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Abstract

Cyclin dependent kinase 2 (CDK2) is a known regulator in the cell cycle control of the G1/S and 

S/G2 transitions. However, the role of CDK2 in tumorigenesis is controversial. Evidence from 

knockout mice as well as colon cancer cell lines indicated that CDK2 is dispensable for cell 

proliferation. In this study, we found that ectopic CDK2 enhances Ras (G12V)-induced foci 

formation and knocking down CDK2 expression dramatically decreases EGF-induced cell 

transformation mediated through the down-regulation of c-fos expression. Interestingly, CDK2 

directly phosphorylates ELK4 at Thr194 and Ser387 and regulates ELK4 transcriptional activity, 

which serves as a mechanism to regulate c-fos expression. In addition, ELK4 is over-expressed in 

melanoma and knocking down ELK4 or CDK2 expression significantly attenuated the malignant 

phenotype of melanoma cells. Taken together, our study reveals a novel function of CDK2 in EGF-

induced cell transformation and the associated signal transduction pathways. This indicates that 

CDK2 is a useful molecular target for chemoprevention and therapy against skin cancer.
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Introduction

The c-fos proto-oncogene, a component of the AP-1 transcription factor complex, is 

involved in cellular transformation and tumorigenesis (1–4). c-Fos transcriptional expression 

is inducible and begins within minutes after growth factor (e.g., EGF) stimulation. Three 
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major DNA regulatory elements have been identified in the c-fos promoter: the sis inducible 

element (SIE), the serum response element (SRE) and the cAMP response element (CRE) 

(5–7). The SRE is a pivotal regulatory sequence in the c-fos promoter that controls the 

majority of the signals affecting the c-fos promoter (8). The c-fos SRE is recognized by the 

transcription factor ternary complex that is comprised of the SRF (serum response factor) 

and TCF (ternary complex factor). The TCF belongs to the ETS transcription factor family 

(5). In the absence of its association with the SRF, the binding of TCF to the SRE of c-fos is 

weak and unstable, whereas the SRF can bind to the SRE of c-fos independently of TCF. 

However, TCF is required for a full and efficient response of the c-fos promoter to activators 

of the RAS/ERKs signaling pathway (9–11).

Cyclin-dependent kinase 2 (CDK2) is a serine/threonine protein kinase, which has a role in 

the G1/S transition, the initiation of DNA synthesis and the regulation of the exit from S 

phase. In the G1/S phase, CDK4 and/or CDK6 in a complex with cyclin D initially 

phosphorylate the retinoblastoma (Rb) protein (12–15). Following an association with E-

type cyclin, the CDK2/cyclin E complex completes the phosphorylation of Rb (16–18), 

which releases and activates the E2F family transcriptional activity, driving cells to the S 

phase. Besides the phosphorylation of the Rb protein, the activity of the CDK2/cyclin E 

complex is required for MCM (mini-chromosome maintenance) proteins essential for the 

initiation of replication (19–21). In late S phase, A-type cyclins that are associated with 

CDK2 or CDK1 phosphorylate their substrates, including MCMs, Cdc7 or ribonucleotide 

reductase R2, to control the cell cycle transition from S to G2. In addition, p21Cip1 and 

p27Kip1, which belong to the Cip/Kip protein family, can form a complex to block CDK2/

cyclin E and CDK2/cyclin A kinase activity. On the other hand, CDK2 directly 

phosphorylates p27Kip1 and induces p27Kip1 degradation through the proteasome pathway, 

which facilitates the full kinase activity of CDK2/cyclin E to drive cell cycle progression.

Although CDK2 is reportedly over-expressed in many cancer cell lines (22–24), the role of 

CDK2 in cancer development is still controversial. Knocking down CDK2 by siRNA or 

antisense oligonucleotides failed to block proliferation of colon cancer cell lines, whereas 

inhibition of CDK4 caused G1 arrest (25). Although CDK2 is required for germ cell 

development, CDK2 knockout mice develop normally (26). Proliferation is only slightly 

affected in CDK2−/− murine embryonic fibroblasts (MEFs). In addition, over-expression of 

p27Kip1 and p21Cip1 sufficiently blocked cell cycle progression in CDK2−/− MEFs and 

genetic deletion of CDK2 in p27kip1-null mice could not abrogate the development of 

pituitary tumors, suggesting that CDK2 is a dispensable molecular target of p27Kip1 and 

p21/Cip1 in cell cycle regulation and tumorigenesis (27). Therefore, the consensus has been 

that CDK2 is not a very important molecule for regulating cell proliferation, tumorigenesis 

or as a therapeutic target. However, in this study, we found that CDK2 is required for EGF-

induced cell transformation mediated through the regulation of c-fos expression. 

Furthermore, we demonstrated that CDK2 directly phosphorylates ELK4, a member of the 

TCF family, which provides a mechanism for the regulation of c-fos expression by CDK2 in 

the EGF signal transduction pathway.
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Results

CDK2 is required for EGF-induced anchorage independent cell transformation

Although the role of CDK2 in cell cycle regulation is well-known, whether CDK2 is 

involved in other signal transduction pathways, particularly in oncogenic stimuli-induced 

cell transformation, is not known. To test the effect of CDK2 on constitutively active Ras 

(G12V)-induced cell transformation, we co-transfected CDK2, Ras (G12V), or CDK2 plus 

Ras (G12V) into NIH3T3 cells. The results showed that over-expression of Ras (G12V) 

induced very clear foci formation, whereas CDK2 alone was not able to efficiently transform 

NIH3T3 cells (Figure 1A). However, compared with Ras (G12V) alone, co-expression of 

CDK2 with Ras (G12V) induced more foci formation of NIH3T3 cells (Figure 1A, right 
panel). This suggested that CDK2 might be downstream of the Ras signaling pathway and 

might play a role in cell transformation. To further investigate the function of CDK2 in cell 

transformation, we generated HaCaT cells expressing 2 two independent sequences to stably 

express knockdown CDK2 (Figure 1B, left panel). These cells were used to examine the role 

of CDK2 in EGF-induced cell transformation. Results indicated that EGF-induced 

anchorage-independent colony formation was markedly reduced in knockdown CDK2 

HaCaT cells and confirmed that CDK2 has a critical role in cell transformation (Figure 1B, 

right panels). To study the function of CDK2 in the EGF signaling pathway, we treated 

knockdown CDK2 HaCaT cells with EGF and the results showed that knocking down 

CDK2 expression also inhibited EGF-induced c-Fos expression (Figure 1C), but did not 

affect the phosphorylation of ERK1/2 (Figure 1C). In addition, we also determined the effect 

of CDK2 on c-fos transcriptional expression. The result indicated that c-fos mRNA 

expression was dramatically decreased in CDK2 knockdown cells (Figure 1D) in the 

presence of EGF stimulation.

ELK4 and CDK2 are novel binding partners

ELK4 (SAP-1a), a member of the TCF family, is a critical molecule in the regulation of c-
fos transcriptional expression (5, 7, 28). Here, we found that ELK4 is a novel protein-

binding partner with CDK2. CDK2-V5 and ELK4-HisG were co-transfected into HEK293 

cells and immunoprecipitated (IP) with anti-V5 or anti-HisG. The IP complex included 

ELK4-HisG and CDK2-V5 (Figure 2A, B). Furthermore, endogenous CDK2 in SK-MEL28 

melanoma cells was detected in the complex immunoprecipitated with an ELK4 antibody, 

but not in the extract immunoprecipitated with the IgG control antibody (Figure 2C).

Thr194 and Ser387 are major sites in ELK4 phosphorylated by CDK2 in vitro and ex vivo

Based on the results showing that CDK2 interacted with ELK4, we hypothesized that ELK4 

might be a novel substrate for CDK2. To determine whether CDK2 could phosphorylate 

ELK4, we performed an in vitro kinase reaction using active CDK2 or JNK1 and GST-

ELK4 as substrate and [γ32P] ATP. JNK1 is known to phosphorylate ELK4 (28). Therefore, 

JNK1 was used as a positive control for this experiment. JNK1 and CDK2 both could 

phosphorylate ELK4 (Figure 3A, upper panel), which indicated that ELK4 might be a novel 

substrate for CDK2. To determine the site(s) of ELK4 that are phosphorylated by CDK2, we 

designed 8 peptides based on the score predicted by NetPhos 2.0 (Figure 3A, lower panel). 
We then used the different ELK4 peptides as substrates in in vitro kinase assays for CDK2. 
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The results indicated that Thr194 and Ser387 on ELK4 were potential sites that could be 

phosphorylated by CDK2 (Figure 3B, upper panel). We replaced these two potential 

phosphorylation sites of ELK4 with alanine. The ELK4-WT and ELK4-AA (T194A/S387A) 

mutant proteins were used as substrates for active CDK2 in an in vitro kinase assay. Samples 

were analyzed by SDS-PAGE and autoradiography and the results showed that, compared 

with ELK4-WT, the phosphorylation of the double mutant ELK4 was dramatically 

decreased (Figure 3B, lower panel).

Thr194 and Ser387 of ELK4 are within the classical motif (S/TPXR/K) for substrates of 

CDK2 (Figure 3C). Thus, we determined whether the P-S/T antibody, which recognizes the 

S/TPXR/K motif, could detect the phosphorylation of ELK4 by CDK2. The in vitro kinase 

assay results indicated that phosphorylation was detectable in ELK4-WT, whereas 

phosphorylation of ELK4 mutant was weaker (Figure 3D). To study the CDK2 

phosphorylation of ELK4 in cells, we co-transfected ELK4-WT and CDK2 into HEK293 

cells and the result showed that phosphorylation of ELK4 was dramatically up-regulated 

(Figure 3E), especially with EGF treatment. In contrast, phosphorylation was substantially 

decreased in the ELK4-AA mutant cells (Figure 3F). These data indicated that Thr194 and 

Ser387 are major sites in ELK4 phosphorylated by CDK2 both in vitro and ex vivo.

Phosphorylation of ELK4 at Thr194 and Ser387 by CDK2 is required for EGF-induced cell 
transformation

ELK4 (SAP-1a) regulates c-fos transcriptional expression through its own transcriptional 

activity (7, 28–30). Our previous results showed that CDK2 could affect c-fos expression 

and phosphorylate ELK4 at Thr194 and Ser387, which suggests that CDK2 might regulate 

c-fos transcriptional expression through ELK4. To determine whether CDK2 can regulate c-
fos promoter activity, the c-fos luciferase reporter gene, renilla luciferase gene and CDK2-
WT or CDK2-DN (Thr160A) were co-transfected into HEK293 cells. The data showed that 

c-fos promoter activity increased dose-dependently in cells expressing CDK2-WT, but not in 

cells expressing CDK2-DN (Figure 4A). To investigate whether phosphorylation of ELK4 

by CDK2 had any effect on ELK4 transcriptional activity, we co-transfected the c-fos 
luciferase reporter with CDK2 and ELK4-WT or ELK4-AA (T194A/S387A) mutant into 

HEK293 cells. The ELK4-WT transcriptional activity was increased in a dose-dependent 

manner with increasing amounts of CDK2 (Figure 4B). In contrast, the double mutant 

T194A/S387A displayed a dramatically reduced c-fos promoter transactivation activity in 

the presence of CDK2 (Figure 4B). To study the physiological role of ELK4 

phosphorylation, we generated HaCaT cells stably expressing ELK4-WT or ELK4-AA 

(T194A/S387A) mutant (Figure 4C, left panel). Cell growth (Figure 4C, right panel) and 

EGF-induced anchorage-independent colony formation (Figure 4D) were both attenuated in 

the mutant ELK4-AA (T194A/S387A)-expressing cells. EGF-induced c-Fos expression was 

also decreased in cells expressing mutant ELK4-AA (T194A/S387A) (Figure 4E). Taken 

together, these data suggest that phosphorylation of ELK4 on Thr194 and Ser387 has a 

critical role in cell growth and EGF-induced cell transformation.

Peng et al. Page 4

Oncogene. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ELK4 is over-expressed in melanoma and required for tumor growth

Although ELK4 is reported to regulate c-fos gene expression, the role of ELK4 in 

tumorigenesis has not been addressed. To study the clinical relevance of ELK4 in human 

cancers, we analyzed the TCGA database and found that the ELK4 gene is amplified or the 

ELK4 mRNA is up-regulated in melanoma (Figure 5A) and 16% of patients had changes in 

ELK4 (Figure 5A). We also examined ELK4 expression in different melanoma cell lines and 

the results showed that, compared to HaCaT cells, ELK4 was over-expressed in SK-MEL-5 

and SK-MEL-28 melanoma cell lines (Figure 5B). To determine whether over-expression of 

ELK4 is required for tumor cell growth, ELK4 expression was knocked down by specific 

shRNA in SK-MEL-5 and SK-MEL-28 cell lines (Figure 5C). Cancer cell growth (Figure 

5D) and anchorage independent growth (Figure 5D) were both attenuated in knockdown 

ELK4 cells. Overall, these data indicated that ELK4 is required for maintaining the 

melanoma malignant phenotype.

Discussion

Most studies regarding CDK2 have focused on cell cycle regulation and, therefore, the role 

of CDK2 in other signaling pathways is unclear. Cellular transformation is a key process in 

tumorigenesis, which involves multiple molecules. In this study, we demonstrated that 

CDK2 has a critical role in cell transformation. Although ectopic CDK2 alone did not 

induce foci formation in NIH3T3 cells, CDK2 promoted the ability of Ras (G12V)-induced 

cell transformation (Figure 1A). Knockdown CDK2 significantly attenuated EGF-induced 

anchorage-independent colony formation of HaCaT cells (Figure 1B), which indicated that 

CDK2 is involved in EGF-induced cell transformation. These results (Figure 1A, B) indicate 

that CDK2 activity might be involved in Ras-induced signaling and are consistent with 

previous reports showing that suppression of Ras function or the Ras/MEK pathway blocks 

CDK2 activation (31, 32). Our results also showed that knockdown of CDK2 markedly 

decreased c-Fos protein expression as well as its transcriptional expression (Figure 1C, D), 

but had no effect on phosphorylation of ERK1/2 in EGF-induced signaling (Figure 1C). 

These data implied that CDK2 regulates c-fos expression independent of ERK1/2 activity.

c-Fos transcriptional expression is tightly controlled in normal cells, whereas its over-

expression promotes tumorigenesis (33–36). In general, c-fos expression is very low but is 

transiently induced by extracellular stimuli, including serum, growth factors and stress. 

Although 3 promoter elements are reported to mediate c-fos transcriptional expression, SRE 

(serum response element) is the major element for regulating c-fos expression. The c-fos 
SRE is constitutively bound by the SRF (serum response factor) and TCF (ternary complex 

factor) (5, 7). Three members of the TCF family have been identified, including ELK1, 

ELK4 (SAP-1A) and NET (SAP-2), which belong to the ETS transcription factor family. 

These members contain 3 conserved domains, the A domain, which is responsible for DNA 

binding, the B domain, which is responsible for interacting with SRF to form ternary 

complexes, and the C domain, which contains multiple S/T-P motifs that are responsible for 

transcriptional activation. The phosphorylation of TCFs enhances both its DNA binding 

ability and transcriptional activity induced by stimuli, including EGF, TPA, and UV.
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Our data showed that CDK2 interacts with ELK4 (Figure 2) and ELK4 is a novel substrate 

of CDK2 (Figure 3A). Using peptide screening, we also identified the potential sites 

(Thr194/ Ser387) in ELK4 phosphorylated by CDK2 (Figure 3B). Phosphorylation of ELK4 

was dramatically reduced in the ELK4 T194A/S387A mutant in vitro and ex vivo (Figure 

3D, E, F). Thr194 and Ser387 are consistent with the CDK2 substrate motif (S/T-PXR/K) 

(Figure 3C, upper panel). Thr197 is found in ELK4, but not in ELK1 (Figure 3C, lower 
panel). Even though ELK1, ELK4 and ELK3 all belong to the TCF family, each member has 

its own unique characteristics. Unlike ELK1 and ELK4, NET (ELK3) is a distinctive 

repressor that exhibits strong transcriptional repressor activity through the NID (net 

inhibitory domain) and the CID (C-terminal binding protein interaction domain) (37–39). 

ELK1 and ELK4 are both phosphorylated and activated by ERKs and JNKs, but ELK1 is 

poorly activated by p38, compared with ELK4 (30). Although ELK1 and ELK4 share a high 

degree of sequence similarity within the ETS domain (80%), these two proteins show 

different DNA binding specificity (40, 41). In addition, ELK1, but not ELK4, enhances the 

growth suppressive function of BRCA1a/1b in breast cancer (42).

We showed that ELK4, a transcription factor, is a novel substrate of CDK2. Others have 

shown that CDK3 and CDK4 both can directly phosphorylate transcription factors, like 

ATF1 and c-Jun. For example, CDK3 was shown to directly phosphorylate c-Jun at Ser63 

and Ser73 and ATF1 at Ser63 in the presence of EGF stimulation (43, 44), and CDK4 is 

required for c-Jun phosphorylation in immune cells after IL-6 and IL-1 stimulation (45). 

These data indicate that the CDK family of kinases is not only involved in cell cycle 

regulation but also participates in regulating transcription factor activation.

We investigated the physiological function of ELK4 phosphorylation and the results showed 

that c-fos promoter activity (Figure 4B) as well as c-Fos protein expression (Figure 4E) were 

dramatically decreased in mutant ELK4 (Figure 4B). As a result, cell growth and anchorage 

independent transformation were decreased in mutant ELK4 (T194A/S387A) HaCaT cells 

(Figure 4C, D), which indicated that Thr194 and Ser387 are required for the biological 

function of ELK4.

Although ELK4 was reported to have an oncogenic role in prostate cancer (46–48), the role 

of ELK4 in other cancers is unclear. The TCGA database showed gene amplification and 

mRNA up-regulation of ELK4 in melanoma patient samples (Figure 5A). Our data showed 

that ELK4 and CDK2 are highly expressed in melanoma cell lines (Figure 5B). Furthermore, 

the malignant of phenotype of SK-MEL-5 and SK-MEL-28 melanoma cell lines, including 

viability and anchorage independent growth, were dramatically decreased in knockdown 

ELK4 cells (Figure 5D, E, F). In addition, knocking down CDK2 expression also 

substantially reduced the malignant phenotype in SK-MEL-5 and SK-MEL-28 melanoma 

cell lines (Supplementary Figure 1).

Based on this study, CDK2 has a novel biological function in EGF-induced cell 

transformation and EGF-induced signaling. Although the mechanism explaining how EGF 

activates CDK2 activity is unclear, our data clearly showed that CDK2 could directly 

phosphorylate ELK4 at Thr194 and Ser387, which serves as a mechanism for regulation of 

c-fos transcriptional expression. Our data also demonstrated that CDK2 is required for 
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maintaining the malignant phenotype in melanoma cells, which implies that CDK2 could be 

a useful chemotherapy or chemoprevention target in skin cancer.

Materials and Methods

Reagents and antibodies

Chemical reagents, including Tris, NaCl, and SDS for molecular biology and buffer 

preparation were purchased from Sigma-Aldrich (St. Louis, MO). Cell culture media and 

other supplements were purchased from Life Technologies, Inc. (Rockville, MD). 

Antibodies to detect the p-S/TP motif and phosphorylated ERK1/2 were obtained from Cell 

Signaling Technology, Inc. (Beverly, MA). The antibodies against c-Fos, CDK2, ELK4, β-

actin, and HA were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Anti-

flag was purchased from Sigma-Aldrich. The HisG and V5 antibodies were purchased from 

Invitrogen (Carlsbad, CA).

Construction of expression vectors

The pCDNA3.1-CDK2-V5 and PCDNA4.0-HisG-ELK4 vectors were purchased from 

Addgene (Cambridge, MA). GST-ELK4 was sub-cloned from pCDNA4.0-ELK4 using 

EcoR1, Xho1. The pCDNA4.0-ELK4-T194,S387AA and GST-ELK4-T194,S387AA vectors 

were constructed from pCDNA4.0-ELK4-WT and GST-ELK4-WT using a site-directed 

mutagenesis kit (Strategene, La Jolla, CA). ELK4 was sub-cloned into the pBabe vector 

using Xba1 and Xho1 from the pCDNA4.0-ELK4 vector. The pBabe-ELK4-T194,S387AA 
mutant was constructed as described above. Lentivirus plasmids containing sh-CDK2 
(#1:TRCN0000039959; #2:TRCN0000039961) and sh-ELK4 (#1TRCN0000013886; 

#2TRCN0000013887) were purchased from Thermo Scientific (Huntsville, AL).

Cell culture and transfection

All cells came from American Type Culture Collection (ATCC, Manassas, VA) and were 

cultured at 37°C in a humidified incubator with 5% CO2 according to ATCC protocols. Cells 

were cytogenetically tested and authenticated before being frozen. Each vial of frozen cells 

was thawed and maintained for about two months (10 passages). They were cultured with 

Dulbecco’s modified Eagle’s medium (DMEM; Hyclone, San Diego, CA) supplemented 

with 10% fetal bovine serum (FBS; Atlanta Biologicals, Lawrenceville, GA) and antibiotics 

at 37°C in a 5% CO2 incubator. Human embryonic kidney (HEK293) cells, 293T cells, 

HaCaT cells and SK-MEL-5 and -28 melanoma cells were grown in DMEM supplemented 

with 10% FBS, 100 units/ml penicillin, and 100 mg/ml streptomycin, and cultured at 37°C 

in a humidified incubator with 5.0% CO2. NIH3T3 cells were grown in Eagle’s Minimum 

Essential Medium (MEM) supplemented with 10% FBS, 100 units/ml penicillin, and 100 

mg/ml streptomycin, and cultured at 37°C in a humidified incubator with 5% CO2. The cells 

were maintained by splitting at 90% confluence and media were changed every 3 days. 

When cells reached 50–60% confluence, transfection was performed using transfectin 

(Polyplus-Transfection Inc, New York, NY) following the manufacturer’s suggested 

protocol. The cells were cultured for 36–48 h and then proteins were extracted for further 

analysis.
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Lentiviral and retroviral infection

To construct knockdown CDK2 and ELK4 cells, the lentivirus plasmid containing CDK2 or 

ELK4 was transfected into 293T cells together with PSPAX2 and PMD2-G. Viral 

supernatant fractions were collected at 48 h after transfection and filtered through a 0.45 μm 

filter. The viral supernatant fractions were infected into the appropriate cells together with 

10 μg/ml polybrene. At 16 h after infection, the medium was replaced with fresh medium 

containing the suitable concentration of puromycin. The appropriate experiments were 

performed with these cells, until the control cells (without infection) completely died 

(usually 2–3 days) in the puromycin medium. For generation of HaCaT cells stably 

expressing ELK4-WT or ELK4-AA, the pBabe-mock, pBabe-ELK4-WT or pBabe-ELK4-
T194,S387AA plasmid were transfected into 293T cells together with pCI-VSVG and pCI-
GPZ. Viral supernatant fractions were collected at 48 h after transfection and filtered 

through a 0.45 μm filter. The pBabe-mock, pBabe-ELK-WT and pBabe-ELK4-
T194,S387AA viral supernatant fractions were infected into HaCaT cells together with 10 

μg/ml polybrene. At 16 h after infection, the medium was replaced with fresh medium 

containing 1 μg/ml puromycin and cells were then incubated for 6 days.

Reverse transcription-real time PCR

Total RNA was extracted from HaCaT cells infected with sh-Mock, sh-CDK2#1 or 2 after 

treatment with EGF at various time points using the Qiagen RNeasy kit (Qiagen) according 

to the manufacturer’s instructions. Total RNA (3 mg) was used as a template for the reverse 

transcription reaction (SuperScript III First-Strand Synthesis System for reverse 

transcription–PCR, Invitrogen). The c-fos primers used were as follows: Forward: 5-

actaccactcacccgcagac-3; Reverse 5-ccaggtccgtgcagaagt-3.

MTS Assay

Stably transfected HaCaT and melanoma cells were seeded (1×103 /well/100μl) into 96-well 

plates, and viability was assessed using an MTS assay kit (Promega, Madison, WI) 

according to the manufacturer’s instructions.

Immunoblotting and immunoprecipitation

Protein samples from cells were extracted with NP-40 cell lysis buffer (50 mM Tris-Cl pH 

8.0, 150 mM NaCl, 0.5% NP-40, and protease-inhibitor cocktail). For immunoblotting, 30 

μg of protein were used with appropriate specific antibodies and an alkaline phosphatase 

(AP)-conjugated secondary antibody and proteins detected by the STORM machine using 

the Fluorescence/Chemiluminescence mode (Amersham, Piscataway, NJ). For 

immunoprecipitation, the extracts were combined with agarose A/G beads (50% slurry) by 

rocking at 4°C overnight. The beads were washed, mixed with 6X SDS-sample buffer, 

boiled and then resolved by 10% SDS-PAGE. The proteins were detected using the 

appropriate specific antibodies and an AP-conjugated secondary antibody.

Anchorage independent cell growth

For EGF-induced cell transformation, cells (8×103/mL/well) were exposed to EGF in 1 mL 

of 0.3% basal medium Eagle (BME) agar containing 10 or 20% FBS. The cultures were 
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maintained in a 37°C, 5% CO2 incubator for the appropriate number of days, and cell 

colonies were scored using a microscope and the Image J (NIH) computer software 

program. For cancer cell anchorage independent growth, cells (8.0×103/well) were seeded 

into 6 well plates with 0.3% BME agar containing 10% FBS and cultured for the appropriate 

number of days. Colonies were scored using a microscope and the Image J computer 

program. Statistical analyses were performed using Prism 5.0 statistics software.

In vitro kinase assay

Purified GST-ELK4-WT and GST-ELK4-AA (T194A, S387A) proteins or ELK4 peptides 

were used as substrates for an in vitro kinase assay with active CDK2 (Upstate 

Biotechnology, Inc). Reactions were carried out at 30°C for 30 min in a mixture containing 

50 μM unlabeled ATP and 10 μCi [γ-32P] ATP, and then were stopped by adding 6X SDS 

sample buffer. Samples were boiled and then separated by 10% SDS-PAGE or 20% SDS-

PAGE (peptide) and visualized by autoradiography, Western blotting, or Coomassie blue 

staining.

Luciferase assays

293 cells were transfected with c-fos-Luc and SV-40-Renilla-Luc (Promega, Madison, WI) 

with CDK2 or ELK4 in the presence of transfection agent. At 30 h after transfection, cells 

were disrupted in passive lysis buffer and lysates analyzed for firefly and Renilla luciferase 

activities using the dual luciferase assay kit (Promega).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CDK2 plays a critical role in EGF-induced anchorage-independent neoplastic cell 
transformation mediated through c-fos
(A) Ectopic expression of CDK2 enhances Ras (G12V)-induced foci formation. Various 

combinations of CDK2 and Ras (G12V) were transfected into NIH3T3 cells as indicated and 

a foci formation assay was conducted following standard protocols as described in Materials 
and Methods. The protein levels of transfected CDK2 and Ras (G12V) were assessed by 

Western blotting using the indicated antibodies. (B) Knockdown of CDK2 blocks EGF-

induced cell transformation. Knockdown of CDK2 in HaCaT cells was performed as 

described in Materials and Methods. Cells were exposed to EGF (20 ng/mL) in 0.3% BME 

agar containing 20% FBS. The cultures were maintained in a 37°C, 5% CO2 incubator for 

12 d and then colonies were counted using a microscope and the Image J computer software 

program. Representative photos are shown and data from multiple experiments are expressed 

as mean values ± S.D. The asterisk (*) indicates a significant difference between cells 

expressing mock or sh-CDK (p < 0.05, Student’s t test). (C) Effect of CDK2 on the EGF 

signaling pathway. HaCaT cells expressing sh-CDK2#2 or sh-CDK2#4 were starved for 36 h 

and then treated with EGF (20 ng/ml) for various times. Immunoblotting was used to detect 

phosphorylated and total nonphosphorylated (np) ERK1/2, CDK2 or c-Fos protein 

expression. β-Actin was used to verify equal loading of protein. (D) Effect of CDK2 on c-fos 
transcriptional expression. HaCaT cells stably expressing mock or sh-CDK#1 or #2 were 
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starved for 36 h and then treated with EGF (20 ng/ml) for various times as indicated. c-Fos 
transcriptional expression was measured by RT-real time PCR as described in Materials and 
Methods. Data from triplicate experiments are expressed as mean values ± S.D. Significant 

differences were evaluated by two-way ANOVA and significant differences are indicated.
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Figure 2. CDK2 binds to ELK4
(A, B) CDK2 interacts with ELK4 ex vivo. CDK2-V5 and ELK4-HisG were co-transfected 

into HEK239 cells. At 36 h after transfection, CDK2-V5 or ELK4-HisG was 

immunoprecipitated with anti-V5 or anti-HisG. Western blotting was performed using the 

indicated antibodies. (C) CDK2 interacts with ELK4 ex vivo. SK-MEL-28 melanoma cell 

extracts were used for immunoprecipitation with a CDK2 antibody and control IgG. The 

immunoprecipitated complex was detected by Western blotting with the indicated antibody. 

IB: immunoblot; IP: immunoprecipitation.
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Figure 3. CDK2 phosphorylates ELK4 (Thr194/Ser387)
(A) CDK2 phosphorylates ELK4 in vitro. GST-ELK4 proteins (2.0 μg) were purified from 

BL21 bacteria and subjected to an in vitro kinase assay using active CDK2 (100 ng) or 

JNK1 (100 ng), 10 μCi of [γ-32P] ATP and 50 μM unlabeled ATP, as described in Materials 
and Methods. The reaction mixture was resolved by 10% SDS-PAGE and the 

phosphorylated ELK4 was visualized by autoradiography (upper panel). Amino acid 

sequences used for peptide synthesis (lower panel). (B) Identification of the potential CDK2 

phospho-targeted amino acid of ELK4. Peptides (5 μg) synthesized in A were used for an in 
vitro kinase assay with active CDK2 (100 ng) as described in Materials and Methods. The 

reaction mixture was resolved by 20% SDS-PAGE and phosphorylated peptides were 

visualized by autoradiography (upper panel). GST-ELK4-WT and GST-ELK4-AA (T194A/

S387A) mutant proteins (2.0 μg) were purified from BL21 bacteria and subjected to an in 
vitro kinase assay using active CDK2 (100 ng) as described in Materials and Methods. The 

reaction mixture was resolved by 10% SDS-PAGE and phosphorylation of ELK4 was 

visualized by autoradiography (middle panel). Coomassie blue staining indicates the 

respective GST-ELK4-WT and GST-ELK4-AA mutant fusion proteins (lower panel). (C) 

Structure and schematic diagrams of ELK4 amino acid sequences including Thr194 and 

Ser387. Thr194 and Ser387 are included in the CDK2 substrate motif (S/T-PXR/K) in a 

manner similar to the RB protein (Ser807/811). The asterisk (*) shows the potential CDK2 

phosphorylation sites (upper panel). Amino acid alignment between Thr194 of ELK1 and 

ELK4 is shown (lower panels). (D) The phospho-Ser/Thr (p-S/T) antibody recognizes the 

phosphorylation of ELK4 in vitro. An in vitro kinase assay was performed using the GST-
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ELK4-WT or GST-ELK4-AA mutant protein together with active CDK2 (100 ng) and 200 

μM unlabeled ATP. The phosphorylated ELK4 was detected by the p-S/T antibody and 

visualized by Western blot. (E, F) Phosphorylation of ELK4 by CDK2 ex vivo is partially 

dependent on EGF treatment. HEK293 cells were transfected with the (E) ELK4-HisG or 

CDK2-V5 or (F) ELK4-WT-HisG or ELK4-AA-HisG mutant. Cells were cultured for 30 h 

and treated with EGF (100 ng/ml). The ELK4 proteins were immunoprecipitated with anti-

HisG and phosphorylated ELK4 was visualized by Western blot using the p-S/T antibody.
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Figure 4. Phosphorylation of ELK4 (Thr194/Ser387) is important for its physiological function
(A) CDK2 increases ELK4 transcriptional activity. Various amounts of CDK2-WT or 

CDK2-DN (Thr160Ala) were transfected with a plasmid mixture containing the ELK4 or c-
fos-luciferase reporter gene and the Renilla luciferase gene (20 ng) for normalization. At 24 

h after transfection, firefly luciferase activity was determined in cell lysates and normalized 

against Renila luciferase activity. Data from multiple experiments are expressed as mean 

values ± S.D. Significant differences were evaluated using a one-way ANOVA and 

significance level is as indicated. (B) The phosphorylation of ELK4 (Thr194/Ser387) is 

required for ELK4 transcriptional activation. Various amounts of ELK4-WT or ELK4-AA 
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(T194A/ S387A) were transfected with a plasmid mixture containing the CDK2 or c-fos-
luciferase reporter gene and the Renila luciferase gene (20 ng) for normalization. At 24 h 

after transfection, firefly luciferase activity was determined in cell lysates and normalized 

against Renila luciferase activity. Data from multiple experiments are expressed as mean 

values ± S.D. Significant differences were evaluated using a one-way ANOVA and 

significance level is as indicated. (C) Over-expression of mutant ELK4-T194A/S387A 

attenuates cell proliferation. HaCaT cells stably over-expressing ELK4-WT or ELK4-

T194A/S387A (left panel) were constructed as described in Materials and Methods. HaCaT 

cells expressing Mock, ELK4-WT, or ELK4-AA were seeded (1×104 per well) into 6-well 

plates and proliferation was measured. Data from multiple experiments are expressed as 

mean values ± S.D. (right panel). Significant differences were evaluated using a two-way 

ANOVA and the asterisk (*) indicates a significant difference (p < 0.05). (D) Over-

expression of mutant ELK4-T197/S387AA attenuates EGF-induced anchorage independent 

cell transformation. HaCaT cells expressing Mock, ELK4-WT, or ELK4-AA were exposed 

to EGF (20 ng/mL) in 0.3% BME agar containing 10% FBS. The cultures were maintained 

in a 37°C, 5% CO2 incubator for 12 d and then colonies were counted using a microscope 

and the Image J computer software program. Data from multiple experiments are expressed 

as mean values ± S.D. Significant differences were evaluated using a one-way ANOVA and 

the respective significant differences are indicated. (E) The mutant ELK4-AA decreases 

EGF signaling. HaCaT cells expressing Mock, ELK4-WT, or ELK4-AA were starved for 36 

h and treated with EGF (20 ng/mL) for various times as indicated. Immunoblotting was 

performed using specific antibodies.
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Figure 5. ELK4 is required for melanoma cell growth
(A) Data were obtained from the TCGA database and indicate that ELK4 is highly over-

expressed in cancer. Graphs show the number of ELK4 amplifications or mRNA (%) (left 
upper panel) and the correlation between ELK4 gene copy numbers and mRNA expression 

(right panel) in melanomas. (B) ELK4 and CDK2 are over-expressed in various skin cancer 

cell lines. ELK4 and CDK2 were detected in HaCaT cells and various skin cancer cell lines 

as indicated. (C) Knockdown of ELK4 attenuates proliferation of SK-MEL-5 and SK-

MEL-28 melanoma cells. The cells expressing knockdown ELK4 generated by 2 different 

sequences were constructed as described in Materials and Methods. ELK4 protein 

expression was assessed by Western blot (WB) as indicated. (D) Sh-mock, sh-ELK4#1 or 2 
cells were seeded (1×103 per well/100 μL) into 96-well plates and viability was assessed 

using the CellTiter96 Aqueous One Solution detection kit. Data from multiple experiments 

are expressed as mean values ± S.D. Significant differences were evaluated using a two way 

ANOVA and the asterisk (*) indicates a significant difference (p < 0.05). Knockdown of 

ELK4 attenuates anchorage independent growth in (E) SK-MEL-5 and (F) SK-MEL-28 

melanoma cells. SK-MEL-5 or SK-MEL-28 cells expressing sh-Mock, sh-ELK4#1 or #2 
were seeded in 0.3% BME agar containing 10% FBS. The cultures were maintained in a 

37°C, 5% CO2 incubator for 10 d and then colonies were counted using a microscope and 

the Image J computer software program. Data from multiple experiments are expressed as 
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mean values ± S.D. Significant differences were evaluated using a one-way ANOVA and the 

respective significant differences are as indicated.

Peng et al. Page 21

Oncogene. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	CDK2 is required for EGF-induced anchorage independent cell transformation
	ELK4 and CDK2 are novel binding partners
	Thr194 and Ser387 are major sites in ELK4 phosphorylated by CDK2 in vitro and ex vivo
	Phosphorylation of ELK4 at Thr194 and Ser387 by CDK2 is required for EGF-induced cell transformation
	ELK4 is over-expressed in melanoma and required for tumor growth

	Discussion
	Materials and Methods
	Reagents and antibodies
	Construction of expression vectors
	Cell culture and transfection
	Lentiviral and retroviral infection
	Reverse transcription-real time PCR
	MTS Assay
	Immunoblotting and immunoprecipitation
	Anchorage independent cell growth
	In vitro kinase assay
	Luciferase assays

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

