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A framework to predict 
the applicability of Oncotype DX, 
MammaPrint, and E2F4 gene 
signatures for improving breast 
cancer prognostic prediction
Kevin Yao1, Chun‑Yip Tong2 & Chao Cheng2,3,4*

To improve cancer precision medicine, prognostic and predictive biomarkers are critically needed to 
aid physicians in deciding treatment strategies in a personalized fashion. Due to the heterogeneous 
nature of cancer, most biomarkers are expected to be valid only in a subset of patients. Furthermore, 
there is no current approach to determine the applicability of biomarkers. In this study, we propose 
a framework to improve the clinical application of biomarkers. As part of this framework, we develop 
a clinical outcome prediction model (CPM) and a predictability prediction model (PPM) for each 
biomarker and use these models to calculate a prognostic score (P‑score) and a confidence score 
(C‑score) for each patient. Each biomarker’s P‑score indicates its association with patient clinical 
outcomes, while each C‑score reflects the biomarker applicability of the biomarker’s CPM to a 
patient and therefore the confidence of the clinical prediction. We assessed the effectiveness of this 
framework by applying it to three biomarkers, Oncotype DX, MammaPrint, and an E2F4 signature, 
which have been used for predicting patient response, pathologic complete response versus residual 
disease to neoadjuvant chemotherapy (a classification problem), and recurrence‑free survival (a 
Cox regression problem) in breast cancer, respectively. In both applications, our analyses indicated 
patients with higher C scores were more likely to be correctly predicted by the biomarkers, indicating 
the effectiveness of our framework. This framework provides a useful approach to develop and apply 
biomarkers in the context of cancer precision medicine.

In the era of precision medicine, biomarkers will be heavily implemented to improve diagnosis, prognosis, and 
treatment of human  diseases1–4. Cancer is a heterogeneous disease with tumors from patients of the same can-
cer type associated with different sets of somatic mutations, gene expression changes, epigenetic changes, and 
other genomic  aberrations5–7. This inter-tumoral heterogeneity introduces dramatic variations among patients 
regarding clinical phenotypes, prognosis, and sensitivity to therapeutic  treatment8,9. In order to stratify patients 
to improve treatment efficacy and reduce adverse effects, a large number of biomarkers have been proposed from 
previous studies to predict prognosis and patient response to  treatment10–14.

The Oncotype DX assay is one genomic test that has been widely used clinically to predict the recurrence risk 
of patients with estrogen-receptor-positive (ER+) breast  cancer15. In this genomic assay, the expression levels of 
16 marker genes and 5 control genes are measured to calculate a recurrence score, that can be used to stratify 
patients into three prognostic groups with high-, intermediate- and low-risk. It has been shown that high-risk 
patients are more likely to benefit from and should be treated by adjuvant chemotherapy, whereas low-risk 
patients do not benefit from chemotherapy and should thus not be treated to avoid side  effects16. It has also been 
shown that breast cancer patients with higher Oncotype DX scores are more likely to achieve pathologic complete 
response (pCR) when treated by neoadjuvant therapy before  surgery16. The American Society of Clinical Oncol-
ogy (ASCO) and the National Comprehensive Cancer Network (NCCN) have recommended the application of 
the Oncotype DX assay to aid breast cancer clinical  decisions12,15. Another example of a successful genomic test 
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is MammaPrint, which has been used to predict the recurrence risk of patients with breast cancer irrespective 
of estrogen receptor status based on the expression of a panel of 70  genes17,18.

Despite the success of these two genomic tests, the heterogeneity between tumors from different patients limits 
the applicability of many biomarkers and genomic assays, making them effective only in a subgroup of patients. 
Indeed, the Oncotype DX assay can only be applied to ER+ breast  cancer19. While MammaPrint can be applied 
to both ER+ and ER- breast cancer, it has been suggested that to be eligible for this assay a breast tumor sample 
should be from Stage I or II with tumor size less than 5.0  cm17. Meanwhile, more than 99% of published cancer 
biomarkers or genomic assays have failed to enter clinical  practice20. At least some of these biomarkers failed 
because their applicability is unclear—they are effective for patients with certain over-represented features in the 
discovery data but cannot be reproduced in other data consisting of a different population of patients. In the field 
of biomarker development, there is thus a lack of effective methods based on clinical and genetic information to 
determine the applicability of biomarkers and predict for which patients a biomarker is most likely to be accurate.

In this study, we develop a new framework to apply biomarkers that will jointly calculate a pair of scores for 
each patient: one indicates the clinical outcome predicted by the biomarker (prognostic score, P-score), while 
the other indicates the applicability of this biomarker to this patient (confidence score, C-score). This framework 
is based on the rationale that most biomarkers do not apply to all patients, and the applicability of them varies 
between patients depending on their clinical (e.g., age, stage) and genomic (e.g., somatic mutations) features. We 
note that our methods are distinct from confidence prediction scores that models inherently have because our 
confidence score considers the effect of clinical features. We use three multi-gene signatures, including Oncotype 
DX, MammaPrint, and an E2F4  signature21–23, to demonstrate the potential of this framework to change the 
application of biomarkers. We use these signatures to construct classification models to predict patient response 
to neoadjuvant (pCR vs. RD, residual disease), and Cox regression models to predict patient recurrence-free 
survival in breast cancer. Our results indicate that patients with higher C-scores—patients to whom a biomarker 
is more applicable—are associated with higher prediction accuracy. We recommend that this framework should 
be used during the application of all prognostic and predictive biomarkers. Other than cancer, it may also be 
extended to other human diseases.

Results
A framework to jointly predict clinical outcome and model applicability. Due to the heterogene-
ous nature of cancer, most biomarkers are only applicable to a subset of tumors with a particular set of clinical 
and genomic features. A large proportion of cancer biomarkers are proposed to predict the clinical outcomes 
of patients under standard or a particular therapeutic treatment. Here we call the models that are developed to 
apply biomarkers clinical outcome prediction models (CPMs). Depending on the type of clinical outcome vari-
able, a CPM can be formularized as a classification problem (Classification-CPM) or a survival analysis (Cox 
regression-CPM). The former is used to classify patients into different groups, such as recurrence versus non-
recurrence within five years, and pathological complete response (pCR) versus residual disease (RD) after neo-
adjuvant therapy. The latter is used to predict the survival times (e.g., recurrence-free survival times) of patients.

As shown in Fig. 1, we propose a framework to determine the applicability of CPMs to different tumor sam-
ples. First, we apply a CPM to a benchmark dataset, and by comparing the predicted results with known clinical 
outcomes, divide tumor samples into correctly versus incorrectly predicted groups for Classification-CPMs, or 
well- versus poorly-predicted groups for Cox regression-CPMs. We then identify the genomic or clinical features 
that are associated with the applicability of CPMs, namely, features that discriminate between the two groups. 
Finally, we construct a classification model (denoted as a predictability prediction model, PPM) based on these 
features to determine the predictability of tumor samples by a CPM.

Following this procedure, a pair of models, a CPM and a PPM, is developed to implement a biomarker. 
For each tumor sample, the CPM calculates a prognostic score (P-score) to predict the clinical outcome of the 
patient, and the PPM calculates a confidence score (C-score) to indicate the reliability of this prediction. Based 
on the C-scores, patients can be sorted with higher clinical outcome prediction accuracy expected for those 
with higher C-scores.

In the next two sections, we will demonstrate the efficacy of this framework using three multi-gene signatures 
developed for predicting clinical outcomes in breast cancer. In one section, we will apply these signatures to 
predict patient response to neoadjuvant therapy using a combination of PPMs and classification-CPMs. In the 
other section, we will apply them to predict recurrence-free survival of patients using a combination of PPMs 
and Cox regression-CPMs.

Application to classification models. To test the applicability of our framework to classification prob-
lems, we used the Hatzis breast cancer microarray dataset, which contains gene expression profiles from pre-
treatment tumor biopsies of 508 patients treated with neoadjuvant taxane-anthracycline  chemotherapy24. After 
treatment, these patients were classified as pCR or RD based on their clinical response. The dataset consists of a 
discovery dataset and a validation dataset with 310 and 198 patients, respectively.

Using the discovery cohort, we constructed a random forest model (CPM) to classify pCR and RD patient 
groups based on the Oncotype DX scores of each patient, as well as several clinical variables including age, ER 
status and tumor stage. We noted that the AUC scores of the models generally increased or was comparable 
when clinical variables are introduced (Oncotype DX AUC: 0.746, MammaPrint AUC: 0.748, E2F4 AUC: 0.742), 
compared to when the Oncotype DX score (AUC: 0.731), MammaPrint score (AUC: 0.743), or E2F4 score (AUC: 
0.708) are used as individual predictors (Suppl. Fig. 1). The clinical variables used as predictors are readily avail-
able in datasets and clinics, so we performed further analyses with clinical variables included in the model. This 
model predicted patient response with a fairly good accuracy (AUC = 0.746) as estimated by cross-validation 
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(Fig. 2A). Out of the 305 patients (5 patients were excluded for the lack of ER information), 236 (77.4%) were 
correctly predicted by the CPM. We then constructed another random forest model (PPM) to classify patients 
that were correctly and incorrectly predicted. In this PPM, we used the following clinical variables as predictors: 
age, ER status, tumor stage, and PAM50 molecular subtype. Interestingly, cross-validation results indicated a 
higher accuracy for the PPM (AUC = 0.846) than the CPM (Fig. 2A), indicating that the applicability of the CPM 
is strongly determined by patient clinical features and therefore is highly predictable by the PPM. In Fig. 2B and 
C, we compared the relative importance of each predictor in the CPM and the PPM. As shown, to predict patient 
response to neoadjuvant therapy, the age is the most important variable followed by Oncotype score (Fig. 2B). 
In contrast, age, PAM50 subtype and stage contribute equally to the prediction of CPM applicability to patients 
in the PPM (Fig. 2C).

The Oncotype DX assay is recommended for ER+ but not ER- breast cancer. However, other clinical variables 
that determine its applicability have not been carefully investigated.

Here we systematically investigated the association of CPM prediction accuracy with all clinical and genomic 
variables available from the Hatzis data. As shown in Fig. 2D–G many clinical features were correlated with pre-
dictability of patients by the CPM, in which Oncotype DX score was included as one of predictors. Notably, 95.3% 
of ER+ patients were correctly predicted while this was the case in only 53.5% of ER- patients, consistent with 
the reported applicability of Oncotype DX  assay19 (Fig. 2E). It was also notable that the CPM was less applicable 
to tumor samples with higher grade or stage (Fig. 2F and G). The applicability of the CPM also depended on 
the molecular subtypes with better performance in the Lum A and Normal-like tumors, whereas the prediction 
accuracy for Basal-like and Her2-enriched subtypes was significantly lower (Fig. 2H). These results indicated 
that recommending the application of a biomarker simply based on a single or subset of clinical variables may 
not be valid. To better implement biomarkers, a more sophisticated model like the PPM proposed here may be 
required to quantitatively measure the applicability of biomarkers to different tumor samples.

We then applied the CPM and the PPM trained using the discovery dataset to the validation cohort of the 
Hatzis data. For each patient in the validation cohort, we calculated a P-score and a C-score that indicated 
the likelihood of this patient to achieve pCR and the confidence of the prediction, respectively. A patient was 
predicted to be pCR if they had a P-score > 0.5, and RD, otherwise. We sorted patients based on their C-scores 
and calculated the average prediction accuracy in the top patients. Our results indicate that patients with higher 
C-scores were associated with higher accuracy, with average accuracy decreasing from 95 to 65% (Fig. 2I). The 

Figure 1.  A schematic diagram of our framework for applying cancer biomarkers. Two models will be applied 
jointly to predict the clinical outcome of cancer patients and provide a confidence score of the prediction. 
The clinical outcomes of patients with higher confidence scores are more likely to be correctly predicted. This 
framework applies to classification (left side) and survival prediction (right side) problems.
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same results were obtained when we trained the CPM/PPM using the validation cohort and test in the discovery 
cohort (Fig. 2J).

We next examined two other gene signatures for clinical outcome prediction in breast cancer, the Mam-
maPrint and the E2F4 signatures. Both signatures have been shown to be predictive of recurrence risk of patients 
and patient response to neoadjuvant therapy in breast cancer. We applied the random forest method to construct 
the CPMs for MammaPrint and E2F4 separately by using the MammaPrint/E2F4 score and the same set of clini-
cal variables (age, ER status and stage) as included in the CPM for the Oncotype DX signature. Similarly, we 
constructed the PPMs for them using age, ER status, stage, and PAM50 subtype as predictors. The CPMs and 
PPMs for Oncotype DX, MammaPrint, and E2F4 signatures all achieved comparable AUC scores as shown in 
Fig. 3A and B. The MammaPrint and E2F4 CPMs also predict more accurately when patients are older, are ER 
positive, have low grade, and have the Luminal A or Normal subtype (Suppl. Figs. 2, 3), which is very similar 
to the Oncotype DX CPM. The CPMs and PPMs were then trained using the discovery cohort and then used 
to calculate P-scores and C-scores for patients in the validation cohort, and vice versa. As shown in Fig. 3C and 
D, we obtained a similar trend as observed from the Oncotype DX analysis–patients with higher C-scores are 
more likely to be accurately predicted.

Following that, we applied the CPMs and PPMs trained from the Hatzis data (including patients from both 
discovery and validation cohorts) to two independent neoadjuvant therapy microarray datasets (GSE20194 and 
GSE22093). In both datasets, we confirmed that our framework could be used to determine the applicability of 
clinical outcome prediction models to each patient based on their clinical features (Fig. 4).

Application to survival prediction models. Oncotype DX has been widely used to predict the recur-
rence risk of patients with breast cancer. In this section, we used the Curtis breast cancer dataset to demonstrate 
how to apply our framework to improve prognostic prediction. The Curtis dataset includes a discovery cohort 
and a validation cohort, containing tumor gene expression profiles from 997 and 995 patients with breast cancer 
as well as detailed clinical  information25. We calculated the Oncotype DX score for each sample, and constructed 
a univariate Cox regression model (CPM) to predict the recurrence-free survival of patients in the discovery 
cohort. The concordance index of this model is 0.679. That is, for 67.9% of all effective patient pairs (patient pairs 
for which survival times can be compared with certainty, which is if both patients have experienced the event, or 

Figure 2.  Predicting breast cancer patient response to neoadjuvant chemotherapy by using the Oncotype 
DX biomarker. To apply this biomarker, a clinical outcome prediction model (CPM) is used to predict the 
probability of pathologic complete response (pCR), and a predictability prediction model (PPM) is used to 
predict the applicability of this CPM to each patient. Both models are developed using random forest method. 
(A) The ROC curves of the CPM and the PPM calculated using the Hatzis discovery data. (B) The relative 
importance of predictors included in the CPM model. (C) The relative importance of predictors included in the 
PPM model. (D) Old patients are more likely to be corrected predicted. (E) ER+ patients are associated with 
higher prediction accuracy than ER- patients. (F) Low stage patients are more likely to be correctly predicted. 
(G) Low grade patients are more likely to be correctly predicted. (H) Association of molecular subtypes with 
prediction accuracy. (I) CPM and PPM are trained from the discovery data and then applied to predict the 
response and confidence score of patients in the validation cohort. Patients with higher confidence scores are 
more likely to be correctly predicted. Patients are sorted in the decreasing order of their confidence scores from 
the PPM, and the average prediction accuracy of the CPM in the top N patients were calculated from N = 1 to all 
patients. The curve was smoothed by averaging values within a sliding window of size 20. (J) Apply CPM/PPM 
trained from the validation data to predict patients in the discovery cohort.
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one patient has experienced the event before the other patient is censored), the patient with the longer survival 
time is also predicted by the Cox regression model to have longer survival time. The prediction accuracy associ-
ated with different patients varies substantially. We calculated a sample-specific concordance for each patient as 
the fraction of correct predictions in all effective pairwise comparisons involving this patient. Figure 5A shows 
the number of effective comparisons and sample-specific concordance associated with each patient in the Curtis 
discovery cohort. As shown, some patients associated with a small number of effective comparisons due to short 
follow-up time and absence of recurrence event during follow-up. Even for patients with a large number of effec-
tive comparisons, the sample-specific concordances showed a high variation, ranging from 10 to 95%. We chose 
patients with at least 20% of comparisons being effective (997*0.2 = 199), and divided them into a well-predicted 
group and a poorly-predicted group, using the overall concordance 0.679 as the cut-off value (Fig. 5B).

Following that, we constructed a random forest model to classify well-predicted versus poorly-predicted 
patients (PPM). In the model, we include the following clinical variables: age, tumor size, grade, stage, lymph 
node status, PAM50 subtypes, ER-status, HER2 status, chemotherapy, radiotherapy, and hormone therapy. The 
prediction accuracy of this PPM was estimated using cross-validation, and an AUC score of 0.651 and 0.734 were 
achieved in the discovery and the validation cohort, respectively (Fig. 5C). Clinical variables with high relative 

Figure 3.  Applying MammaPrint and an E2F4 signature to predict patient response to neoadjuvant 
chemotherapy in breast cancer. (A) The prediction accuracy of the CPM models is based on the Oncotype 
DX, the MammaPrint, and the E2F4 scores, respectively, and (B) the prediction accuracy of the corresponding 
PPMs. AUC scores were estimated based on tenfold cross-validation using the Hatzis discovery data. (C) 
Application of the CPM/PPMs trained from the discovery data to patients in the validation cohort, and (D) 
vice versa. Patients are sorted in the decreasing order of their confidence scores from the PPM, and the average 
prediction accuracy of the CPM in the top N patients was calculated from N = 1 to all patients. The curve was 
smoothed by averaging values within a sliding window of size 20.

Figure 4.  Applying the CPM/PPMs trained from the Hatzis data to two independent neoadjuvant breast cancer 
datasets, (A) GSE20194 and (B) GSE22093. For each patient a prognostic score (P-score) and a confidence score 
(C-score) were predicted by the CPM and the PPM, respectively. Patients were sorted in the decreasing order of 
their C-scores, and the average prediction accuracy of the CPM in the top N patients was calculated from N = 1 
to all patients. The curve was smoothed by averaging values within a sliding window of size 20.
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importance in the model included age, tumor size, PAM50 subtype, stage and grade, whereas ER, HER2, lymph 
node, and treatment are associated with low relative importance (Fig. 5D).

We trained the CPM (the univariate Cox regression using Oncotype DX score as the predictor) and the PPM 
(the above-described random forest model) using the discovery cohort from the Curtis data and applied them to 
the validation cohort. Although the two cohorts both have similar number of patients (997 in discovery and 995 
in validation), the discovery dataset is relatively complete while many clinical variables have missing information 
in the validation dataset. We thus excluded patients without survival time, event status, age, tumor size, grade, 
stage, lymph node status, PAM50 subtypes, ER-status, HER2 status, chemotherapy, radiotherapy, or hormone 
therapy information. For the remaining patients in the validation cohort, we calculated a P-score, a C-score, and 
sample-specific concordance. We then sorted all patients in decreasing order of their C-scores, and calculated 
the average concordance in the top ranked patients. As shown in Fig. 5E, we observed a clear trend that patients 
with higher C-scores were more correctly predicted from their Oncotype DX scores by the CPM. Similarly, 
we trained the CPM/PPM using the validation cohort, applied them to patients in the discovery cohort, and 
obtained consistent results (Fig. 5F). These results indicate that the applicability of Oncotype DX varies substan-
tially between patients, which can be correctly determined using the PPM based on the patient clinical features.

To account for potential nonlinear associations between predictors and outcome, we repeated the above 
analyses using a random survival forest model, which is a modified random forest model that accounts for 
censored survival data. The random survival forest model achieved a higher concordance index of 0.763 in the 
Curtis discovery dataset. We likewise also constructed a random forest model to classify well-predicted versus 
poorly-predicted patients (PPM) using 0.763 as the cutoff between good and bad prediction. This model was 
trained on the Curtis discovery cohort and achieved an AUC of 0.674. When applied to the Curtis validation 
cohort, it achieved an AUC of 0.649. Patients sorted with decreasing C-scores also clearly showed decreasing 
concordances when predicted by the CPM (Suppl. Fig. 4). Similar trends were observed when the CPM and PPM 
were initially trained in the Curtis validation cohort and applied to the discovery cohort. This result is consistent 
with that of the Cox regression model.

Figure 5.  Predicting the recurrence-free survival of patients with breast cancer using the Oncotype DX 
biomarker. (A) Patients vary substantially in their number of effective comparisons and sample-specific 
concordance scores resulting from the Cox regression model (CPM) using the Oncotype DX score as the single 
predictor. (B) The distribution of sample-specific concordance scores of patients. Results shown in A and B are 
based on the Curtis discovery data. (C) The prediction accuracy of the PPM was estimated from tenfold cross-
validation using the Curtis discovery and validation data. (D) The relative importance of predictors used in the 
PPM (discovery data). (E) Application of the CPM/PPMs trained from the discovery data to patients in the 
validation cohort, and (F) vice versa. Patients are sorted in the decreasing order of their confidence scores, and 
the average concordance in the top N patients was calculated from N = 1 to all patients. The curve was smoothed 
by averaging values within a sliding window of size 200.
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Next, we extended the above-analysis to the MammaPrint and the E2F4 signatures. Specifically, we used the 
CPM/PPM trained from the Curtis discovery or validation dataset to another breast cancer dataset compiled 
by Ur Rehman et al.26. The original Ur Rehman dataset contains 1570 breast cancer gene expression profiles, 
from which we selected 880 profiles with recurrence-free survival information. In the PPM, we used a subset of 
clinical variables that were shared by the Curtis and the Ur Rehman data, including age, tumor size, ER status, 
grade, lymph node status, and PAM50 subtype. For each patient in the Ur Rehman data, we calculated a P-score, 
a C-score, and sample-specific concordance. We performed the same analyses for the Oncotype DX, the Mam-
maPrint and the E2F4 signatures. Our results are summarized in Fig. 6. As shown, the Cox regression-based 
CPM trained from the Curtis discovery data achieves a concordance index of 0.679 for Oncotype DX, 0.680 for 
MammaPrint, and 0.638 for the E2F4 signature, respectively (Fig. 6A). The PPM model trained from the Curtis 
discovery data achieves an AUC score of 0.651, 0.624, and 0.646, respectively (Fig. 6B). As shown in Fig. 6C 
and D, patients with higher C-scores are associated with higher average concordance for all three multi-gene 
signatures. These results confirmed the effectiveness of the CPM and the PPM trained from Curtis data in the 
independent Rehman dataset, supporting the potential clinical application of them.

Discussion
In this study, we propose a new framework to improve the clinical application of existing cancer prognostic and 
predictive biomarkers. According to this framework, to apply a biomarker, two models (CPM and PPM) will be 
used to predict the clinical outcome of a patient and to evaluate the confidence of the prediction, simultaneously. 
High confidence scores (e.g., C-score > 0.8) from the PPM indicate high applicability of the CPM to patients, and 
for them clinical decision can be more confidently made based on the predicted clinical outcomes. In contrast, 
patients with low confidence scores (e.g., C-score < 0.2) should be more carefully interpreted. Patient applicabil-
ity of a CPM is determined by a combination of various factors including clinical features and genomic features 
of tumor samples. By using this framework we expect to improve the precise application of existing biomarkers 
for aiding physicians in decision-making.

This framework may pose positive impact on the development of new cancer biomarkers. A large number 
of candidate biomarkers have been proposed in previous studies, however, over 99% of them failed to introduce 
clinical  applications20. Heterogeneity between tumors from different patients represents one of the important 
reasons that lead to such a failure rate. A biomarker developed in a specific discovery cohort may not applicable 
to another cancer dataset generated from a different patient population, resulting in a low reproducibility. The 
PPM model can be used to determine the clinical and genomic features that define a cancer subset for which the 
investigated biomarker is effective. Therefore, jointly developing the CPM and PPM for a biomarker will increase 
its success rate for clinical application.

Limited by the availability of clinical features, we used many overlapping predictors in the CPM and the 
PPM in the neoadjuvant response prediction examples. In principle, we would expect a different set of clinical/
genomic features that determine the accuracy of the CPM and PPM models. In the era of precision medicine, 
it will become common in the future to profile the somatic mutations of each cancer patient in a panel of can-
cer genes or using whole exome/genome sequencing. The generation of other types of “omics” data for cancer 
patients, such as epigenomic and proteomic data, might also become routine analyses. To identify and include 
genomic features that are associated with the CPM applicability to patients will further improve precision of 
PPM in identifying predictable patients.

In this study, we formularized the PPMs as a classification problem using the random forest method. In fact, 
other statistical or machine-learning techniques (e.g. logistic regression, support vector machine) can be readily 

Figure 6.  Applying the CPM/PPMs trained from the Curtis data to the Ur-Rehman data. (A) The overall 
concordance indexes (CI) of recurrence-free survival prediction models based on the Oncotype DX, the 
MammaPrint, and the E2F4 score, respectively. (B) The prediction accuracy (AUC) of the corresponding PPMs. 
(C) Application of models trained from the Curtis discovery data. (D) Application of models trained from the 
Curtis validation data. For each patient a prognostic score (P-score) and a confidence score (C-score) were 
predicted by the CPM and the PPM, respectively. Patients were sorted in the decreasing order of their C-scores, 
and the average concordance of the CPM in the top N patients were calculated from N = 1 to all patients. The 
curve was smoothed by averaging values within a sliding window of size 200.
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used in this framework. In fact, we have shown that using random survival forests for survival prediction (instead 
of Cox proportional hazards) also performs well, and the PPM is still able to delineate which samples have higher 
concordance of prediction. Moreover, we can also define PPMs as a regression model. For instance, instead of 
classifying well- versus poorly-predicted patients using a classification model, we can define a regression-based 
model to predict the sample-specific concordance, and use this PPM to calculate the confidence score of patients. 
Finally, it would be fairly straightforward to extend this framework to improve clinical application of biomarkers 
to non-cancer human diseases.

In this study, we implement two distinct models, clinical outcome precision model (CPM) and predictability 
prediction model (PPM), to predict patients’ prognosis or diagnosis (pCR vs RD) by classification or cox regres-
sion and then predict the biomarker’s applicability to patients. We validate our framework with three widely used 
clinical biomarkers (Oncotype DX, MammaPrint and E2F4) for breast cancer, which we successfully discover 
those biomarkers have higher accuracy of predictability within a subset of patient with specific clinical or genetic 
features. The c-score generated from the predictability prediction model (PPM) help us evaluate how well a 
biomarker can be applicable to a patient which has great potential to be utilized in drug or biomarker clinical 
trials. By applying the framework, researchers can systematically select patients with high c-score to enter the 
clinical trial which may revive clinically failed drugs and biomarkers.

Materials and methods
Breast cancer microarray datasets. The following breast cancer gene expression datasets were used 
in this study: the Curtis dataset (METABRIC)25, the Ur-Rehman dataset (GSE47561)26, the Hatzis dataset 
(GSE25066)24, the GSE20194  dataset27, and the GSE22093  dataset28. All except for the Curtis dataset were 
downloaded from the GEO (Gene Expression Omnibus)  database29 using the corresponding GEO accession 
IDs. The Curtis dataset was downloaded from the European Genome Phenome Archive with accession ID 
EGAS00000000083. This dataset contains gene expression for 1992 breast cancer patients (997 in the discovery 
and 995 in the validation cohorts) measured using the Illumina HT-12 v3 platform (Illumina_Human_WG-v3). 
The Ur-Rehman dataset is a meta-dataset that combines 10 breast cancer datasets, containing a total of 1570 
tumor samples measured by Affymetrix microarray platform. Among these samples, 880 samples had relapse-
free survival and other required clinical information, and were used in our  analysis26. The Hatzis dataset contains 
gene expression profiles for 508 invasive breast tumor samples that were collected by fine needle aspiration 
(FNA) or core biopsy (CBX) prior to any systemic therapy. All of these patients were then treated by neoadju-
vant taxane-anthracycline chemotherapy and followed to determine the treatment efficacy– pCR or  RD24. Gene 
expression was profiled using the Affymetrix Human Genome U133A Array platform (GPL96). The GSE20194 
dataset and the GSE22093 dataset contain gene expression profiles for 230 and 103 breast cancers, respectively, 
that were generated from fine needle aspiration specimens of newly diagnosed patients before any therapy. 
Patients were treated with neoadjuvant chemotherapy using paclitaxel, 5-fluorouracil, cyclophosphamide and 
doxorubicin. After treatment, patients were then subject to surgical resection and their response to neoadjuvant 
chemotherapy was assessed. Both datasets were generated from the Affymetrix Human Genome U133A Array 
platform (GPL96).

All these datasets were generated from one-channel microarray platforms. Datasets from the GEO database 
were downloaded as processed data, providing absolute expression at the probeset level. We converted these 
data into gene expression data by mapping probeset IDs to gene symbols according to the Affymetrix annotation 
files. If a gene had multiple probesets, the probeset with the highest average intensity across all samples was used 
to represent this gene. All datasets used in this study are freely accessible and do not require any institutional 
and/or licensing committee approving the experiments. All experiments were performed in accordance with 
relevant guidelines and regulations.

Calculation of recurrence scores using three multi‑gene signatures. Given a breast cancer dataset, 
the Oncotype DX and MammaPrint scores were calculated for all samples by using the genefu R  package30. The 
R functions “oncotypedx” and “gene70” were used for Oncotype DX and MammaPrint signatures, respectively. 
The E2F4 signature consists of a total of 199 target genes that are regulated by the cell cycle regulatory transcrip-
tion factor  E2F423. A 33-gene subset of the original 199 target genes have been optimized for clinical  use21. The 
33-gene signature is deposited in Suppl. Table 1. This signature was used to calculate an E2F4 score that indicated 
the regulatory activity of E2F4 in a breast cancer sample. The E2F4 score has been shown to be predictive of 
patient prognosis and response to neoadjuvant chemotherapy in breast  cancer21,23.

Determination of PAM50 molecular subtypes. Breast cancer has five major molecular subtypes 
including Basal-like, Her2-enriched, LumA, LumB, and Normal-like31,32. The molecular subtypes of samples in 
the Curtis and Hatzis breast cancer data have been provided by the original publications. For other datasets, we 
determined the molecular subtype by using the genefu R  package30. In this package, a PAM50 centroid profile 
was provided for each of the five breast cancer subtypes, consisting of an expression signature of 50 discrimina-
tive genes. Given a breast cancer dataset, the expression levels (log2 intensity) of these 50 genes were selected, 
median normalized across all samples, and correlated with the PAM50 centroid profiles to obtain the Spearman 
correlation coefficients of each sample with the five subtypes. A sample is classified as the molecular subtype with 
the maximal correlation.

Prediction of patient response to neoadjuvant therapy in breast cancer. Oncotype DX, Mam-
maPrint and the E2F4 signature have been previously shown to be predictive of patient response to neoadjuvant 
chemotherapy in breast  cancer16,21. In this study, we applied the random forest statistical learning  method33 to 
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construct classification models to predict patient response and to predict pCR versus RD. We used 10,000 trees 
to train the PPM model. In general, random forest models tend to perform more robustly with more trees at 
the cost of computational time. We tested the prediction accuracy of the random forest model with 100, 1000, 
10,000, and 100,000 trees, and chose to use 10,000 trees since there was only a marginal increase in accuracy 
with 100,000 trees compared to 10,000 but a drastically longer training time. Other hyperparameters were left as 
the default values in the random forest R package. The predictors used in these models include age, ER-status, 
tumor stage, and the score calculated based on one of the three signatures. We call these models clinical outcome 
prediction models (Classification-CPMs) to discriminate them from the models used for determining the pre-
dictability of samples—predictability prediction models (PPMs). In a neoadjuvant therapy dataset, the number 
of pCR patients is typically much less than the number of RD patients, introducing the so-called imbalanced 
class problem. When an imbalanced dataset is used, a classification model may simply predict all samples to be 
the dominant class. To address this problem, we down-sampled the RD patients to obtain a balanced dataset by 
randomly removing RD patients until the number of RD patients matched the number of pCR patients. Our 
classification models achieved comparable prediction accuracy rate for pCR and RD patients, indicating the 
effectiveness of this down-sampling strategy.

Ten-fold cross-validation was used to estimate the performance of our classification models. Specifically, pCR 
and RD samples in a dataset were randomly divided into 10 groups of each size. Each time, the model was trained 
using a pooled dataset containing 9 groups of pCR and RD samples, and applied to the remaining samples. Then 
the training groups and the test group were rotated, until all samples had been predicted once. The predicted 
classes were then compared with the actual response of patients to determine the ROC (Receiver Operating 
Characteristic) curve and calculate the AUC (Area Under Curve) score. This procedure was performed 10 times 
and the average AUC score was used to represent the cross-validation accuracy of the model.

The relative importance of a predictor in a random forest classification model indicates its contribution to 
class prediction. To calculate the relative importance, a predictor of interest is excluded from the full model to 
examine the decrease of classification accuracy. The R package “RandomForest” was used to implement these 
models and analyses.

Calculation of sample‑specific confidence scores of classification models. Due to the hetero-
geneity of cancers, a CPM may not be effective for all tumor samples. Given a particular CPM, we constructed 
a random forest-based classification model to predict its applicability to different patients based on their clini-
cal and genomic features. Specifically, in the context of neoadjuvant therapy response prediction, we used the 
Hatzis data to construct the predictability prediction model (PPM). First, we divided all patients into correctly- 
and incorrectly-predicted groups by comparing the outcomes predicted by an above-described CPM (e.g., the 
Oncotype DX model). The sample sizes in these groups are balanced using random down-sampling on the 
group with more samples (the correctly-predicted group) to match the group with less samples. The Oncotype 
DX PPM was trained with N = 64 samples in each group, MammaPrint with N = 61 samples in each group, and 
E2F4 with N = 61 samples in each group. Then, we constructed a random forest model to classify the two patient 
groups and the prediction accuracy of this PPM was assessed by tenfold cross-validation method. Finally, this 
PPM was used on other datasets (GSE20194 and GSE22093) to further evaluate its performance. The PPM 
models output the probability of a patient to be a “correct” prediction. This probability indicates the applicability 
of the corresponding CPM to a patient, providing a confidence score of the patient. Note that we used random 
forest as the backbone model for the PPM as an example of its feasibility, but this framework could extended to 
other methods and models.

Prediction of recurrence‑free survival of patients with breast cancer. Univariate Cox propor-
tional hazards models (Cox regression-CPMs) were used to apply Oncotype DX, MammaPrint and the E2F4 
scores to predict patient recurrence-free survival in breast cancer. The default parameters for the coxph function 
in the R package “survival” were used: zero is the initial value for all variables, the Efron approximation is used 
to resolve ties, and columns that are linear combinations of previous columns are skipped. P-values for the Cox 
models were estimated using the Wald test. To model potential nonlinear associations between the predictors 
and the clinical outcome, we also used random survival forests to predict survival with the rfsrc function from 
the R package  randomForestSRC34. We used the default parameters for fitting the random forest survival predic-
tor, which includes 500 trees.

Calculation of sample‑specific confidence scores of Cox regression models. Given a Cox regres-
sion or random forest CPM implementing a survival prediction biomarker, the following procedure was used to 
construct PPMs to calculate confidence scores of each patient: First, the CPM was applied to the Curtis data and 
for each patient a sample-specific concordance was calculated. For each patient, the survival time can be com-
pared with all the other patients in the dataset. However, given a pair of patients with survival information  (t1, 
 e1) and  (t2,  e2), only the following scenarios will results in an effective comparison:  e1 =  e2 = 1 (both patients have 
recurrence event);  t1 >  t2 and  e1 = 0 and  e2 = 1 (patient 2 but not patient 1 has a recurrence event, and recurrence-
free survival of patient 2 is shorter than the follow-up time of patient 1); and vice versa,  t1 <  t2 and  e1 = 1 and  e2 = 0. 
The sample-specific concordance for a patient is the proportion of effective pairwise comparisons that are cor-
rectly predicted by the Cox regression model. By using the overall concordance as the threshold, patients were 
then divided into a well-predicted group and a poorly-predicted group. Second, we constructed PPM using the 
random forest method to classify the two patient groups. Finally, this PPM was used to calculate the confidence 
scores of patients in a dataset.
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Data availability
The Ur-Rehman and Hatzis dataset can be downloaded from the GEO repository, under accession IDs GSE47561 
and GSE25066, respectively. Breast cancer patients’ responses to neoadjuvant therapy can also be downloaded 
from GEO under accession IDs GSE20194 and GSE22093. The Curtis breast cancer dataset can be downloaded 
from the European Genome Phenome Archive with accession number EGAS00000000083. All code used for 
analysis in this report are deposited in https:// github. com/ ksyao 2002/ Appli cabil ity- gene- signa tures.
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