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Chromatin is hierarchically organized in human interphase nuclei. Dynamic chromatin interactions are thought
to influence gene transcription and cell fate determination. A consensus concept is that genes may form tran-
scription factories within nucleus by spatially interaction. However, it is still not well known whether the
function-related genes co-locate in three-dimensional (3D) space for co-transcription. Especially, there is a
lack of visualization method that directly reflect the relationship between gene spatial interaction, gene func-
tion and co-transcription. In this study, we constructed three kinds of matrices based on gene ontology annota-
tions, high-through chromosome conformation capture (Hi-C) data and RNA-seq data from twenty human
tissues and cell lines. The comparative analysis for gene pairs revealed that 3D genome organization influences
gene transcription predominantly at local scale. We found that the local genes within family clusters have sim-
ilar transcription patterns.We also found that spatial reorganization of a histone gene cluster could control gene
transcription. These observations suggest that function-related genes are close in space and activated or re-
pressed together. Our work provided a framework for genome-wide studying the relationship between gene
function, co-transcription and spatial interaction.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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1. Introduction

Why one genome sequence can give rise to so many different cell
types in organism development, cell differentiation and disease occur-
rence?We now know that the driver is the temporal and spatial differ-
ence expression of genes, in which the gene transcriptional regulation
plays a key role. Transcriptional regulation is a complex biological pro-
cess involving a large number of interactions among DNA regulatory el-
ements (promoters, enhancers, silencers, terminators etc), RNAs
(mRNAs, tRNAs, non-coding RNAs etc) and proteins (transcription fac-
tors, histones, enzymes etc) [1–9]. The basic process of transcriptional
control has been well described that transcription factors occupy spe-
cific DNA elements such as promoters or enhancers and then recruit
RNApolymerase and cofactors to target genes [10–13]. Recent discover-
ies show that histone modifications, so-called “histone code”, control
the docking of regulatory factors with DNA elements by altering chro-
matin accessibility [14]. Furthermore, the discovery of dynamic and hi-
erarchical chromatin structure added a new dimension to gene
transcriptional regulation.
imu.edu.cn (Q.-Z. Li),

. on behalf of Research Network of Co
c-nd/4.0/).
More and more evidences have proved that chromosomes are
dynamically reorganized to suit the cell's needs [15–17]. They are com-
pressed into compact bodies in mitosis, and decompressed in inter-
phase to allow gene expression. Recently, some observations based on
Hi-C method [1] coupled with super-resolution imaging technique
[18] have revealed the hierarchical structure of chromatin organization
for interphase chromosomes. The Hi-C-basedmethods were used to as-
sess contacts for millions of loci simultaneously by averaging chromo-
some conformations from millions of nuclei. The microscopy-based
methods directly image the spatial organization of single chromosome
in single cell. These two methods have unraveled that chromatins are
partitioned into active (A) and inactive (B) compartments in a polarized
manner. The A/B compartments can change dynamically across cell
types, and these changes are associated with gene transcription.
Another kindof substructurewithin chromatin compartments called to-
pologically associating domains (TADs) has been identified in mamma-
lian genomes [19]. Unlike A/B compartments, the TADs are stable across
different cell types and highly conserved across species, suggesting that
TADs are the units of dynamic alterations in chromosome compart-
ments. By analyzing the spatial organization of a 4.5-megabases region
on themouse X-chromosome, Nora et al. [20] found that the expression
profiles of geneswith promoters locatedwithin the same TADwere cor-
related. And their more detailed analysis of each domain suggested
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these genes are integrated into a similar cis-regulatory network, poten-
tially sharing common cis-regulatory elements. Active transcription
units can be clustered in the nucleus, in discrete sites called “transcrip-
tion factories”. More studies have shown that transcription factories
could help organize chromatin and nuclear structure, which contributes
to both the formation of chromatin loops and the cluster of active and
co-regulated genes [21,22]. For example, the RNA polymerase II (Pol
II) concentrates in discrete sites to coordinate regulating gene transcrip-
tion [23,24].

In fact, many works have tried to reveal the relationship between
chromatin interactions and gene co-transcription in the genome of
human andmouse [25–29]. Most of them statistically analyzed the cor-
relation of gene expression level across a large collection of expression
datasets in a broad range of conditions. However, the 4C orHi-C datasets
they used were generated only in one or two cell lines. For example,
Dong et al. [25] tested the correlation between Hi-C interaction (ob-
served from human GM06990 and K562 cells) and the mutual ranks
of gene co-expression rates. Their results illustrated that co-expression
is strongly associated with chromatin interaction. The inconsistency of
the Hi-C data and RNA-seq data would prevent from achieving convinc-
ing conclusion because of the dynamics of chromatin organization. In-
deed, relatively few Hi-C data in a small collection of primary cell lines
restricts our knowledge of chromosome architecture.

Recently, Ren's lab [30] provided a rich resource of chromatin con-
tact maps and gene transcription profiles across 21 well-annotated
human tissues and cell types. Based on this dataset, we reconstructed
gene-level chromatin interaction and co-transcription in twenty tissues
and cell lines. We applied matrix visualization method designed to re-
veal the relationship between chromatin spatial organization, genes
transcription and function cluster on genomics level. Total of 11,588
genes in 23 chromosomes were included and 23 function-similarity
matrices, 23 co-transcription matrices and 460 contact matrices were
generated for comparative analysis in this study. Finally, we focused
on the local domains to study how the spatial reorganization of chro-
matin regulated gene transcription.
2. Materials and Methods

2.1. Gene annotations

The GENCODE release 19 for human genome was used as the initial
gene annotations which is provided by the public research consortium
named ENCODE. We collected 20,344 “protein coding” genes from the
database and sorted them by chromosomal coordinates.
2.2. Gene function-similarity quantifying

The function “mgeneSim” of GOSemSim R package was used to cal-
culate the pairwise GO semantic similarities between any two genes in
each chromosome. This process provided a large-scale quantitative way
to investigate functional similarities between genes. At first, those genes
withoutGOannotationswerefiltered out automatically by theprogram.
As a result, total of 11,588 genes were remained for 23 chromosomes
(include chromosome 1–22 and X; Table S1). Subsequently, the
graph-based [31] measure algorithm was utilized to measure the se-
mantic similarity of two GO terms defined as follows.

Given two genes X and Y annotated with GO terms as GOX = {goX1,
goX2, ⋯, goXm} and GOY = {goY1,goY2, ⋯, goYn}, respectively, the func-
tional similarity between them is defined as,

S X;Yð Þ ¼

X
1≤ i≤m

S goXi;GOYð Þ þ
X

1≤ j≤n

S goYj;GOX

� �
mþ n

ð1Þ
where

S go;GOð Þ ¼ max
1≤ i≤k

SGO go; goið Þð Þ ð2Þ

The semantic similarity S(go,GO) between one term go and a GO
term set GO = {go1,go2, ⋯, gok} is defined as the maximum semantic
similarity between term go and any of the terms in set GO. Accordingly,
we can achieve amatrixwith the element of functional similarity S(X,Y)
between two genes shown as,
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In fact, the GO term used in measurement can be restricted by
assigning the corresponding parameter to “BP” (biological process),
“MF” (molecular function) and “CC” (cellular component). Thus, we
can obtain three matrices (Supplementary Fig. S4–S6). Because the
three measurements can produce similar patterns, we only employed
“MF” measurement for further study in this work.

2.3. Assessing gene co-transcription

The FPKM values of all genes in 20 tissues and cell types were ob-
tained from Ren's re-analyzing RNA-seq dataset [30]. The accession
number for the processed sequencing data is GEO:GSE87112. In order
to facilitate comparative analysis, only 11,588 corresponding genes
were retained. As Eisen has done [32], the Pearson correlation coeffi-
cient (PCC) analysis was performed to characterize the co-transcription.

Let Gt equal the FPKM value (log-transformed) for gene G in tissue t.
For any two genesX andY observed over a series ofN tissues, a similarity
score can be calculated by:

P X; Yð Þ ¼ 1
N
∑N

t¼1
Xt−Xoffset

PX

� �
Yt−Yoffset

PY

� �
ð4Þ

where
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WhenGoffset is set to themean of observations onG, then PG becomes
the standard deviation of G, and P(X,Y) is exactly equal to the PCC of the
observations of X and Y. When the observations unchange across all tis-
sues, PG equals to 0, then P(X,Y) is set to “NA” with the white region in
heatmap. The PCC matrix is constructed using “cor” function in R.

2.4. Generating gene-level contact maps from Hi-C library

Previous Hi-C maps were created by dividing a genome into fixed
resolution loci (e.g., 40 kb, 1 Mb) and counting the number of cross-
linked DNA fragments between two loci. Thus, one locus can include
many genes and one gene can reside in several loci. To get the contacts
count between a pair of genes, we converted the loci-based Hi-Cmatrix
to a gene-based Hi-C matrix by using Babaei's method [26].

In detail, we represented the interactions of gene pairs by the con-
tacts between two loci where the transcription start sites (TSS) of
genes locate on. Let hXY represent the interactions between gene pairs
(X,Y) and Hab represent the interactions between two loci (a,b). Then,
we can get the following equation:

hXY ¼ Hab;when TSS Xð Þ ∈ a and TSS Yð Þ ∈ b ð6Þ

It is reasonable due to the transcriptional regulating is always taken
place at the promoter region. Then, the 40 kb resolutionHi-Cmapswere

ncbi-geo:GSE87112


Fig. 1. Intra-chromatin gene function similarity. aHeatmaps ofmolecular function similarity for chromosome 4, 9, 11 and 19. The similarity is quantified by “GOSemSim” in each individual
chromosome with the parameter “MF”. The normalized output values are between 0 (yellow) and 1 (red). “GN” in the lower left of each panel indicate the number of genes in that
chromosome. b Heat maps for chromosome 6 with the parameter “BP”, “CC” and “MF”, respectively. The heat map at the lower right indicate the focus region of histone gene cluster
in chromosome 6.
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converted to gene-level interaction maps. We only focused on intra-
chromatin contacts in this study. Therefore, an interaction matrix was
obtained for each chromosome in each tissue or cell line. Like Hi-C
maps, they can also be visually represented by a heatmap,with intensity
indicating contact frequency. The contact frequency was performed log
transformation to make patterns more visible here.
2.5. Histone modification

The histone modifications signal used in this study were derived
from the NIH Roadmap Epigenomics Project [33]. We selected histone
H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 acety-
lation (H3K27ac) which have been well known as themarkers of active
promoters. The average signal intensity of the [−500 bp, +500 bp]
region flanking the TSS was calculated for each gene in each cell line.

3. Results

3.1. Gene function-similar analysis

We downloaded the human gene annotations from ENCODE/
GENCODE [34] and obtained 20,344 protein coding genes. After filtering
out the genes which had no gene ontology (GO) annotations (see
Methods for details), total of 11,588 genes were retained. The
“GOSemSim” [35] R package was used to compute semantic similarities
between genes in the same chromosome. For each chromosome, a ma-
trix with linear arrangement of protein coding genes was constructed



Fig. 1 (continued).
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and shown in Fig. 1. Each entry in the matrix represents the semantic
similarity value of a gene pair. From this figure, we found that
function-similar genes are frequently separated by unrelated one. And
many gene family clusters with special function have very low correla-
tion with other genes. Here, we showed an example of the olfactory re-
ceptors (OR) which aremembers of the class A rhodopsin-like family of
G protein-coupled receptors (GPCRs) [36]. The OR gene family is the
largest one consisting of around 800 genes in human genome. In the
function-similar map, it is easy to find two large OR gene clusters
occur in chromosome 11(Fig. 1a).

3.2. Gene co-transcription analysis

The aim of assessing gene co-transcription is to find out the genes
that have similar transcription profiles. One accepted viewpoint is that
co-transcription genes are controlled by a same transcriptional regula-
tory program [37]. These genes usually display correlation on function
and are members of the same pathway or protein complex. Here, the
transcription correlations between gene pairs across all 20 tissues and
cell types were measured by the PCC. Transcription levels of the
11,588 genes were obtained from seven cultured cell types and thirteen
human adult tissues. Supplementary Fig. S1 shows the transcription
correlation of these genes among 23 human chromosomes (except for
chromosome Y and M). Similarly, co-transcription maps were used to
display how similarly the changes of genes' expression on the same
chromosome. These maps could reveal chromosomal domains of gene
expression like Cohen's discovery in the Saccharomyces cerevisiae
genome [38].

Three representative maps for chromosomes 4, 6, 11 have been
shown in Fig. 2. Adjacent groups of correlated genes were depicted as



Fig. 2. Gene co-transcription. a, c and e are the asymptotic red heatmaps for the FPKM values across 20 tissues for genes of chromosome 4, 6 and 11 respectively. b, d and f are the green-
red heat maps for pairwise co-transcription quantified by Pearson correlation coefficient (white line: standard deviations equal to zero).
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blocks of red squares centered on the diagonal. Co-transcription maps
can only determine whether the transcript level of gene pairs rise and
fall together across samples, but cannot tell us when they rise or fall.
Therefore, we also compared gene transcription profiles across different
tissues and cell types and found 47 clustered histone genes in chromo-
some 6 do not transcribe or transcribe a little across most tissues and
cell types, but upregulate in GM12878 and IMR90 cell types (Fig. 2).

3.3. Gene spatial interaction analysis

Ren's data provided systematic characterization of chromosome
architecture across 14 primary human tissues and 7 cell types [30].
The statistical significances of contacts in Hi-C data were identified at
40-kb resolution in their research. Based on Ren's data, we assessed
the relationships between genome organization and gene co-
transcription. The gene-resolution contact matrices were constructed
to investigate the interactions between genes by the contacts number
between the chromatin bins (here, 40 kb)where genes locate on.We fo-
cused only on intra-chromatin gene pairs. Then, 460 contact matrices
and corresponding maps were generated (the contact maps for each
chromosome in GM12878 and IMR90 cell lineswere listed in Additional
file 2: Supplementary Fig. S2 and Additional file 3 Supplementary
Fig. S3). From the contact maps, we observed the plaid patterns of
spatial compartment and the TADs along the diagonal. TADs are highly
conserved across different tissues and cell types, which are agree with
previous results [15,19,30]. In contrast, spatial compartmentalization
is not always the same in different tissues and cell types. For example,
in IMR90 cell type, the genes spatial organization compartmentalized
highly. However, it was not obviously found in others (Fig. 3a). The
gene expressions in IMR90 are usually upregulated, suggesting that
spatial compartmentalization is conducive to gene transcription.

Earlier research using fluorescence in situ hybridization (FISH) in
several tissues of mouse has revealed that spatial genome organization
is tissue-specific [39]. Recently, results from Hi-C experiments in
multiple cell lines during stem cell differentiation [15,30] and primary
fibroblasts over 56-h time course [40] have exhibited genome dynamic
and tissue-specific organization in human. Here, we counted the
numbers of gene interaction in different tissues or cell lines and used
the diagram (Fig. 3b) to display the dynamic of gene interplay among
different tissues. We found that total of 274,755 interactions only
occurred in one tissue or cell type. The retained 10,912 interactions ap-
peared in all 20 tissues and cell types in chromosome 1 (Fig. 3c). These
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observations show that the interactions between genes are dynamic
and tissue-specific, but the basic structure units, TADs, are conserved.

Previous studies in Drosophila have shown the limited nature of
interactions between genes or chromatin regions on different chromo-
some arms [41–44]. In plants, after mitosis, a polarized genome organi-
zation called “Rabl” has been observed [45]. In the polarized genome,
each chromosome occupies a territory with centromere at one nuclear
pole and telomeres on the opposite side of the nucleus. Such organiza-
tion is also apparent in our study, behaving as many maps display two
big blocks breaking at the centromere (Fig. 3c). It suggests that the con-
tact frequencies between two arms of chromosome are drastically
reduced.

3.4. The relationship between co-transcription, interaction and function

We further comparatively analyzed the relationship between co-
transcription, interaction and function based on the three matrices. As
there are a large number of tissue-specific interactions, we firstly calcu-
lated the averageHi-C scores of chromosome6 across 20 tissues and cell
lines. The average Hi-C maps show the conserved TADs along the diag-
onal more clearly (Fig. 4a). Then, the transcription correlation distribu-
tion of the gene-pairs was calculated and shown in Fig. 4b according to
different averageHi-C scores. This treatment differs fromprevious study
which calculated correlation between Hi-C interaction and co-
transcription in only one cell line [25]. Next, we calculated the func-
tional similarity distribution of the gene-pairs in various thresholds of
the average Hi-C scores (Fig. 4c). As the interactions are tissue-
specific, the Hi-C scores N0.4 were considered as the stable interactions
by filtering out a majority of tissue-specific interactions. The results in-
dicate that stably interacting gene pairs are more likely function-
related. The intersection of the gene co-transcription, functional similar-
ity and interaction was shown in Fig. 4d. In chromosome 6, there are
41,977 gene pairs that are co-transcription (PCC ≥ 0.5), and 109,973
gene pairs are molecular function similar (GOSemSim score ≥ 0.5) and
7265 gene pairs have stably interaction. About 41.0% (2980/7265) of
interacting gene pairs are co-transcription and 7.1% (29,80/41,977) of
co-transcription gene pairs are also interacting gene pairs. In addition,
36.3% (15,252/41,977) of co-transcription gene pairs and 53.9% (3919/
7265) of interaction gene pairs display functional similarity. These re-
sults indicate that the interaction and function similarity can contribute
to but not determine gene co-transcription, which is in accordancewith
previous conclusion [4,6,46].

Although the gene correlation is weak at whole genome wide, we
still observed that some function-related gene clusters were physical
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Fig. 4. The global relevance between co-transcription, interaction and function similarity. a Average contact map of chromosome 6. b The green boxes plot shows the distributions for co-
transcription gene pairs which interact at least inN tissues or cell lines, whereas the yellow boxes are distributions for function-similar gene pairs which interact at least inN tissues or cell
lines. c TheVennplot showing the intersection of the three. The interaction is includedwhen the entry is greater than zero at least infiveHi-C contactmatrices. The number of gene pairs is
calculated when Pearson correlation coefficient of gene expression is equal to or N0.5. Similarly, two genes are regarded as function-similar when GOSemSim score is equal to or N0.5.
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proximity and displayed similar transcription patterns. The typical rep-
resentative is histone gene family in chromosome 6 which include 47
histone genes (from HIST1H3A Chr6:26,020,717–26,021,186 to
HIST1H2BO chr6:27,861,202–27,861,669 along the line genome).
These histone genes interact with each other to form a local structure
domain in a chromatin region spanning 1.8 Mb. In this region, the
correlation of the three (gene co-transcription, functional similarity
and interaction) is strong. For example, there are 73.7% (1693/2298)
of interaction gene pairs that are co-transcription and 87.5% (1693/
1935) of co-transcription gene pairs interact with each other. 93.2%
(1803/1935) of co-transcription gene pairs and 81.9% (1881/2298)
of interacting gene pairs display functional similarity (Fig. 5a). The
interaction frequency in the adjacent region described above dis-
plays a hot spot on the heatmap (Fig. 5b). The frequent contacts
imply that megabase chromatin compress tightly, resulting in a sub-
structure in the three-dimensional space of the nucleus. The tran-
scription correlation patterns are well characterized through the
PCC heatmap (Fig. 5b). As this histone gene cluster is repressed
across 18 tissues and activated in GM12878 and IMR90 cell lines
(particularly, the FPKM (fragments per kilobase of exon model per
million fragments mapped) value run up to 1000). Histone is the
key parts of nucleosome which was a basic unit of DNA packaging
in eukaryote, consisting of a ~147 bp of DNA wound in sequence
around eight histone protein cores and widely distributes along ge-
nomics. Thus, these histone genes must express together to satisfy
the requirement of nucleosome. However, the biology importance
of extreme tissue-specific expression for these histone genes still
need to be revealed through dynamic chromatin organization.



Fig. 5. The local relevance between co-transcription, interaction and function similarity. a The Venn plot showing the intersection of the three when focus on the local region of
chromosome 6. b Three heat maps (yellow for function similarity, green for co-transcription, blue for interaction) comparison illustrating the strong correlation in local region of
chromosome 6 and 11. Dotted line marked the strong correlation region on the maps.
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We next analyzed chromatin dynamic in the hot spot and adjacent
region (from HIST1H3A Chr6:26,020,717–26,021,186 to
chr6:32,780,539–32,784,825). It is divided into four structure domains
based on the contact map (Fig. 6a). Domain A (from HIST1H3A
Chr6:26,020,717–26,021,186 to HIST1H2BO chr6:27,861,202–
27,861,669) is composed of 48 histone genes and 5 other genes. Domain
B (from OR2B2 chr6:27,878,962–27,880,174 to OR2H1
chr6:29,424,957–29,432,105) includes 14 olfactory receptor genes and
4 other genes. Domain C (fromMAS1L chr6:29,454,473–29,455,738 to
NOTCH4 chr6:32,162,619–32,191,844) contains various genes such as



Fig. 6. Chromatin dynamical organization. a Tissue-specific interaction regulates gene expression across GM12878, IMR90, Embryonic Stem Cell (H1) andMesenchymal Stem Cell (MSC).
Boxes indicate the boundaries of Domain A, B, C and D. The arrows are pointing to the tissue-special interaction regions. The bar plots directly below show the FPKMvalues of each gene in
corresponding cell lines.b The changes of spatial position are accompanied by the changes of histone modification. The left bar plots show the distributions for H3K4me3 in GM12878,
IMR90, H1 and MSC cell lines, and the right bar plots for H3K27ac. The boxes highlight the significantly different region between four cell lines.
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HLA gene family and TRIMgene family and so on. Domain D (fromHLA-
DRA chr6:32,407,618–32,412,823 to HLA-DOB chr6:32,780,539–32,
784,825) is composed of 8 HLA genes. The genes in Domain C express
stably across all the 20 tissues and cell lines.Most of the olfactory recep-
tor genes inDomainB are silent in the 20 tissues and cell lines. The genes
in Domain A and Domain D express only in few cell lines but are co-
expression. In GM12878 and IMR90 cell lines, the contacts between Do-
main A and Domain C increase, resulting in histone genes being acti-
vated sharply. The FPKM value increases hundreds of times even ten
thoughts of times. In IMR90, H1 andMSC cell lines, the Domain D inter-
acts frequently with silent Domain B, resulting in the HLA genes being
repressed. In GM12878 cell line, the Domain D is away from Domain B
and closing to Domain A and Domain Cwhich have been activated. Fur-
thermore, we also compared the distributions of two histone modifica-
tions (H3K4me3 and H3K27ac) at the promoter regions (Fig. 6b). One
maynotice that the signal intensitiesof the twomodifications inDomain
D correspond to the domains it connected with. This observe extends
Rao's observation in GM12878 and IMR90 cells for H3K36me3 and
H3K27me3 [47].We demonstrate that interaction dynamic is accompa-
nied by changes of histonemarks. This conclusion is consistentwith the
others' observation that 3D domains correlate strongly with the 1D
epigenomic information along the genome [48]. In summary, these re-
sults indicate chromatin spatial organization indeed affects geneexpres-
sion. The genes within stable domains are co-regulated by the
spatialization of the domains.

Another example is the biggest olfactory receptor gene clusterwhich
locate on chromosome11. Approximately 200ORgenes are divided into
three groups and scatter across chromosome 11 (Fig. 5b). These genes
are always silent and form independent structure domains with self-
organizing. They contact each other frequently but seldom interact
with other genes. It is consistent with previous study that chromatins
are partitioned into active and inactive compartments.
4. Discussion

In prokaryotes, a cluster of function-related structural genes are or-
ganized into an operon which contains only a single promoter, which
make their expression easily being coregulated [49]. The genes organi-
zation in eukaryotic genomes is more complicated than prokaryotes.
Besides histone modification, transcription factor and super enhancer,
the three-dimensional genome organization has been increasingly con-
sidered as an important regulator of gene transcription.

Do the function-related genes close physically proximity to each
other for being coregulated? To address this question, we characterized
three types of relationships (co-transcription, spatial interaction and
function similarity) of pairwise genes intra-chromatin wide and made
a comparative analysis. Different from previous observations [25] in
only two cell lines (humanGM06990 andK562),we failed tofind signif-
icant correlation on global level. Only 10.5% of interaction gene pairs
(Hi-C score N 0) are co-transcription and 27.2% are function-related. A
large number of tissue-specific gene interactions result in the phenom-
ena. However, we could still observe the strong correlations in the con-
served and stable interactions (within substructures). In particular,
some hot spot regions where gene family clustered in are highly coin-
cided on three relationships, implying the contribution of substructure
for gene co-transcription. The most representative instance is histone
gene family in chromosome 6 which displays the coregulation of fre-
quently interacting genes. The expressions of these genes are highly
tissue-specific. Based on the visualizedmaps, we observed the influence
of genome dynamic organization on gene co-transcription. Further
analysis on the hot spot region reveals that the chromatin could ar-
rangement across various tissues and some special structure domains
may be recruited to a transcription factory where the appropriate tran-
scription and processing factors are highly concentrated, thereby facili-
tating the expression of those genes.
Our discovery is similar with previous studies on the mouse globin
genes in erythroid tissues [50]. Using 4C and DNA FISH techniques,
they showed that specialized transcription factories boost the expres-
sion of clustered and co-regulated genes. These researches [39,50]
thought that preferential associations in transcription factories substan-
tially affected higher order chromosomal conformations and were a
major driving force in tissue-specific chromosomepositioning.Whether
transcription is causative or a consequence of higher order chromatin
organization is still a matter of debate. But our discovery and previous
examples in various model organisms [51–54] demonstrated that spa-
tial association between co-regulated genes is a widespread principle
of nuclear organization.

In fact, our discovery is taking advantage of themost comprehensive
Hi-Cmaps in human tissues. AlthoughHi-Cmethod is a powerful tool to
offer a global viewof chromatin interactionswithin a single experiment,
it is costly to sequence to sufficient depth to provide enough resolution
to capture gene-gene loops. Recently, a high-resolution capture Hi-C
method that map long-range promoter contacts has been developed
[55]. It can achieve fragment enrichment up to hundreds of fold, greatly
improving the detection of local chromatin interaction of the genome
regions of interest. In addition, chromatin interaction analysis by
paired-end tag (ChIA-PET) [56] and protein-centric chromatin confor-
mation assay (HiChIP) [57] are developed for capturing chromatin in-
teractions mediated by specific proteins such as Pol ǁ. In the future,
along with these interatomic data increasing in diverse tissues and cell
types even in single cell [58],we can learnmore knowledge of transcrip-
tional co-regulation using this framework.

5. Conclusions

In this study, we provided a framework for calculating and analyzing
the functional similarities, transcription correlation and intra-
chromatin interaction between gene pairs in each chromosome and
their relationship. We found that the correlation between chromatin
spatial structure, gene transcription and function cluster is weak at
global scale, but strong at local domain scale. Some super gene clusters,
such as histone gene family in chromosome 6 and olfactory receptor
gene family in chromosome 1, 6, 7, 9, 11 and 14, are always close to
each other in space and more likely to co-transcription across these tis-
sues and cell types. These observations coincide with transcription fac-
tories theory. It suggests that function-similar genes are close in space
and have similar transcription mechanism. In addition, our framework
allows the integration of various genome-wide datasets for transcrip-
tional regulation analysis in gene-resolution and is easy to apply to
other species. In the future, we hope the data mining techniques
[59-63] could be applied in this fields.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.csbj.2019.01.011.
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