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ABSTRACT

Abstract: Randomized controlled clinical trials
are regarded as the gold standard for comparing
different clinical interventions, but generally
their conduct is operationally cumbersome,
time-consuming, and expensive. Studies and
investigations based on clinical routine data on
the contrary utilize existing data acquired under
real-life conditions and are increasingly popular
among practitioners. In this paper, method-
ological aspects of studies based on clinical
routine data are discussed. Important limita-
tions and considerations as well as unique
strengths of these types of studies are indicated
and exemplarily demonstrated in a recent
real-case study based on clinical routine data. In
addition two simulation studies reveal the
impact of bias in studies based on clinical rou-
tine data on the type I error rate and false
decision rate in favor of the inferior interven-
tion. It is concluded that correctly analyzing
clinical routine data yields a valuable addition
to clinical research; however, as a result of a lack

of statistical foundation, internal validity, and
comparability, generalizing results and inferring
properties derived from clinical routine data to
all patients of interest has to be considered with
extreme caution.
Funding: Grünenthal GmbH.
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INTRODUCTION

In clinical research, randomized controlled
clinical trials are regarded as the gold standard
for comparing different clinical interventions
(CONSORT statement [1]). Conducting a clini-
cal trial and the acquisition of patient data are
very cumbersome, time-consuming, and
expensive. Furthermore, randomized controlled
clinical trials are occasionally criticized as being
too artificial and unrealistic and sometimes
even for generating non-reproducible results
[2, 3]. On the contrary, in clinical routine, a vast
amount of data is gathered under real-life con-
ditions on a daily basis. Detailed information on
baseline characteristics, treatments, exposures,
and outcomes is assessed on an individual level.
Providing a platform to collect, centralize,
aggregate, and store these data naturally repre-
sents a great solution to the problems involved
with data acquisition in clinical trials. For the
treatment of pain, for example, the German
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Pain Practice Registry (http://
dgschmerzmedizin.de/schmerzdokumentation/
praxisregister.htm) and the related online doc-
umentation service iDocLive� (https://info.
idoclive.de/) provide an excellent platform to
centrally collect, store, and process daily rou-
tine data. These data can now be utilized and
analyzed to derive valuable information.

Studies based on clinical routine data have
several advantages. It is usually less difficult to
realize higher sample sizes, enabling the inves-
tigation of smaller differences. Furthermore,
these studies may include patients that are
usually excluded from clinical trials, e.g., with a
wider range of exposure levels [4]. Most of all,
however, practitioners praise the time- and
cost-effective approach of data acquisition as
well as the strong connection to actual clinical
practice.

While the time/cost argument is clearly
important and always to be considered, it is
merely connected to external factors and not to
the actual research question at stake: discover-
ing the true benefit of a (or several) clinical
intervention(s). The argument concerning the
connection to actual practice is also not directly
applicable to the actual research question.
Clearly, the intention and primary purpose of
medical research is to help patients in practice.
However, just because treatments have a speci-
fic reputation and are applied in a specific way
in practice, does this mean it is correct and
optimal to do so?

Unambiguously, the answer is no and it
would contradict clinical development. Let us
imagine, in clinical routine, that drug A is used
primarily on a slightly different subset of
patients to drug B. Solely comparing results of
those drug interventions yields a biased picture
and between-group results cannot be accredited
to actual treatment difference, but rather to
heterogeneity of treatment groups. Even if
treatment groups are comparable at baseline,
clinical routine might treat interventions dif-
ferently with respect to concomitant medica-
tions, drug titrations, dose levels, or other
aspects discussed later in this article. Again,
results of drug intervention cannot be accred-
ited to the drug itself but rather to those other
factors.

As a result of this lack of objectivity, compa-
rability, and internal validity, randomizing sub-
jects to treatments is indispensable to obtain
valid statistical results. Randomization is not
only one of the most important techniques to
avoid bias in clinical trials [5] but it also provides
a basis for quantitative evaluation of clinical trial
data [6]. Thus experts in the field of clinical trial
design increasingly stress the importance of
randomization and blinding (e.g., [7, 8]).

This article will discuss methodological
issues in evaluations based on clinical routine
data, pointing out strengths and limitations.
This article does not contain any new studies
with human or animal subjects performed by
the author. The ‘‘Results’’ section will first
elaborate general aspects of clinical routine
data, followed by an illustration of these
strengths and limitations in a recent real-case
example and results of a simulation study.
Conclusions are drawn at the end of this article.

RESULTS

General Aspects of Clinical Routine Data

Centrally storing and merging data gathered
during clinical routine overcomes many diffi-
culties in acquiring clinical data. Processing
these data yields a unique opportunity to obtain
a comprehensive and aggregated insight into
the current state of treatment and care of a
specific subset of patients:
– How many of those patients receive a speci-

fic treatment?
– What dose levels are administered in

practice?
– What concomitant medications are used?
– …

It also gives insight into the differences
between daily life and clinical trials regarding
how treatments are applied, what patient pop-
ulations look like, etc. All this information is
without doubt highly valuable. In statistical
terms, all these investigations are of descriptive
nature; thus, these questions can be answered
with descriptive statistics. Inferential statistics
(e.g., statistical hypotheses tests deriving esti-
mates and p values) on the other hand use (a
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small set of) observed data to infer properties
about a larger population. Those generalized
conclusions, e.g., on actual treatment differ-
ences, however, might be highly questionable if
they are based on data gathered during clinical
routine because of several methodological
aspects. These aspects will be discussed in more
detail in the remainder of this section.

Population
In an ideal world, data on every single treat-
ment would be assessable. A truly random
sample of this population would yield a sound
and valid basis for statistical inference about
this population [6]. However, this situation is
not available in practice and thus the existing
subset of clinical routine data has to be critically
investigated:
– Is there a geographical bias in data

collection?
– Are younger or older patients more willing

to consent to data storage?
– Do participating physicians systematically

prefer certain treatments?
– Which data are collected for which patients?
– …

Speaking in statistical terms (e.g., [9]), given
a treatment this subset of patients can hardly
ever form a representative subset of all patients
of interest. Lacking the basic principle of the
population model, there is no foundation for
statistical inference and without proper ran-
domization there is not even the possibility of
an invoked population model [6]. Without a
basis for statistical inference, results cannot be
generalized to all patients of interest.

Data Collection
In clinical trials, data are collected in a pre-
specified, prospective, and homogeneous way.
Clinical routine data unfortunately lack most of
these attributes as a result of their biggest
strength—clinical practice. Not only any dose
adjustment or prescriptions of concomitant
medication but in fact any behavior, interaction
with and treatment of the patient, order and
style of data assessment, etc. do not follow a
prespecified protocol but are done at the dis-
cretion of the physician. This results not only in

high heterogeneity in the data but also opens
any door to selection bias, detection bias, attri-
tion bias, measurement bias, and many other
sources of bias (e.g., [6, 7, 10, 11]). Retrospec-
tively sampling any subset of available routine
data does not overcome these issues, as hetero-
geneity and bias might already be part of the
data. To illustrate this with a fictive example, let
us imagine two treatments:
– Treatment A: Placebo.
– Treatment B: An active pain medication

proven to be slightly less efficacious, but
much better tolerable than morphine.
For sufficient pain relief doctors are allowed

to prescribe morphine as per required need in
both cases. Now for sufficient pain relief, treat-
ment A (placebo) is always administered with a
high dose of morphine as concomitant medi-
cation, while treatment B (the active and effi-
cacious drug) is always administered without
morphine as concomitant medication. Efficacy
results comparing drug A and drug B might
erroneously show that treatment A (placebo) is
superior to treatment B. Retrospectively taking
any random subsample of patients treated this
way will not prevent this false result as hetero-
geneity and bias are already part of every
assessment and thus included in all data.

As a consequence, observed treatment dif-
ference cannot be accredited to the actual
treatments but to a mixture of treatment dif-
ference, heterogeneity, and biases. An illustra-
tive real-case example regarding systematic
different use of concomitant medication in
clinical routine data is given below.

Randomization
Randomization is the most important design
technique in clinical investigations, providing
three important benefits [12]:
(a) Randomization is used to balance not only

known but also unknown and unobserv-
able (latent) covariates [13]. Investigators
often try to ‘‘demonstrate’’ baseline equal-
ity of covariates, even though it is from a
statistical perspective illogical and the
CONSORT Group explicitly discourages
this behavior [14]. In addition, testing of
baseline differences is only feasible for
observable covariates but is impossible for
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unknown and latent covariates. As seen
above, homogeneity between treatment
groups is imperative for investigating true
treatment difference.

(b) Given the specific challenges in clinical
research, it is mostly impossible to create a
truly representative subset of patients of
interest. Thus randomly assigning patients
to treatment groups is imperative to pro-
vide a basis for statistical inference [6].

(c) Furthermore in combination with blinding
(see below), randomization helps to avoid
bias in clinical investigations [5].

Overall, true randomization is the only tech-
nique enabling one to investigate a clinical
hypothesis with internal validity. It is impor-
tant to note that retrospectively taking a ran-
dom selection of available routine data is not in
line with ICH E9 [5], does not provide a basis for
statistical inference about all patients of inter-
est, does not create homogeneity between
treatment groups, and does not avoid bias.

Blinding
Randomization helps to create homogeneity in
the data and avoid bias. However, without
blinding, randomization lacks the capability to
prevent many types of bias [5]. Detection/
ascertainment bias, attrition bias, performance
bias, co-intervention bias, and observer bias [11]
can simply not be prevented by randomization
without blinding. Even selection bias, com-
monly believed to be fully avoided by random-
ization, is a threat without blinding [15–17].
First- and second-order selection bias [18] can
be prevented by randomization with allocation
concealment. However, even in the case of
proper randomization, without blinding (in this
case masking past treatment assignments to the
investigator), third-order selection bias can lead
to substantial type I error rate elevation and
thus lead to false test decisions [16, 17]. Thus,
even in a randomized clinical trial, without
blinding, selection bias has to be regarded and,
if present, corrected for appropriately
[10, 19–21].

Proper blinding and preventing the forms of
bias described above refers to blinding the
patient and the investigator. It is important to
note that conducting a blinded analysis, i.e.,

blinding only the statistician during the analy-
sis, does not prevent any of the above biases.

Random Selection of Existing Clinical Data
As described above, randomly selecting a subset
of existing clinical routine data collected in the
past does not prevent bias, does not increase
homogeneity in known or latent covariates, and
does not provide a basis for statistical inference.
Even worse, considering publication bias, in a
retrospective analysis, theoretically one could
successively take multiple random selections
until the desired result is available and only
publish results on that specific ‘‘random’’
sample.

In sampling theory, there are further opera-
tive reasons for taking a random sample of a
larger population [9]. Taking a subsample is
always accompanied by a loss of information;
however, it is often not possible or at least
extremely time- and cost-consuming to acquire
data on all individuals of interest (e.g., election
forecasts, opinion polls, etc.). Sometimes it is
not even reasonable to assess all data (e.g.,
chemical investigation on the quality of a
shipment of fruits). Those reasons all apply to
the acquisition of information (data). When
information (data) is already gathered and
available, as for collected and stored clinical
routine data, there is no operative reason to take
a subsample. Analyzing a larger data set requires
neither more time nor additional costs, but it
does yield more information.

Use of Intention-to-Treat Principle (ITT)
There is a strict need for an ITT population for
confirmatory pivotal clinical trials [5]. How-
ever, the ITT principle is unambiguously
defined as including all randomized subjects in
the analysis and thus inseparable from true
randomization. Using the term ITT in a
non-randomized investigation is inappropriate
and misleading. Thus studies based on clinical
routine data should abstain from referring to
an ITT population. Clearly the label ITT has
achieved a certain standing and importance;
thus, trial design experts criticize this misuse of
the ITT labeling in clinical investigations as
‘‘simply dishonest’’ [8].
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Analyses of Clinical Routine Data
in the Ueberall and Mueller-Schwefe
Publication [22]

In the recent past, a study based on clinical
routine data investigated the efficacy and tol-
erability balance of oxycodone/naloxone and
tapentadol in chronic low back pain with a
neuropathic component [22]. Even though the
title and various parts of the Ueberall and
Mueller-Schwefe [22] publication (UMS publi-
cation) repeatedly use the words ‘‘blinded’’,
‘‘random’’, and ‘‘prospective’’, it is important to
note that their investigation on clinical routine
data is in fact not randomized, not blinded, and
their analysis is retrospective. Consequently, all
methodological issues described in Sect. 2 have
to be considered carefully. Without internal
validity and without a basis for statistical
inference, validity of generalized conclusions is
highly questionable. While the remainder of
this section will be devoted to illustrate in more
detail some of the aspects of Sect. 2, further
explicit insight into bias in the UMS publication
can be found in a response to the UMS publi-
cation by the Cochrane Group [23].

Use of Laxatives
Various studies demonstrate the favorable tol-
erability profile of tapentadol prolonged release
(PR) compared to other opioids (e.g., [24]).
Comparison of tapentadol PR (TAP) to oxy-
codone/naloxone PR (OXN) in a prospective
randomized clinical trial treating subjects
homogeneously according to a prespecified
protocol proved the tolerability of TAP to be
superior to that of OXN [25]. In particular, TAP
is associated with significantly lower incidences
of constipation than OXN. In daily clinical
routine, physicians treat patients according to
their individual needs. This, however, might
lead to systematic differences between two
treatments in the use of concomitant medica-
tion. Regarding TAP and OXN, it might be
expected that in daily clinical routine, physi-
cians systematically rely more frequently on
laxatives for patients treated with OXN com-
pared to patients treated with TAP. The subset
of daily clinical routine data assessed by

iDocLive� and presented in the UMS publica-
tion actually demonstrates this behavior.
Unfortunately the UMS publication erroneously
claims that:
– ‘‘The proportion of patients without using

laxatives changed insignificantly from base-
line to the study end for both treatments’’
and

– ‘‘Analyses of the available patient informa-
tion on the use of laxatives revealed a mixed,
however, comparable, utilization pattern for
both treatment groups evaluated’’.
In the UMS publication, data were analyzed

using very basic statistical hypotheses tests
(Student’s/paired sample t test, v2 test). Unfor-
tunately, the statistical testing procedure nee-
ded to correctly analyze the changes of laxative
use, considering stochastical dependencies, is
not among them. Given a baseline/end of
treatment scenario, paired nominal data are
present, where assessments of the same indi-
vidual are stochastically dependent.

Based on information provided in the UMS
publication, Tables 1 and 2 illustrate the con-
cordant (main diagonal) and discordant (sec-
ondary diagonal) pairs of baseline/end of
treatment laxative use for OXN and TAP,
respectively. The discordant pairs separate per-
fectly in opposite directions: while the discor-
dant pair in Table 1 (OXN) reflects perfect
separation towards the additional need for lax-
atives at the end of treatment, the discordant
pair in Table 2 (TAP) reflects perfect separation
towards an improvement regarding laxative
intake at the end of treatment.

Analyzing the discordant pair in Table 1 with
McNemar’s test for paired nominal data yields a
significant difference (worsening) for OXN in

Table 1 Laxative intake with oxycodone/naloxone PR

OXN End of treatment R

Yes No

Baseline yes 30 0 30

Baseline no 10 88 98

R 40 88 128
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laxative intake comparing baseline to the end of
treatment (p = 0.001565/p = 0.004427, without/
with Edward’s continuity correction, respec-
tively). Analyzing the discordant pair in Table 2
shows a clear trend of improvement from baseline
to the end of treatment for TAP (p = 0.02535/
p = 0.07364, without/with Edward’s continuity
correction, respectively).

Striving for a simple but direct comparison of
OXN to TAP, taking the development of each
individual patient into account, for each
patient it could be assessed whether the use of
laxatives improved, worsened, or did not
change through the course of treatment
(Table 3). Analysis of the data in Table 3 with
Fisher’s exact test demonstrates a significant
difference between OXN and TAP (p\0.0001)
in favor of TAP.

Baring in mind the general aspects of statis-
tical analyses on clinical routine data in Sect. 2,
one has to interpret these analyses as a mere
description of the specific subset of daily rou-
tine data assessed by iDocLive�. However, the
UMS publication chose a composite effi-
cacy/tolerability endpoint for their inferential
primary statistical analyses. This primary end-
point is heavily affected by constipation and

laxative intake. Thus, this example demon-
strates that regarding their primary endpoint,
observed treatment difference cannot be
accredited solely to the actual treatments. Tol-
erability of OXN was supported by systematic
disproportionate use of concomitant medica-
tions preventing a valid comparison between
OXN and TAP.

Strengths of Clinical Routine Data
The above example demonstrates that observed
treatment difference can often not be accredited
to the actual treatments but to a mixture of
treatment difference, heterogeneity, and biases.
It also illustrates the unique strength and ben-
efit of analyzing routine data, giving a detailed
insight into the current treatment and care of
patients in actual clinical practice.

The limitations on the population described
in Sect. 2 still have to be considered; however,
data can be utilized to give a detailed picture of
patient treatment by the specific non-random
subset of broad-specified pain specialists. As
seen above, it reveals, for instance, that in
actual clinical practice for the considered sub-
set, laxatives are used more frequently with
OXN than with TAP. Furthermore, the UMS
publication reveals valuable descriptive infor-
mation on baseline conditions and average
doses that are administered in real life as
opposed to clinical trials. Most information in
the publication is about the small selection of
routine data (261 of 579 ‘‘appropriate’’ patients).
As discussed in Sect. 2, looking at the whole
picture achieves an even broader insight with-
out loss of information. This particularly applies
to investigations into how many patients are
treated with either (or even different) pain
medication(s).

Simulation Study

A simulation study was conducted to investi-
gate the potential impact of bias in studies
based on clinical routine data. Results of this
simulation study show not only a substantial
type I error rate elevation but also illustrate that
an inferior drug might actually demonstrate
superiority with a high likelihood.

Table 2 Laxative intake with tapentadol PR

TAP End of treatment R

Yes No

Baseline yes 33 5 38

Baseline no 0 95 95

R 33 100 133

Table 3 Change in need for laxative in patients admin-
istered tapentadol PR and oxycodone/naloxone PR

OXN TAP R

Improvement 0 5 5

No change 118 128 246

Worsening 10 0 10

R 128 133 261
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Statistical Model
In a parallel group design, clinical routine data
on drug A are compared to clinical routine data
on drug B. The variable of interest, i.e., the
response variable, is continuous and assumed to
be normally distributed, with homoscedasticity
between treatment groups. The true and unbi-
ased treatment effects of drug A and drug B are
denoted by lA and lB, respectively.

Clinical routine data are prone to all types of
bias described in Sect. 2. Types and magnitude
of bias in studies based on clinical routine data
might be very different from study to study.
Which types of bias are actually present in a
particular study of this nature is usually difficult
to detect and quantify. In statistical terms, next
to the treatment effects lA/lB, the magnitude of
this ‘‘bias effect’’ always has to be related to the
standard deviation and the resulting quotient is
denoted by c. The literature is quite different
when it comes to the magnitude of these bias
effects. Regarding selection bias, for example,
Proschan [17] uses a bias effect of
c 2 f0:1; :::; 0:5g, Berger et al. [15] use c 2
f0;0:5:; :::; 2g; and Follmann and Proschan [26]
use c = 1. In this simulation study, the bias
effect is not necessarily reflecting only a single
type of bias (e.g., selection bias), but might also
reflect the sum of different biases. For example,
the Cochrane Group sees a recent real-case
study based on clinical routine data, the UMS
publication, to be ‘‘at serious risk of bias’’ and
graded various types of bias as ‘‘moderate’’,
‘‘problematic’’, or of ‘‘serious concern’’ [23].
Nevertheless, to be conservative in this simula-
tion study, light bias effects of c 2 f0:1;0:3;0:5g
are investigated.

Studies based on clinical routine data often
rely on data gathered at various sites and/or by
various investigators. As a result of certain
treatment characteristics or reputations, a sys-
tematic bias applying to most patients is not
necessarily unlikely. However, given a multi-
center setting and regarding various types of
bias, different proportions of patients affected
by bias are investigated. In this simulation
study, for every patient a Bernoulli-distributed
random variable Bi * Ber(p) will be used to
determine whether patient i was affected by bias

or not. The distribution parameter p 2 ½0;1� will
vary in intervals of 0.1.

Finally, let ni denote the treatment group of
patient i, i.e., ni = -1 if patient i receives drug A
and ni = 1 if patient i receives drug B. As a result
of the lack of randomization, ni is not a random
variable, but rather a mere descriptor, which
might be confounded by patient characteristics
as well. However, this confounding would lead
to an additional bias, which will be part of and
thus covered by the bias effect c. Let nA denote
the number of patients receiving drug A and nB

denote the number of patients receiving drug B.
Combining the above information and

model assumptions in a joint model, one
observes that the continuous response Yi of
patient i follows a normal distribution with
variance r2 and conditional expected value

EðYijBiÞ ¼
1 � ni

2
lA þ 1 þ ni

2
lB � niBicr:

The conditional density function of the
response Yi of the ith patient is thus given by

f
hð Þ

YijBi
yijbið Þ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffi

2pr2
p

� exp � 1

2r2
yi �

1 � ni
2

lA þ 1 þ ni
2

lB � nibicr

� �� �2
 !

;

ð1Þ

with h :¼ ðlA; lB; c; rÞT and bi the realization of
Bi.

Part 1: No Treatment Difference
The first part of this simulation study investi-
gates the case of no actual treatment difference,
i.e., lA = lB. Furthermore r = 1 is chosen and, as
stated above, c 2 f0:1;0:3;0:5g and p 2
f0;0:1; . . .;1g is investigated. In each simulation
run, a study is simulated with nA = nB = 130
patients in each treatment group and responses
according to Eq. (1). For each parameter com-
bination (c; p), 10,000 studies are simulated and
data analyzed conducting a two-sample, two-
sided t test at a significance level of a = 0.05.
Since in part 1 of this simulation study, there is
actually no treatment difference, i.e., lA = lB,
without bias, the number of significant study
results should be approximately 5% of 10,000,
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i.e., approximately 500 simulated studies
should falsely show a significant difference
between drug A and drug B.

Simulations were carried out in R [27] (a
language and environment for statistical com-
puting, version 3.3.1) using RStudio [28] (Inte-
grated Development for R, version 0.99.891).
Results of part 1 of this simulation study are
given in Table 4 and illustrated in Fig. 1.

The results of this simulation study illustrate
the severe impact of bias in a clinical investi-
gation. If no patients are affected by bias (p = 0),
the type I error rate is approximately 5% inde-
pendent of the magnitude of the bias effect (i.e.,
for all three values of c 2 0:1;0:3;0:5f g). Thus
the hypothesis test holds the significance level
as it is supposed to. The significance level is
indicated by the horizontal line in Fig. 1.

If few patients (proportion p B 0.2) are
affected by a very small bias effect (c = 0.1), the
type I error rate is somewhat acceptable (even
though also augmented). In all other parameter
combinations, there is a substantial to severe
type I error rate elevation. Especially for c 2
0:3;0:5f g the results are alarming. The statistical

hypotheses test erroneously indicates a signifi-
cant treatment difference most of the time,
even though in reality there is none. For
example, for c = 0.5 and if 40% of patients are
affected by bias, the wrong test decision in favor
of drug A was made in almost 90% of the sim-
ulated studies. But even if there is only a very
small (c = 0.1) but systematic (proportion
p C 0.9) bias, the type I error rate is over 30%
and thus unacceptably large.

Part 2: Drug A Inferior to Drug B
The second part of this simulation study inves-
tigates the case that drug A is actually inferior to

drug B, i.e., without loss of generality lA\lB.
Now the impact of bias on the test decision
depends on the magnitude of the bias effect in
comparison to the treatment effect size. If the
true relative treatment difference is larger than
the bias effect, the study will still be able to
come to a correct conclusion with a likelihood
naturally depending on the actual difference
between treatment effect size and bias effect.
However, if one drug is actually better than the
other but the sum of biases surpasses the treat-
ment difference, the test decision can lightly
swing in the opposite direction. The second part
of the simulation study uses the same model
assumptions as the first part, with the slight
modification that drug A is actually inferior to

drug B, i.e., lB�lA
r ¼ 0:3 and the bias effect sur-

passes this effect size, i.e., c = 0.5. Instead of a
two-sided hypothesis test at the 5% significance
level, a one-sided, two-sample t test is con-
ducted at the 2.5% significance level. The null
hypothesis states that drug A is inferior or equal
to drug B, and the alternative hypothesizes that
drug A is superior to drug B (the latter actually
being incorrect).

Results of this part of the simulation study
again demonstrate that bias can have a severe
impact on the test decision. Even though drug A
is actually inferior to drug B, a systematic bias
(p C 0.7) can easily revert this trend in the
opposite direction. The proportion of wrong
test decisions in favor of (the inferior) drug A is
above 80% (Table 5).

CONCLUSIONS

Retrospective as well as prospective clinical
studies can be influenced by various types of
heterogeneity and bias. As extensively discussed

Table 4 Relative number of significant study results in the case of no treatment difference (type I error rate)

p5 0 p5 0.1 p5 0.2 p5 0.3 p5 0.4 p5 0.5 p5 0.6 p5 0.7 p5 0.8 p5 0.9 p5 1

c = 0.1 0.0501 0.0516 0.0630 0.0775 0.0960 0.1212 0.1529 0.2008 0.2525 0.3026 0.3617

c = 0.3 0.0484 0.0750 0.1576 0.3005 0.4752 0.6619 0.8151 0.9161 0.9707 0.9920 0.9979

c = 0.5 0.0490 0.1243 0.3524 0.6490 0.8830 0.9721 0.9961 1 1 1 1
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in the literature and guidelines as well as
demonstrated in the simulation study above,
bias can have a severe impact on study results.
Between-group results cannot be accredited to
actual treatment difference, but rather to a
mixture of treatment difference, heterogeneity,
and bias. The impact of the last two might then
not only lead to substantial impact of type I
error rate elevation but is also actually able to
demonstrate superiority of an inferior
treatment.

In a clinical trial, multiple means and
instruments exist to prevent bias and hetero-
geneity. Most important are randomization and
blinding [5]. Thus, the CONSORT Group rightly
regards randomized controlled clinical trials as
the gold standard for evaluating health-care
interventions (CONSORT statement [1]).
Clearly not every prospective clinical trial is

randomized and blinded. Randomization might
not always be possible for ethical or practical
reasons, e.g., randomly assigning subjects to
smoking or not smoking cigarettes. Other clin-
ical trials, e.g., those comparing two different
types of surgery, can be randomized but not
double-blinded. Many prospective clinical trials
have, however, at least the potential to be ran-
domized and double-blinded. On the other
hand, studies based on clinical routine data are
per se not randomized and not blinded as it
would contradict clinical practice. Furthermore,
their analyses are usually retrospective. Taking a
random selection of existing data and con-
ducting a blinded analysis do not prevent any of
the above discussed issues. Quite the contrary,
taking a random selection of already existing
data actually has unnecessary disadvantages
compared to analyzing all data.

Fig. 1 Relative number of significant study results in the case of no treatment difference (type I error rate)

Table 5 Relative number of significant study results: wrong decision in favor of drug A even though drug B is superior

p5 0 p5 0.1 p5 0.2 p5 0.3 p5 0.4 p5 0.5 p5 0.6 p5 0.7 p5 0.8 p5 0.9 p5 1

c = 0.5 0.0000 0.0001 0.0015 0.0100 0.0700 0.2489 0.5278 0.8101 0.9543 0.9932 0.9994
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Without randomization, without internal
validity, and without representing a random
sample of the larger population of interest, a
basis for statistical inference is not given. Thus
there is usually no statistical foundation to
generalize results and properties derived from
clinical routine data to all patients of interest.

Unfortunately, the above arguments and
basic concepts of probability theory are occa-
sionally ignored by practitioners and non-statis-
ticians, who are captivated by p values. This
malpractice draws away attention of the great
benefits clinical routine data actually have to
offer. Descriptively summarizing clinical routine
data yields a comprehensive and aggregated
insight into the current state of treatment and
care of a specific subset of patients. Hypotheses
can be derived from this valuable insight, which
can subsequently be investigated under circum-
stances enabling a valid comparison. Thus, like
other observational studies, well-executed
investigations based on clinical routine data are
indispensable precursors of randomized con-
trolled clinical trials.

In summary, prespecified, homogeneous,
prospective, randomized, and blinded data
acquisition is desired to obtain valid clinical
trial results. By default, the acquisition of clin-
ical routine data is usually lacking most of these
attributes. However, correctly analyzing clinical
routine data yields a valuable insight into the
current state of treatment and care of a specific
subset of patients. Fulfilling a merely descriptive
purpose for a specific subset of patients,
descriptive summary statistics are the method
of choice. Confirmatory analyses using infer-
ential statistics trying to generalize results to all
patients of interest have to be considered care-
fully and are often inappropriate.
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