfolding that stabilizes after 10 min. However,
in the presence of 1 M trehalose (Figure 7B), overall fluorescence intensity is decreased throughout the course of poly-
merization. Data points from these spectra were also plotted in fluorescence intensity/time graph as shown in Figure
7C where we can appreciate the phase formation during the course of polymerization. We observed two phases that
can be deciphered as an initial rapid conformational deformation phase due to partial unfolding and a stabilization
phase indicating polymerization. Of note, there is a decrease in emission intensity of AT in the presence of trehalose
which implies that trehalose reduces the hydrophobic surface (which is concurrent with a decrease in emission in-
tensity) and also slows down the rate of initial conformational change step during polymerization. The results show
that a partially denatured AT when stabilized with 1 M trehalose resists the transition to polymerized form through
reduction in hydrophobic core and probably an increase in hydration; both these factors contribute to maintain AT
native state.

Discussion
The process of serpin polymerization is of acute biomedical interest given the recognition that several devastating
pathologies including thrombosis are etiologically correlated to serpin polymers. The underlying reason for most of
the serpinopathies is the sophisticated mechanism of serpin inhibition that involves a large conformational change
which makes it prone to conformational deformation based diseases [15,16]. Reversing the accumulation of polymer-
ized serpin to decrease cytotoxicity is central to the design of novel strategies for its cure. To date, very few systematic
studies have been performed that found compounds to ameliorate serpinopathies. In α1-antitrypsin, polymerization
leads to both emphysema and severe liver disease and introduction of a bulkier group by mutation within a cavity or
incubation with chemical chaperone like TMAO (1.5–3.0 M) were shown to retard polymer formation [21,35]. It is
important to rationally design compounds that hinders polymerization but has minimum cross reactivity, maintains
activity and does not contribute to cellular toxicity. In the present work, we screened small molecules (Supplementary
Table S1) to identify bona fide “hits” that could prevent AT polymerization. We performed polymerization experi-
ments of AT in the presence of varying concentrations of the molecules and analyzed them through Native-PAGE.
Out of all the screened molecules, we succeeded in identifying trehalose, sorbitol, Mann, serine and TMAO at given
concentrations that completely blocked AT polymerization (Supplementary Figure S2). We then analyzed their effect
on normal AT function to inhibit thrombin in order to further filter the hits. We observed a slight increase in kassoc
values in the presence of lead molecules; however, among them the measures of activity for trehalose were the closest
to normal AT values (Figure 1 and Table 1). This suggests that addition of trehalose to the AT-thrombin reaction
mix does not alter the basic mechanism or efficiency of proteinase inhibition significantly (Supplementary Figure S3
and Table 1). Ligand–protein interactions usually modifies the midpoint of the melting curve (Tm). Thermal stability
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study of AT in the presence of trehalose resulted in a rise of 10◦C in Tm as compared with AT alone (Figure 2). This
increase was attributed to the changes in AT conformational flexibility induced by trehalose binding as evidenced
in Figure 4 where we observed an increase in the secondary structure and overall change in the tertiary structure
of AT upon incubation with trehalose (Figure 4 and Supplementary Table S3) Increase in Tm was also observed for
sorbitol and mannose by 10 and 6◦C, respectively; however, their effect on AT structure was not as remarkable as that
of trehalose (data not shown). Concerning the morphology of polymeric species, TEM analysis was performed on
heat-induced polymers of AT in the absence and presence of trehalose. The micrographs showed generation of bead
like AT polymers that looked longer and rigid. Further, it was observed that the polymers got truncated and appeared
less stiff upon incubation with trehalose which seems to shield AT from protein–protein interaction (Figure 3). The
effect of sorbitol was also monitored but it was marginal as compared with trehalose.

Serpin is proposed to undergo polymerization using two distinct steps, the native state intermediate undergoes a
change to a polymeric intermediate that self-associates to a dimer to form long chain polymer [13,36]. AT folds into
a native state using a molten globule type intermediate which is disturbed in variants that undergo polymerization
[34]. Chemical denaturation studies using GdnHCl with native AT showed a three state transformation to unfolded
state with an intermediate around 2 M GdnHCl. Native AT showed an emission maximum of 340 nm with a marked
change in fluorescence in the intermediate (2 M GnHCl) and unfolded state (6 M GdnHCl) and a shift in the emission
maxima to 343 and 347 nm, respectively. However, after the addition of 1 M trehalose to 2 M GdnHCl-denatured AT,
the emission maximum was blue shifted to 340 nm suggesting that the presence of trehalose bring in some conforma-
tional changes in AT that kept it in a native like conformation. Additionally, there was no notable effect of trehalose
on completely unfolded AT as the emission maxima remained the same (Figure 5). Effect of trehalose on AT inter-
mediate showed that when treated with trehalose, intermediate state had a native like secondary fold (Figure 6). It
indicates that trehalose forces the intermediate of AT to fold into a native like conformation by increasing its α-helical
content thereby making it partially folded and decreasing its hydrophobicity (as observed by a drop in bis-ANS flu-
orescence). Bis-ANS binding experiments with AT folding intermediate also showed considerable reduction in the
exposure of the hydrophobic surface in the presence of trehalose which was concurrent with an increased α-helical
content (Figure 6). For AT-bisANS binding at various time points under the polymerization condition, we observed
an initial increase in emission intensity indicating the initial conformational change followed by polymerization phase
with an increase in incubation time and a drop in fluorescence intensity owing to polymerization induced confor-
mational change in AT (Figure 7A). After the addition of trehalose to the reaction mix, we observed a sharp drop
in fluorescence intensity at native state and during the course of polymerization. This implies that through its bind-
ing to exposed areas rich in hydrophobic residues on AT, trehalose reduces the hydrophobicity of AT making it less
polymerogenic (Figure 7B).

From our in silico analysis of AT-trehalose interactions, we observed that AT interacts with trehalose at the inter-
face between the strand 6A and strand 5A, very near to the region where the RCL inserts as s4A and made important
hydrogen and hydrophobic interactions [28]. Taken together, our results have shown that effect of trehalose on the
polymerization of AT is based on the loop sheet model. Contrarily, if we assume a set up to study the role of trehalose in
combating AT polymerization (caused by domain swapping), it is most likely that trehalose will affect the intermediate
M* state. This is because M* state is shown to be a highly hydrophobic moiety sensitive to polymerization/aggregation
[13] and our bis-ANS data have shown that trehalose has a very high tendency to bind to hydrophobic regions on AT
and thereby diminishes the chances of AT polymerization (Figures 4A, 6B and 7).

Preferential hydration is the exclusion of co-solvents like sugar from native state and acts as the main driving force
for protein stabilization [37]. The present study clearly demonstrates that trehalose not just rescues AT from temper-
ature induced polymerization but at the same time is also helpful in the retention of its inhibitory activity (Supple-
mentary Figure S4). Massive decrease in hydrated hydrophobic surfaces on incubation with trehalose and an increase
in the stability of the native state points to the importance of preferential hydration in controlling protein–protein
interaction. It is concluded that trehalose can disturb the hydration around AT affecting the solvation energy. Given
the fact that trehalose acts as a universal protein stabilizer that is effectively used to increase the stability of many of
the industrial and therapeutic enzymes, it will be intriguing to test its efficacy in controlling thrombosis and other
diverse serpinopathies. Further, it is also plausible to use analog of trehalose in controlling polymerization rates for
minimizing the effective depolymerization concentration (Supplementary Figure S5).
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