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We present a novel method for the unsupervised discovery of behavioural

motifs in larval Drosophila melanogaster and Caenorhabditis elegans. A motif is

defined as a particular sequence of postures that recurs frequently. The ani-

mal’s changing posture is represented by an eigenshape time series, and

we look for motifs in this time series. To find motifs, the eigenshape time

series is segmented, and the segments clustered using spline regression.

Unlike previous approaches, our method can classify sequences of unequal

duration as the same motif. The behavioural motifs are used as the basis

of a probabilistic behavioural annotator, the eigenshape annotator (ESA).

Probabilistic annotation avoids rigid threshold values and allows classification

uncertainty to be quantified. We apply eigenshape annotation to both larval

Drosophila and C. elegans and produce a good match to hand annotation of

behavioural states. However, we find many behavioural events cannot be

unambiguously classified. By comparing the results with ESA of an artificial

agent’s behaviour, we argue that the ambiguity is due to greater continuity

between behavioural states than is generally assumed for these organisms.
1. Introduction
Automated analysis of behaviour is of increasing importance to biology and

neuroscience. Behavioural control is the ultimate function of neural processing

[1]. The recent expansion of tools for manipulating neural activity, such as opto-

genetics, has made it crucial to be able to screen rapidly and automatically

for the behavioural consequences of these manipulations. Standardization of

quantitative behavioural assays and reproducibility of analyses are thus key

to progress in understanding neural circuits.

Traditional manual annotation of behavioural data is not feasible for large data-

sets. As a consequence, automated high-throughput behavioural annotators have

been developed. An example is the Janelia Automatic Animal Behaviour Annotator

(JAABA) [2]. JAABA first requires hand annotation of a subset of the data and then

the software uses machine learning algorithms to find the same patterns in the

unannotated data. Other researchers have developed classifiers that extract specific

parameters from behavioural data and then register a state if a certain parameter (or

parameter set) exceeds a user-defined threshold [3–6]. Note that for these classifiers

both the set of possible behaviours and the description of those behaviours are

encoded by the user. In contrast, our goal is to discover patterns in behaviour

without reference to any user-defined thresholds or examples.

Posture is the main observable component of behaviour, and the behavioural

annotators mentioned above mainly use postural information as input to classify

behavioural states. In this context, Stephens et al. introduced eigenworms [7],
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Figure 1. Constructing eigenworms. In each video frame, thresholding is used to separate the animal from the background, then the resulting binary images are
skeletonized. This skeleton, or midline, is used as a proxy for the animal’s posture. Panel (a) shows a frame from the CBD with the worm’s contour and midline
highlighted, panel (b) shows the corresponding midline. The skeleton has been rotated to remove the worm’s overall rotation relative to the plate. Panels (c) zooms
in on the midline, showing how a set of ui angles provide a piecewise linear approximation to the midline curvature. This angular data forms a vector for each
frame, or a matrix for a movie. The matrix’s principal components are the eigenworms. Panel (d ) shows an example of a posture reconstruction. The blue shapes in
the middle column are the eigenworms, which can be added together with different weights to reconstruct any actual worm posture.
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using principal component analysis to produce a low-dimen-

sional representation of C. elegans midline shapes. For the

unrestricted free behaviour of C. elegans, four eigenworms

account for 92% of the animal’s posture variance. This means

that four numbers can describe any actual worm posture

with high precision. Mathematically, postures are described

by a superposition of eigenworms, i.e.

postureðtÞ ¼
Xn

i¼1

aiðtÞeigenwormi, ð1:1Þ

where ai(t) is the coefficient associated with the ith eigenworm

at time t. Figure 1 shows the eigenworms and an example of

posture reconstruction. Eigenshapes provide a compact rep-

resentation of posture and hence clearly have potential use in

behavioural annotation. Specifically, behaviour (change in

posture over time) is represented by the time evolution of

eigenshape coefficients, i.e. the time series of ai(t)s. This time

series will be referred to as the eigenshape coefficient time

series (ECTS) and forms the basis of our method.

The technical aim of this paper is the unsupervised dis-

covery of frequently repeated ECTS subsequences. In the

data mining literature, frequently repeated subsequences

are also known as motifs [8]. ECTS motifs correspond to fre-

quently repeated sequences of posture that can be viewed as

behavioural states or actions [9,10]. Previous attempts to

extract ECTS motifs using a simple ‘sliding window’ motif

discovery approach [11] suffer from two major problems.

First, the window for any pass is of fixed length, hence this

method considers only exactly equal duration sequences as

potential matches. Second, the sliding window method

defines a motif as a pair of closest neighbour sequences. How-

ever, motifs are understood intuitively not as a single pair of
subsequences, but as a frequently repeated subsequence. Our

motif finding methodology was designed to overcome these

two problems.

First, we derive the equivalent of eigenworms for larval

Drosophila, termed eigenmaggots. The ECTS of both larval

Drosophila and C. elegans are then analysed using our novel

motif finding method. The ECTS motifs are used as the basis of

a probabilistic behavioural annotator, the eigenshape annotator

(ESA).1 We show that the resulting annotation corresponds

well to hand annotation, although a number of behaviours

cannot be unambiguously classified. The ESA analysis is

also applied to the behaviour of a state-based simulated

maggot to show that the ambiguity is not inherent in the

method, but reflects a greater continuity between

behavioural states in these organisms than is generally

assumed. In summary, our new method both confirms the

results of previous behavioural annotation and reveals

some of its limitations.
2. Methods
2.1. Overview
Our aim is to go from video of a behaving animal to annotation of

its behavioural states, where those states are determined using

bottom-up discovery of motifs in the sequence of postures. We

start by recording freely foraging Drosophila larva, extract their

midline as a set of angles, and apply principal component analysis

to obtain a low-dimensional description of postures, the ECTS.

Equivalent information for the worm is available from the

C. elegans behavioural database (CBD). Discovering motifs in the

multidimensional ECTS is a non-trivial problem, and there are

no existing adequate tools. We developed a two-step process to
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Figure 2. Results of eigenmaggot analysis. Panel (a) shows the percentage of the original data’s variance recovered given the dimensionality of the representation.
Panel (b) shows the eigenmaggots with the most significant eigenmaggot on top, the second below, etc. These shapes can be added up in different proportions to
reproduce the larval postures (figure 1). Panel (c) shows a three-dimensional behavioural trajectory in eigenmaggot space, that is the time evolution of the first
three eigenmaggot coefficients. The subtrajectory highlighted is an example of what we call a turning manoeuvre, see §3.2. Panel (d ) shows a part of the same
trajectory as three separate one-dimensional time series; the subsequence underlined corresponds to the highlighted subtrajectory on panel (c). Panel (e) shows
binary images of the maggot at the corresponding time slices from panel (d ).
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first extract subsequences and then fit a statistical model to cluster

the subsequences. Briefly (details are given below), we use changes

in the dynamics of the ECTS to divide the sequence into variable

length subsequences, with the intent that each subsequence

contains a single ‘action’. The subsequences are aligned and then

clustered using a spline regression model [12,13], a method for

analysing curves analogous to Gaussian mixture models. The

resulting clusters constitute motifs by which the animal’s behav-

iour can be annotated. The results are compared with alternative

annotation systems and with hand annotation provided by a

human expert, which is treated as ground truth.

2.2. Data collection
Canton-S flies were maintained on conventional cornmeal-agar

molasses medium at 228C and kept in a 12 h dark–light cycle. For

the behavioural experiments, larvae in their 3rd instar stage were

placed on 3% agarose and were allowed to freely forage. Across

33 individuals, 14 h of video was recorded at 30 fps. The videos

were segmented (see below) into a total of 11 613 actions. The track-

ing and data acquisition hardware used for this publication are

described in detail in [14]. Briefly, the larva moving over a fixed

stage was imaged using a camera (Basler A622f) on top. The

camera was mounted on a moving stage to follow the animal. The

software for image capture and stage control was written in C

using the OpenCV libraries.

To analyse worm behaviour, we used data from the CBD [6]. The

database consists of videos of worms (recorded at 30 fps) browsing in

bacteria. For every video, there is a corresponding feature file, which

contains many precalculated statistics of worm morphology. The

feature files also contain the eigenworm coefficient time series. The
worm analysis in this paper uses this precalculated ECTS.

Twenty-two thousand and sixty-six actions were analysed from

100 experiments with N2 worms, corresponding to 25 h of video.

2.3. Constructing eigenmaggots
In each video frame, the larva was separated from the back-

ground by a thresholding algorithm. The resulting binary

images were skeletonized using the built-in MATLAB function

[15]. Midlines were rotated such that the endpoints, correspond-

ing to the head and tail of the animal, lie along the x-axis. This

operation removes the overall rotation of the animal’s body rela-

tive to the plate. The midlines were normalized such that they

consist of 71 points placed equidistant from each other. The

length of the larva can change, but is neglected in this analysis,

i.e. we treat every midline as if it is the same length. The eigen-

shapes in figures 1 and 2 have been reconstructed to reflect the

average physical size of the midlines. The angles among con-

secutive points defining the midline were restricted to the

interval –p , ui � p. As a result of these operations, each

frame is associated with a 70 dimensional vector, where the ith
component is ui (figure 1c). These vectors are concatenated

to form an n * 70 data matrix, where n is the number of frames.

Principal component analysis is applied to this data matrix to

construct the eigenshapes and the associated ECTS.

2.4. Eigenshape coefficient time series
For both the larval and worm analysis, the coefficients of the

three most significant eigenshapes were included in the ECTS, that

is ECTSðtÞ ¼ ½a1ðtÞ, a2ðtÞ, a3ðtÞ�, see equation (1.1). After principal
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component analysis, the inspection of the eigenvalues reveals that

for both organisms three coefficients account for approximately

90% of the posture variance [16], thus provide an accurate descrip-

tion of posture. At the same time, a three-dimensional ECTS is

small enough to avoid ‘the curse of dimensionality’ that could

lead to difficulties during the clustering step [17].

2.5. Dropped frames
Both the larval and the maggot ECTS contains dropped frames.

If a gap was short (less than 0.5 s), then ECTS was linearly

interpolated. After the interpolation, 1.1% of the Drosophila and

4.2% of the C. elegans frames were still missing. For both organ-

isms on a significant portion of the dropped frames, the animal

was curled up in a ‘doughnut shape’ from which it is difficult

to extract a biologically meaningful skeleton. For C. elegans,
more frames were dropped, because the worms were browsing

in food. The layer of bacteria can obscure the worm in the

image, making separation of the body of the worm from the

background more challenging. Note that the inability to analyse

curled-up postures introduces a bias to the pipeline, as no

posture with self-intersection is included.

2.6. Segmentation
The intuition behind the segmentation algorithm is that bound-

aries between windows should be located where the dynamics

of ECTS changes. ECTS was smoothed using a weighted running

average filter with a window size of four frames and weights inver-

sely proportional to the distance from the window’s centre.

Segmentation operates on a ‘body score’ time series that is created

by calculating a weighted sum of the separate dimensions of ECTS,

where the weights are set by the eigenvalues associated with the

eigenshapes. The segmentation algorithm scans the body score

to find local minima and maxima. An action is defined as a local

maxima in body score bounded by minimas. The minimas

define the start and end of the segmented subsequence. Figure 3

shows the result of segmentation for Drosophila and C. elegans
with the corresponding body score time series.

The maxima/minima finding algorithm is controlled by a

master parameter. The results are not strongly dependent on

the precise parameter setting: adjusting it by +25% leaves 92%

of the annotation unchanged.

The behavioural videos of C. elegans were recorded while

the worms were browsing in food. In this environment, worms

often show low activity. Our segmentation was designed to

identify periods where the body score rapidly changes, hence

the identification of low activity periods required an extra step.

Low activity periods were identified by intervals where the time

derivative of body score remained under half of its average

value for more than 0.5 s. These periods were added to the

collection of actions prior to proceeding to the clustering step. If

the two parameters (less than 50% of average body score for

more than 0.5 s) are adjusted +25%, then 97% of the action’s

classifications are not altered. Thus, fine tuning of the parameters

is not necessary.

2.7. Curve alignment and clustering
Segmentation produces a large set of subsequences, or actions,

each of which is a continuous ECTS curve. Hence, splines, locally

smooth piecewise polynomials, are a natural choice to para-

metrize actions. Spline regression [12,13] was used to assign

the actions to clusters. This method is analogous to Gaussian

mixture models, but instead of Gaussian distributions, clusters

are parametrized by splines.

To improve the consistency of spline fitting, the ECTS subse-

quences were aligned in the time domain. The frame with the

highest body score was used as a reference, and actions were

shifted in time such that their point of highest body score coincides,
see electronic supplementary material, figure S2 for illustration.

Note that if ECTS ¼ [0, 0, 0], then the posture is a flat line (for

both organisms). The higher the coefficients are, generally the

more curved the postures are (although the bend caused by the

coefficients can be in opposite directions and cancel each other).

Therefore, the maxima of the body score correspond to the frame

with the most bent posture and as such this frame is a rational

choice to define a reference point in time by which subsequences

of different lengths can be aligned.

Splines had three internal knot points and each polynomial

had an order of 3. An expectation–maximization (EM) algorithm

[13] was used to learn model parameters. EM was initiated 500

times with random boundary conditions, and the solution with

the highest likelihood was kept. Bayesian information criteria

(BIC) [18–20] was used to identify the optimal number of

clusters. BIC is defined as

BIC ¼ 2 lnðLmodelÞ � k � lnðnÞ, ð2:1Þ

where Lmodel is the likelihood of the fitted model, k is the

number of free parameters and n is the number of observations.

The first term reflects goodness of fit of the model, and the

second is a penalty term is for the number of free parameters.

Spline regression clustering produces a membership prob-

ability that a given action belongs to a cluster. Therefore, this

method avoids rigid cluster assignments and also allows classifi-

cation uncertainty to be quantified. To measure the classification

uncertainty Shannon entropy [21] was used, defined as

H ¼ �
X

i

pilog2 pi, ð2:2Þ

where pi is the probability that a given action belongs to a cluster i.
Note that the most uncertain situation is when the probability is

equally distributed among the clusters, correspondingly H has a

maximum when all pi ¼ 1/imax (imax is the number of clusters).

2.8. Comparison of behavioural annotations
In the following, a ‘behavioural event’ means an interval of con-

secutive frames tagged with the same behaviour. A behavioural

event marked by an automated annotator (ESA, JAABA or CBD)

was counted as true positive if at least 50% of it was also tagged

by ground truth annotation with the same behaviour. Otherwise,

the event was either counted as a false positive (automated annota-

tor marked a behavioural event that had less than 50% overlap with

an identically annotated behavioural event in the ground truth

annotation) or a false negative (ground truth marked a behavioural

event that had less than 50% overlap with an identically annotated

behavioural event in the automated annotation).

Furthermore, we had to consider the problem that different

annotations used different behavioural state spaces. The beha-

viours were always matched to the closest behaviour in the

ground truth annotation. Specifically, for larval Drosophila, ESA’s

turning manoeuvre was treated as a match to both stop cast and

turn in the ground truth annotation. That is, if ground truth con-

tained either a turn or a stop cast behaviour and at least 50% of

the frames were tagged as a turning manoeuvre by ESA, then it

was counted as a true positive. Run casts are the same behaviour

across ground truth, JAABA and ESA. For C. elegans, the ground

truth hand annotation’s dwelling was treated as a match to CBD’s

pause and ESA’s passive state. The CBD’s Y and V turns were

both treated as a match to the ground truth’s turn behaviour.

Parts of the time series were excluded from the analysis when

the video frames could not be segmented and hence midline

information was not accessible. Note that JAABA, CBD and

ground truth annotation is available for these periods as they

do not exclusively rely on contour information.

We modified the output of JAABA to avoid the problem

of ‘flickering annotation’. Flickering annotation occurs when

single frames within a behavioural event are not classified as
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part of the event, e.g. the sequence 0011011100 (where 1 means

that the frame corresponds to a given behaviour, 0 means it

does not). JAABA works on a frame-by-frame basis, hence

these sequences are present when an event is near threshold

value. To avoid the false positives caused by the small gaps,

we have connected behavioural events that are less than three

frames apart. Hence, the sequence above would become

0011111100.

To summarize annotation accuracy, we report the precision

(positive predictive value) and sensitivity (also known as recall

and true positive rate) [22] in tables 1 and 2. Sensitivity is the per-

centage of events recognized by the annotator, and precision is

the proportion of events tagged by the annotator that are true
positives. Furthermore, these two measures are combined as

the F-score, defined as

F ¼ 2ðprecision� sensitivityÞ
precisionþ sensitivity

, ð2:3Þ

which is commonly used to quantify the goodness of

classification.

2.9. Visualization, density cross sections and feature
histograms

To produce figures 4b and 5b and figure S1, the standard

MATLAB [15] implementation of metric multidimensional
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Table 1. Statistics of the annotation of larval Drosophila behaviour. Precision, sensitivity and F-score values have been derived from electronic supplementary
material, table S1. See electronic supplementary material, video S3 that shows the larva’s behaviour ground truth, JAABA annotation and ESA annotation next
to each other.

run cast stop cast turn all behaviours

Pre. Sen. F Pre. Sen. F Pre. Sen. F Pre. Sen. F

JAABA 0.49 0.95 0.65 0.67 0.89 0.76 0.53 0.98 0.69 0.54 0.94 0.68

ESA 0.64 0.91 0.75 0.74 0.75 0.75 0.7 0.51 0.59 0.67 0.77 0.72

Table 2. Statistics of the annotation of C. elegans behaviour. Precision, sensitivity and F-score values have been derived from electronic supplementary material,
table S2. See electronic supplementary, video S4 that shows the worm’s behaviour ground truth, CBD annotation and ESA annotation next to each other.

locomotion turn dwelling all behaviours

Pre. Sen. F Pre. Sen. F Pre. Sen. F Pre. Sen. F

CBD 0.77 1 0.87 0.96 0.79 0.87 0.89 0.94 0.92 0.86 0.9 0.88

ESA 0.83 0.93 0.9 0.67 1 0.8 0.73 0.83 0.77 0.74 0.95 0.82
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scaling was used. The distance matrix was constructed using

weighted dynamic time warping (DTW), where the weights are

set by the eigenvalue associated with each dimension of ECTS.

DTW is a standard measure of similarity in time-series analysis
that uses a nonlinear time warping to find the optimal match

between a pair of subsequences [24]. Note that the Euclidean

distance among the points (corresponding to the actions) on

the map correlates with the DTW distance among the
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subsequences, but the distances on the map are in arbitrary units.

To construct each map, a random sample of 5000 actions were

used. The algorithm was run 500 times with random initial

conditions and the solution with the highest R2 was kept.

The density cross sections of aggregated ECTS curves were

visualized to see possible density fluctuations (see §3.4). Sets of

stereotypical curves would form high-density regions in the

cross sections. Hence, the cross sections can be used to detect

stereotypical curves corresponding to stereotypical posture

sequences. Density cross sections are measured on aggregated

and aligned ECTS curves at specific ‘time slices’ as shown in

figure 6a. To estimate the density of curves, a kernel density esti-

mation method was used [25]. Figure 6 only shows the cross

section for one time slice, see electronic supplementary material,

figure S3 for additional cross sections.

To create the histograms of C. elegans behavioural features,

data were directly imported from the CBD feature files. These

features are defined in [6]. The hardware and software that

was used to obtain the behavioural features for larval Drosophila
is described in [4].
3. Results
3.1. Eigenshapes
The eigenworm analysis pipeline extracts a vector of angles

between consecutive points along the animal’s midline, and

applies principle component analysis to reduce the dimension-

ality of this description. The same method was adapted to create
the analogous set of shapes for Drosophila larva, the eigenmag-

gots (figure 2). We find that eigenmaggots (figure 2b) are as

efficient to describe larval postures as the eigenworms

(figure 1d) are to describe worm postures. The inspection of

eigenvalues reveals that three eigenmaggots account for over

90% of the postural variance [16] (figure 2a). Thus, eigenmag-

gots provide an accurate low-dimensional description of

larval postures.

In contrast to eigenworms, eigenmaggots do not capture

forward locomotion [7]. This difference is due to the different

mode of locomotion. C. elegans propels itself by moving its

body in a sinusoidal wave perpendicularly to the direction of

motion [26]. Larval Drosophila crawls forward using peristaltic

contraction waves [27]. The peristaltic waves can be recognized

by the contraction of the abdominal sections, but this contrac-

tion does not alter the animal’s midline shape from the

camera’s top view, and therefore is not captured by the eigen-

maggot description. It is noted here that we have experimented

with supplementing the larval ECTS with the tail speed time

series as an extra dimension. The idea is that tail speed captures

the state of peristalsis. However, the additional information did

not improve the classification when evaluated against the

ground truth annotation.
3.2. Motifs for Drosophila larva
For foraging Drosophila larva, the BIC for the spline regression

model gave the best fit when assuming the presence of two
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behavioural motifs. The first motif we call a run cast. A run cast

is a low amplitude head cast while the larva is moving approxi-

mately straight [28,29]. Successive run casts make up the

larva’s typical forward locomotion. The second motif corre-

sponds to high amplitude head casts that may or may not be

followed by a sharp change of direction. Some previous

analyses of larval behaviour distinguish ‘stop casts’ (or

simply ‘casts’), where the larva stops locomotion and sweeps

its head laterally, from ‘turns’, which start in a bent body

shape and end as the larva resumes locomotion in a new direc-

tion [4,9]. This classification scheme is not unique; others have
proposed alternatives [30]. We do not find evidence to

support the distinction between ‘stop casts’ and ‘turns’ instead

our analysis describes these behaviours as a single motif,

the turning manoeuvre. See electronic supplementary

material, video S1 and figure 4 for an annotated trajectory

and a visualization of the relationship among the motifs.

ESA annotation was evaluated against hand annotation.

Across all behaviours, ESA produced an F-score of 0.72

(precision ¼ 0.67 and sensitivity ¼ 0.77), where the dominant

source of error was a large number of false positive run casts.

On the same behavioural experiments, JAABA annotation
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produced an F-score of 0.68 also with many false positive

events. See table 1 for the precision, sensitivity and F-score

statistics for each behaviour for both JAABA annotation

and ESA. Electronic supplementary material, video S3

shows the binary video of the larva, hand annotation,

JAABA and ESA annotations next to each other, so that the

reader can gain a good understanding of how the different

annotations relate to the larva’s behaviour.

Typically, disagreements happen between ESA and hand

annotation when an action has high classification uncertainty.

Classification uncertainty is quantified by the Shannon entropy

[21] and it is denoted by H. Seventy-three per cent of the ESA

actions have a low uncertainty, meaning H , Hmax/4, where

Hmax ¼ log22, because two states have been found. For these

low uncertainty actions, hand annotation and ESA agree on

87%. When classification entropy is high, H . Hmax/4, then

the agreement rate between the two annotations drops to

49%. In short, action labels typically differ where ESA is uncer-

tain. When hand annotation and ESA are in disagreement, it is

often debatable which one is correct. In §3.4, we argue that the

difficulty to resolve disagreements is due to an unbroken

continuity between the two behavioural motifs.
3.3. Motifs for Caenorhabditis elegans
ESA was developed with the analysis of larval Drosophila in

mind, but can also be applied to C. elegans. The worm behav-

ioural data were obtained from the CBD. The database

contains movies of worms browsing in bacteria, an environ-

ment where worms tend to pause for long periods. These

pauses required an extra step in the segmentation process,

see Methods for details.

In this case, BIC for the spline regression model fit indicated

the presence of three behavioural motifs, corresponding to

locomotion, turns and passive periods. Segmentation divides loco-

motion into ‘steps’, where each step is a p/2 advancement of

the locomotion wave. Multiple locomotion steps make up

the characteristic undulatory motion of the worm. The turn

behaviour as defined by ESA also includes classic V turns,

lower amplitude turns and sharp pirouettes [23]. The passive

periods are a mixture of pauses, dwelling and quiescence

[31]. Figure 5 shows a visualization of the relationship

between the motifs and an annotated trajectory, and electro-

nic supplementary material, video S2 provides a dynamic

illustration of the annotation.

To benchmark ESA, its performance was compared

against hand annotation. ESA produced an F-score of 0.82

(precision ¼ 0.74 and sensitivity ¼ 0.95), where the dominant

source of error was a large number of false positive turn

events. This finding is not surprising given that the turning

behaviour as defined by ESA is very permissive. Existing

automated behavioural annotation of the CBD resulted in

an F-score of 0.88 (precision ¼ 0.86 and sensitivity ¼ 0.9).

See table 2 for the precision, sensitivity and F-score statistics

for each behaviour for both CBD annotation and ESA. Fur-

thermore, see electronic supplementary material, video S4,

which shows the video of the worm, hand annotation, CBD

and ESA annotations next to each other.

As for larval Drosophila, there is a significantly increased

chance of a C. elegans action to be labelled differentially by

ESA and hand annotation if the action has a high classifi-

cation uncertainty (H . Hmax/4, where Hmax ¼ log23 as

three behavioural states have been detected) according to
ESA. The probability that hand annotation labels these uncer-

tain actions identically decreases to 39% from the population

average 77%.

3.4. Do the larva and the worm exhibit discrete
behaviours?

For both animals, the above analysis produces a substantial

proportion of actions (around 25%) for which classifica-

tion uncertainty is high. This suggests that the identified

behaviours are not discrete, where ‘discrete’ means clearly

distinguishable and stereotypical. Rather we see a continuous

spectrum of behaviour. This is in contrast with the over-

whelming majority of the literature that treats behaviour of

these animals as a set of discrete states, although we are

not the first to suggest a continuum among behavioural

states for C. elegans [31].

To compare our results to what might be expected if there

were discrete states, ESA was used to annotate the behaviour

of an agent-based simulation of Drosophila larva which had

been developed independently to study chemotaxis [32].

The agent’s behaviour is controlled by a Markov chain

model with three states: stop cast, run cast and straight run.

Within each state, the precise motion (e.g. body bend) is

determined by the current sensory conditions so can vary sig-

nificantly. Videos were recorded of the agent in its virtual

world, and the videos were put through the ESA pipeline

(i.e. extracting eigenshape representation, segmentation, clus-

tering). In this way, we test the ESA pipeline for its ability to

detect underlying discrete states. We also present several

alternative analyses that reveal distinct actions in the simu-

lation but suggest a continuum of actions in the real animals.

3.4.1. Clustering results
For the simulated agent ESA produced three clusters and for

94% of the time, it produced the same behavioural classifi-

cation as ground truth annotation. BIC indicated a difference

between the agent and the animals. For the agent, BIC pro-

vided strong evidence to distinguish the three clusters

(DBICmin ¼ 7.57). In contrast, for both Drosophila larva and

C. elegans, there was weak statistical evidence to justify the

number of clusters (in both cases DBICmin , 3.75) [33]. In

other words, BIC is confident that there are three distinct

clusters among the agent’s actions, but for the two animals,

the cluster structure is statistically much less justified.

3.4.2. Structure in aggregated eigenshape coefficient time-series
segments

We can directly examine this difference in cluster structure

by visualizing the presence or absence of clear density

bands in the aggregated ECTS subsequences (see §2.9). Sets

of stereotypical curves form high-density regions in the

cross sections, hence the cross sections can be used to

detect stereotypical curves corresponding to a stereotypical

posture sequences. Figure 6a shows the aggregated ECTS

curves for the first ECTS component of larval Drosophila.

Figure 6b–d shows the density cross sections for larval

Drosophila, C. elegans and the agent, respectively. Note that

the positive/negative asymmetry of ECTS values along the

x-axis corresponds to the left/right asymmetry in larval be-

haviour and to the dorsal/ventral distinction for C. elegans.

For both organisms, there is a single band in each half of
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the x-axis. This profile is in contrast with the two distinct

bands of the agent’s density cross section. The curves forming

each high-density band correspond to one Markov state of the

agent. Seven cross sections at various x-values were examined

in each dimension for both the C. elegans and Drosophila (elec-

tronic supplementary material, figure S3), but they all had

the same qualitative features as the cross section shown in

figure 6, i.e. the animals do not have distinct bands that

would support the inference of separable behavioural states.

3.4.3. Structure in behavioural features
Weathervaning, or klinotaxis, is a steering process that results

in the animal’s trajectory bending towards higher concen-

tration of odour [34]. For Drosophila larva, low amplitude

head casts are hypothesized to be responsible for weathervan-

ing [29]. These weathervaning casts are distinguished from

head casts by the amplitude of body angle [28,29], which is

very closely related to the amplitude of the first ECTS com-

ponent, see figure 2b. The agent’s behaviour was coded with

this distinction in mind, so head casts tend to cause a higher

body angle than weathervaning casts. Figure 6e shows the

histogram of the maxima of first ECTS component during the

agent’s actions. The bimodal distribution clearly indicates

two distinct behaviours. Based on this observation, we exam-

ined the maxima and average of a number of features of

larval Drosophila (head speed, head angle, body angle, body

angle speed and head angle speed) and C. elegans (eccentricity,

head, midbody and tail angles) actions, see figure 6e–h and

electronic supplementary material, figures S4 and S5. We

hoped to find multimodal distributions and possibly sharp

cut-off values because these could be used as data-defined

thresholds to distinguish actions. However, in all cases, a

smooth, unimodal distribution was found.

3.4.4. Multidimensional scaling
A final way to examine this issue is to use multidimensional scal-

ing to visualize the distance matrix of actions. DTW was used to

measure distance, where the weights are set by the eigenvalue

associated with each dimension of ECTS. Figures 4b and 5b
show the larval Drosophila and C. elegans maps, respectively.

As can be seen, there is no clear boundary in either figure to

unambiguously separate behavioural motifs. This is in contrast

with the agent’s map, electronic supplementary material,

figure S1, where clearly separated regions can be seen.
4. Discussion
This paper introduces eigenshape annotation, a bottom-up

unsupervised method that searches for frequently repeated

posture sequences in behavioural data. This problem is closely

related to behavioural annotation, but not identical to it. Most

behavioural annotators recognize behaviours through user-

defined thresholds or training data [2–6]. In both cases, the

set of possible behaviours and the description of those beha-

viours are determined by the user. In contrast, ESA is trying

to discover the behavioural states directly from the data with-

out any user input. Note that this task is considerably more

challenging than behavioural annotation owing to the lack of

a priori constraints. Thus, the novelty of this work is to create

a data processing pipeline that discovers behavioural motifs

in an unsupervised manner, where a behavioural motif is

defined as a frequently repeated posture sequence.
The behavioural motifs discovered were generally con-

sistent with behaviours described in the literature.

However, many ESA motifs were more permissive than the

definitions in other studies. For example, the ESA ‘turning

manoeuvre’ for larva includes turns and high amplitude

head casts [4], whereas the ESA ‘turning behaviour’ for the

worm is a mixture of classic and wide V turns [6,23].

In both cases, there was no justification in the data for

making any further subdivision of turns. Note that it can

also be difficult for human observers to distinguish these

behaviours consistently.

ESA was also unable to unambiguously classify many

actions. The seeming continuity of the action distance maps,

figures 4b and 5b, motivated us to further consider whether

there are ‘defining features’ that could objectively distinguish

behaviours. In a simulated agent that was coded with distinct be-

havioural states, it is straightforward to find such features, for

example, the amplitude of body bend (figure 6e). We searched

for multimodal distributions in a variety of features of the

Drosophila and C. elegans data, but failed in both cases. It remains

possible that some feature we did not consider might reveal

multimodality, or that discrete behaviours can be distinguished

by considering a combination of multiple features.

There is an extensive literature that treats the behaviour of

these animals as a set of discrete states. Despite our obser-

vation of continuity among behavioural states, our results

are not necessarily in contradiction with the discrete treat-

ment of behaviour. Discrete states can be seen as coarse

graining (or binning) the continuous behavioural states. For

example, the CBD defines V turns as a bend greater then

p/6 propagating through the body. If the bend is between

p/12 and p/6, then the event is called an Y turn. Thus,

this classification scheme treats turning as a two state variable

(V/Y turn). In contrast, ESA produces a membership

probability that an action is a turn, instead of discretizing

non-turns, Y and V turns at arbitrary thresholds. Coarse

graining simplifies the underlying postural dynamics, and

it can be an appropriate simplification for many studies.

For example, the CBD’s turn annotation is appropriate for

studies looking at the worm’s biased random walk. On the

other hand, if an analysis requires the precise characteriza-

tion of the worm’s turning behaviour, then the continuous

classification scheme of ESA can be advantageous.

However, adopting a coarse-grained description for con-

venience does not justify the widespread treatment in the

research literature of behaviour as actually consisting of a set

of discrete states, an assumption that needs to be indepen-

dently evaluated. There is a risk that initially arbitrary

distinctions between behaviours have become reified as quali-

tatively distinct behaviours of the animal, and treated as a set of

actions between which it selects. For example, it is sometimes

assumed that the underlying neural activity has a modularity

that matches the behavioural states, and that this should

guide investigation of neural circuits. In our results, the lack

of stereotypical and distinguishable behavioural states

suggests that the underlying neural activity is not stereotypical

or modular. It remains possible that a highly stereotypical

activity pattern of neurons implements a behavioural state,

but owing to biomechanical effects, the resulting posture

sequences are not so stereotypical. These alternate possibilities

can only be addressed by studies of neural activity that do not

exclusively depend on behavioural annotators that make

a priori assumptions about the existence of discrete states.
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A further possibility is that the lack of discrete actions

observed in our study was a consequence of the particular be-

havioural conditions in which the animals were tested. Both

environments were free of stimulus gradients: larval Drosophila
was crawling on plain agar, whereas C. elegans was browsing

in bacteria (although the bacterial layer could have minor

inhomogeneities leading to shallow gradients). In future

work, we will examine whether the behavioural space changes

under different environmental conditions, for example, during

directed chemotaxis in larval Drosophila.

ESA could be improved by advances in computer vision.

Standard thresholding and skeletonizing algorithms fail

when the animal intersects itself (2.5). The exclusion of self-

intersecting postures introduces a bias to the pipeline, as no

posture with self-intersection is included in the analysis. It

is a possibility that there are discrete elements of behaviour

in the self-intersecting sequences of postures.

The idea behind ESA is to find motifs in behaviour. We

represented behaviour as posture, and posture as an ECTS,

but the framework presented is not specific to either. ECTS

can be replaced with any time series capturing behavioural

features, or alternatively ECTS can be supplemented with

such time series. Time series of higher-level features provide

extra information for the classifier, potentially increasing its

accuracy. For example, including a ‘direction of locomotion’

time series could lead to the detection of reversals as a

separate state.

Alternative motif finding algorithms could be used on

ECTS as well. For example, the subsequences yielded by

segmentation can also be clustered using distance-based

methods. We have experimented with several methods

[35,36] in combination with standard distance measures (Eucli-

dean and DTW), but it always led to results inferior to spline

regression clustering in terms of the classification performance
evaluated against hand annotation. We think that the perform-

ance difference is due to the ambiguous separation of clusters.

Because of its probabilistic nature, spline regression clustering

is better equipped to deal with datasets where many of the

entries cannot be unambiguously classified.

Finally, we note that motif discovery is a challenging

problem and it is an area of intense research in the machine

learning community. Owing to the abundance of sequencing

data most of the effort is focused on discrete, one-dimensional

time series. To the best of our knowledge, the combination of

segmentation and clustering is a novel approach to multi-

dimensional motif finding. As discussed earlier, the

framework is not specific to ECTS, therefore, we expect that

with minor modifications the framework could also make

contributions in other applications.
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