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The role of circulating metabolome in cognitive impairment is inconclusive, and whether the associations are in the severity-
dependent manner remains unclear. We aimed to identify plasma metabolites associated with cognitive impairment and evaluate
the added predictive capacity of metabolite biomarkers on incident cognitive impairment beyond traditional risk factors. In the
Rugao Longevity and Ageing Study (RuLAS), plasma metabolome was profiled by nuclear magnetic resonance spectroscopy.
Participants were classified into the cognitively normal, moderately impaired, and severely impaired groups according to their
performance in two objective cognitive tests. A two-step strategy of cross-sectional discovery followed by prospective validation
was applied. In the discovery stage, we included 1643 participants (age: 78.9 ± 4.5 years) and conducted multinomial logistic
regression. In the validation stage, we matched 68 incident cases of cognitive impairment (moderately-to-severely impaired) during
the 2-year follow-up with 204 cognitively normal controls by age and sex at a 1:3 ratio, and conducted conditional logistic
regression. We identified 28 out of 78 metabolites cross-sectionally related to severely impaired cognition, among which IDL
particle number, ApoB in IDL, leucine, and valine were prospectively associated with 28%, 28%, 29%, and 33% lower risk of
developing cognitive impairment, respectively. Incorporating 13 metabolite biomarkers selected through Lasso regression into the
traditional risk factors-based prediction model substantially improved the ability to predict incident cognitive impairment (AUROC:
0.839 vs. 0.703, P < 0.001; AUPRC: 0.705 vs. 0.405, P < 0.001). This study identified specific plasma metabolites related to cognitive
impairment. Incorporation of specific metabolites substantially improved the prediction performance for cognitive impairment.
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INTRODUCTION
Cognitive impairment affects memory, learning, concentration,
and decision-making abilities of individuals. With the global
population ageing, the number of people with dementia and mild
cognitive impairment (MCI) is steadily increasing [1, 2]. Due to the
limited disease-modifying therapies for dementia, it is crucial to
further understand the etiology of cognitive impairment and
detect biomarkers contributing to the early identification of high-
risk individuals [3, 4].
As the end-products of various metabolic processes, circulating

metabolites reflect how biological systems respond to changes in
intrinsic and extrinsic factors [5]. Therefore, circulating metabolome
has the potential to help understand the etiology and discover
biomarkers for cognitive impairment [6]. Prospective epidemiologi-
cal studies have found that some metabolites were associated with
onset of cognitive impairment. For example, several amino acids
(e.g., glutamine, glutamic acid), organic acids (e.g., anthranilic acid,

isocitrate), fatty acids (e.g., saturated fatty acid to total fatty acid
ratio), and lipoprotein fractions ratios (e.g., cholesterol to total lipids
ratio in very large VLDL) were related to higher risk of dementia,
Alzheimer’s disease (AD), or MCI [7–11]. Additionally, several
metabolites were related to lower risk of dementia or AD, including
amino acids (e.g., isoleucine, leucine, valine), organic acids (e.g.,
taurine), fatty acids (e.g., docosahexaenoic acid), and lipoprotein
fractions ratios (e.g., triglycerides to total lipids ratio in very large
VLDL) [7–9, 11, 12]. However, most of the aforementioned relation-
ships were observed in only one study, suggesting that the evidence
remains inconclusive at this time. Moreover, the majority of current
studies were conducted in the Western population, which has
distinct genetic and cultural backgrounds that could influence the
circulating metabolome compared to the Asian population [13].
Furthermore, few studies have investigated whether these relation-
ships were in the severity-dependent manner to cognitive impair-
ment. Overall, further studies are required to elucidate the
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associations of circulating metabolites with cognitive impairment,
especially among Asian individuals.
In this study, we utilized data from a community-based cohort

of older adults in China, with two objective cognitive tests used to
classify participants into three groups in a severity-dependent
manner. We aimed to examine the associations between plasma
metabolites and risk of cognitive impairment, and evaluate the
added predictive capacity of metabolite biomarkers on incident
cognitive impairment beyond traditional risk factors in this high-
risk population.

SUBJECTS AND METHODS
Study design and population
This study was based on the ageing arm of Rugao Longevity and Ageing
Study (RuLAS), a community-based open cohort study [14–16]. Briefly, 1788
individuals aged 70–84 years were recruited at the baseline survey in 2014
(Wave 1) and new eligible participants were additionally recruited during the
follow-up surveys in 2016, 2017, 2019, and 2021 (Waves 2–5). Socio-
demographic, lifestyle, and other health-related information were collected
through face-to-face interviews at each survey. RuLAS was ethically approved
by the Human Ethics Committee of the School of Life Sciences of Fudan
University. All participants provided signed informed consent.
In the present study, we applied a two-step strategy to identify cognitive

impairment-related metabolites (Fig. 1), including a discovery phase of the
cross-sectional analysis and a validation phase of the prospective analysis.
The cross-sectional analysis was conducted at Wave 4 (year 2019), where
plasma metabolome was first measured. After excluding 557 individuals
without data on plasma metabolomics, objective cognitive tests, or
education level, a total of 1643 participants were included in the cross-
sectional analysis. In the prospective analysis (nested case-control design),
we further excluded participants who already had cognitive impairment at
Wave 4 and those who did not complete cognitive assessments at Wave 5
(year 2021). Of the remaining participants, we identified 68 incident cases
of cognitive impairment and matched them with 204 randomly selected
cognitively normal controls by age (±5 years) and sex at a matching ratio
of 1:3 (Fig. S1) [17].

Plasma metabolome
Fasting plasma samples were collected by trained nurses at Wave 4.
Plasma metabolome was profiled by high-throughput untargeted nuclear
magnetic resonance (NMR) spectroscopy. All NMR spectra were acquired at
310 K on a Bruker Advance III HD 600 MHz NMR spectrometer equipped
with a 5 mm BBI probe (Bruker Biospin, Germany). Detailed information has
been published elsewhere [18, 19].
Plasma metabolites with >80% of missing values were removed before

analysis, and for the remaining metabolites, missing values were imputed
using half of the lowest detected values. To approximate the normal
distribution, the rank-based inverse normal transformation was applied to the
metabolomics data [20]. In total, 9 total fractions, 8 VLDL fractions, 8 LDL
fractions, 8 IDL fractions, 8 HDL fractions, 9 organic acids, 15 amino acids, 6
fatty acids, 2 inflammation markers, 5 other low-molecular-weight metabo-
lites, 110 lipoprotein subfractions, and 123 lipoprotein fractions ratios were
included in the analysis. Lipoprotein subfractions and lipoprotein fractions
ratios were recognized as exploratory measures and the other 78 metabolites
were considered as the main measures in the analyses.
To partially validate the accuracy of NMR spectroscopy quantitative

results, spearman correlation coefficients of 6 metabolites simultaneously
measured by both NMR spectroscopy in the plasma samples and clinical
chemistry in the serum samples were calculated. Among them, 4 measures
(triglycerides, cholesterol, LDL cholesterol, and HDL cholesterol) were
highly correlated, with correlation coefficients ranging from 0.73 to 0.93
(Fig. S2). Correlation coefficients for glucose and creatinine were slightly
lower but remained higher than 0.60.

Cognitive impairment
Two objective cognitive tests commonly used and well-validated in the
Chinese population, the Hasegawa Dementia Scale (HDS) and Mini-Mental
State Examination (MMSE), were interviewer-administered to evaluate the
cognitive function of participants [21–23]. Apart from the shared cognitive
domains of orientation, memory, and attention, HDS focused on the
domains of abstract and naming while MMSE focused on the domains of
language and visuospatial ability [24]. According to the education-specific

cutoffs of HDS, cognitive impairment was defined as follows: ≤15 for
illiterate, ≤19 for primary school, and ≤23 for middle school and above
[21, 25]. According to the education-specific cutoffs of MMSE, cognitive
impairment was defined as follows: ≤17 for illiterate, ≤20 for primary
school, and ≤24 for middle school and above [22]. Participants identified as
cognitively impaired by both HDS and MMSE may have deficits in more
cognitive domains and exhibit more severe cognitive impairment
compared to those identified by either HDS or MMSE alone [26]. Therefore,
we classified participants into three groups: cognitively normal (not
impaired as judged by HDS and MMSE), moderately impaired (impaired as
judged by either HDS or MMSE), and severely impaired (impaired as
judged by both HDS and MMSE).

Covariates
The following baseline characteristics (from Wave 4) were identified as
covariates, mainly involving sociodemographic factors, lifestyles, health
conditions, and APOE genotype. Sociodemographic factors included age
(years), sex (male or female), education level (illiterate, primary school, or
middle school and above), and marital status (married or others). Lifestyles
comprised smoking status (never, former, or current), drinking status (never,
former, or current), physical activity (>3 times/week or ≤3 times/week), and
sleep quality (scores of Pittsburgh Sleep Quality Index [PSQI] ≤5, good or
poor) [21]. Health conditions consisted of BMI (<18.5, 18.5–23.9, 24.0–27.9, or
≥28.0 kg/m2), depressive symptoms (scores of Geriatric Depression Scale-15
[GDS-15] ≥5, yes or no) [27], history of hypertension, diabetes, cardiovascular
disease, and cancer, and self-reported use of medications for hypertension,
diabetes, cardiovascular disease, and high cholesterol. Participants with self-
reported physician diagnosis, use of medications, systolic blood pressure
≥140mmHg, or diastolic blood pressure ≥90mmHg were identified as having
hypertension. Those with self-reported physician diagnosis, use of medica-
tions, fasting blood glucose levels ≥126mg/dL, or non-fasting blood glucose
levels ≥200mg/dL were identified as having diabetes. Those with self-
reported physician diagnosis or use of medications were identified as having
cardiovascular disease. Those with self-reported physician diagnosis were
identified as having cancer. APOE rs429358 and rs7412 polymorphisms were
used to determine the APOE genotype and participants with at least one
APOE ε4 allele (ε2/ε4, ε3/ε4, or ε4/ε4) were identified as APOE ε4 carriers [28].

Statistical analyses
Baseline characteristics of the study participants grouped by different
cognitive statuses were compared using Pearson’s chi-square test (χ2) for
categorical variables and one-way analysis of variance (ANOVA) or
Student’s t-test for continuous variables. Missing values for categorical
covariates were imputed to a separate missing category. Univariate fold
change was calculated as the log2 transformation of the ratio between
mean values of metabolites in the moderately impaired/severely impaired
group relative to the cognitively normal group.
To identify cognitive impairment-related metabolites, we applied a two-

step strategy consisting of an initial discovery phase based on the cross-
sectional analysis and a further validation phase based on the prospective
analysis [29]. In the discovery stage, multinomial logistic regression was
performed to examine associations of per 1-SD increment in main
measures with moderately impaired and severely impaired compared to
cognitively normal (reference group), with adjustment for age, sex,
education level, and APOE ε4 carrier status. The Benjamini-Hochberg
method was used for multiple testing adjustment, and metabolites with
false discovery rate (FDR) adjusted P values < 0.05 were considered as
cognitive impairment-related metabolite candidates. Protective metabolite
scores of severely impaired were calculated as the sum of all or subclasses
of metabolite candidates, weighted by the inverse values of coefficients
from the regression models abovementioned. For example, the amino acid
score was calculated as the sum of leucine and valine, each weighted by
the inverse values of respective coefficients of association with severely
impaired cognition. Further, we validated the metabolite candidates and
metabolite scores using the nested case-control design (68 incident cases
and 204 healthy controls). In the validation stage, we combined
participants with newly developed moderately and severely impaired
cognition during the 2-year follow-up as the incident cognitive impairment
group. Conditional logistic regression adjusting for age, education level,
and APOE ε4 carrier status was used to investigate associations of
metabolite candidates and metabolite scores with incident cognitive
impairment. Metabolite candidates with raw P values < 0.05 in 1-SD
increment were considered to be successfully validated and named as
cognitive impairment-related metabolites. Restricted cubic spline (RCS)
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was employed to explore potential non-linear relationships. We conducted
the subgroup analysis stratified by age (<80 or ≥80), sex (male or female),
and APOE ε4 carrier status (carrier or non-carrier). To test the robustness of
results, we performed several sensitivity analyses. 1) We additionally
adjusted for marital status, smoking status, drinking status, physical
activity, sleep quality, BMI, and depressive symptoms. 2) We further
adjusted for hypertension, diabetes, cardiovascular disease, cancer,
antihypertensive medication, antidiabetic medication, medication for
cardiovascular disease, cholesterol-lowering medication, and baseline
cognitive function (in prospective analysis only). 3) Main measures and
exploratory measures were all included in the cross-sectional analysis and
the FDR adjustment was also applied.
Metabolite set enrichment analysis was performed to identify cognitive

impairment-related metabolic pathways using the web-based MetaboAnalyst
5.0 platform [30]. Cognitive impairment-related metabolites that could also
be matched within the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database were used to reveal altered metabolic pathways. In addition,
principal component analysis (PCA) and partial least square discriminant
analysis (PLS-DA) with 10-fold cross-validation were conducted to assess the
ability of all of main measures in distinguishing incident cognitive
impairment from cognitively normal [20]. The statistical significance of PLS-

DA model was tested with the permutation test. Considering the feature of
high correlations across the metabolomics data [31], we further used the
least absolute shrinkage and selection operator (Lasso) regression with 10-
fold cross-validation to select metabolite biomarkers from main measures
[32]. According to the calculated sample size required for developing
prediction models, we included all participants to develop the models and
evaluate the model performance with 10-fold cross-validation to avoid risk of
overfitting [33]. To evaluate the added predictive performance of selected
metabolite biomarkers on incident cognitive impairment beyond traditional
risk factors, we established three prediction models. Basic model incorpo-
rated traditional risk factors including age, sex, education level, marital status,
smoking status, drinking status, physical activity, sleep quality, BMI,
depressive symptoms, and APOE ε4 carrier status. Metabolites model
included the selected metabolite biomarkers. Combined model integrated
predictors from both the basic model and metabolites model. The DeLong
test was used to compare the area under the receiver operating characteristic
curve (AUROC) of combined model and basic model, while the bootstrap-
based method was utilized to compare the area under the precision-recall
curve (AUPRC) [20, 32]. Net reclassification index (NRI) and integrated
discrimination improvement (IDI) of the combined model compared with
basic model were also evaluated. Besides, performance metrics (i.e.,

Fig. 1 Study design. To identify cognitive impairment-related metabolites, we applied a two-step strategy, including a discovery phase of the
cross-sectional analysis and a validation phase of the prospective analysis. In the community-based Rugao Longevity and Ageing Study
(RuLAS), plasma metabolome was profiled by nuclear magnetic resonance (NMR) spectroscopy. Participants were classified into the
cognitively normal, moderately impaired, and severely impaired groups according to their performance in two objective cognitive tests. In the
discovery stage, we used multinomial logistic regression to identify cognitive impairment-related metabolite candidates (FDR-adjusted
P < 0.05), and metabolite scores were then calculated based on all or subclasses of metabolite candidates. In the validation stage, we matched
68 incident cases of cognitive impairment (moderately-to-severely impaired) during the 2-year follow-up with 204 cognitively normal controls
by age (±5 years) and sex at a 1:3 ratio, and used conditional logistic regression to validate metabolite candidates and metabolite scores.
Besides, we established the prediction models for incident cognitive impairment using Lasso regression with 10-fold cross-validation. AUROC
Area under the receiver operating characteristic curve, AUPRC Area under the precision-recall curve, NRI Net reclassification index, IDI
Integrated discrimination improvement.
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Table 1. Baseline characteristics of participants included in the cross-sectional analysis (N= 1643).

Characteristic Total Cognitively normal Moderately impaired Severely impaired P value

N 1643 766 455 422

Age 78.9 ± 4.5 77.6 ± 4.1 79.4 ± 4.2 80.7 ± 4.6 <0.001

Sex <0.001

Male 747 (45.5) 460 (60.1) 187 (41.1) 100 (23.7)

Female 896 (54.5) 306 (39.9) 268 (58.9) 322 (76.3)

Education level <0.001

Illiterate 747 (45.5) 243 (31.7) 235 (51.6) 269 (63.7)

Primary school 499 (30.4) 284 (37.1) 116 (25.5) 99 (23.5)

Middle school and above 397 (24.2) 239 (31.2) 104 (22.9) 54 (12.8)

Marital status <0.001

Married 1047 (63.7) 542 (70.8) 288 (63.3) 217 (51.4)

Others 596 (36.3) 224 (29.2) 167 (36.7) 205 (48.6)

Drinking status <0.001

Never 1059 (64.5) 444 (58.0) 302 (66.4) 313 (74.2)

Former 134 (8.2) 74 (9.7) 39 (8.6) 21 (5.0)

Current 450 (27.4) 248 (32.4) 114 (25.1) 88 (20.9)

Smoking status <0.001

Never 1236 (75.2) 519 (67.8) 350 (76.9) 367 (87.0)

Former 149 (9.1) 90 (11.7) 37 (8.1) 22 (5.2)

Current 258 (15.7) 157 (20.5) 68 (14.9) 33 (7.8)

Physical activity <0.001

>3 times/week 612 (38.1) 342 (45.0) 153 (34.2) 117 (29.3)

≤3 times/week 994 (61.9) 418 (55.0) 294 (65.8) 282 (70.7)

Sleep qualitya 0.020

Good 809 (59.7) 405 (63.6) 212 (55.4) 192 (57.3)

Poor 546 (40.3) 232 (36.4) 171 (44.6) 143 (42.7)

BMI (kg/m2) <0.001

<18.5 97 (6.1) 29 (3.8) 27 (6.1) 41 (10.4)

18.5–23.9 770 (48.4) 361 (47.9) 215 (48.5) 194 (49.1)

24.0–27.9 544 (34.2) 284 (37.7) 140 (31.6) 120 (30.4)

≥28.0 181 (11.4) 80 (10.6) 61 (13.8) 40 (10.1)

Depressive symptomsb 223 (13.6) 80 (10.4) 63 (13.8) 80 (19.0) <0.001

Comorbidity

Hypertension 1176 (71.6) 563 (73.5) 317 (69.7) 296 (70.1) 0.268

Diabetes 238 (14.5) 106 (13.8) 67 (14.7) 65 (15.4) 0.753

Cardiovascular disease 324 (19.7) 148 (19.3) 91 (20.0) 85 (20.1) 0.929

Cancer 36 (2.2) 14 (1.8) 8 (1.8) 14 (3.3) 0.186

APOE ε4 carrierc 0.065

Yes 296 (18.0) 154 (20.1) 80 (17.6) 62 (14.7)

No 1345 (82.0) 611 (79.9) 375 (82.4) 359 (85.3)

Cognitive function scores

HDS 21.56 ± 6.45 26.01 ± 4.48 20.91 ± 4.56 14.20 ± 3.50 <0.001

MMSE 19.71 ± 6.58 24.91 ± 3.48 17.20 ± 4.48 12.96 ± 4.87 <0.001

Values were mean ± sd for continuous variables and n (%) for categorical variables. P values were derived using Pearson’s chi-square test (χ2) for categorical
variables and one-way analysis of variance for continuous variables.
aIndividuals with PSQI scores ≤5 were regarded as having good sleep quality.
bIndividuals with GDS-15 scores ≥5 were regarded as having depressive symptoms.
cIndividuals with at least one APOE ε4 allele were regarded as APOE ε4 carriers.
BMI Body mass index, APOE ε4 Apolipoprotein E ε4, HDS Hasegawa Dementia Scale, MMSE Mini-Mental State Examination, PSQI Pittsburgh Sleep Quality Index,
GDS Geriatric Depression Scale.
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sensitivity, specificity, AUROC, precision, recall, F1-score, AUPRC) of the
combined model in the all participants and subgroups stratified by age, sex,
and APOE ε4 carrier status were reported. All the statistical analyses except
for the metabolite set enrichment analysis were performed using R (version
4.0.5).

RESULTS
Participant characteristics and metabolite-cognitive
impairment associations in the discovery stage
Of the 1643 participants (age: 78.9 ± 4.5 years; female: 54.5%)
included in the discovery stage (cross-sectional analysis), 46.6%,
27.7%, and 25.7% of them were cognitively normal, moderately
impaired, and severely impaired, respectively (Table 1). A significant
trend was observed in objective cognitive test scores across three
groups, with mean HDS scores of 26.01 vs. 20.91 vs. 14.20 and mean
MMSE scores of 24.91 vs. 17.20 vs. 12.96. Besides, participants in the
severely impaired group were more likely to be older, female, and
underweight, have lower education levels and physical activity
levels, and have depressive symptoms. They were also less likely to
be married, current drinkers, and current smokers.
Compared with cognitively normal individuals (Fig. 2), those

with moderately impaired cognition had significantly higher
circulating levels of glycerol and lower levels of leucine, valine,
and branched-chain amino acid (leucine, valine, and isoleucine) to
aromatic amino acid (phenylalanine, tyrosine, and tryptophan)
ratio. Similarly, compared with cognitively normal individuals
(Fig. 2), those with severely impaired cognition showed signifi-
cantly higher circulating levels of glycerol and lower levels of
leucine, valine, isoleucine, and creatinine. Notably, circulating
levels of leucine, valine, and glycerol potentially altered in a
severity-dependent manner across groups. When extending the
analysis to both main measures and exploratory measures, leucine
and valine remained statistically significant (FDR-adjusted

P < 0.05), and another 11 metabolites from lipoprotein subfrac-
tions and lipoprotein fractions ratios were found to change in
individuals with severely impaired cognition (Fig. S3).
In the multinomial logistic regression, 27 metabolites (3 total

fractions, 8 VLDL fractions, 8 IDL fractions, 2 amino acids, 4 fatty
acids, and 2 inflammation markers) were associated with lower odds
of severely impaired cognition compared to cognitively normal, with
ORs ranging from 0.75 to 0.84 (Fig. 3A, B; Table S1). In contrast,
saturated fatty acid to total fatty acid ratio was related to higher
odds (OR: 1.28, 1.11–1.47). In addition, 7 metabolite scores derived
from all or subclasses of metabolite candidates were associated with
lower odds of severely impaired cognition where the composite
metabolite score and IDL fraction score were related to 28%
(17%–37%) and 31% (20%–40%) decreased odds (Fig. 3B). When
comparing moderately impaired cognition with cognitively normal,
associations showed similar patterns but were attenuated to be
statistically non-significant. After adjusting for additional covariates,
results did not change materially (Table S2). When extending the
analysis to both main measures and exploratory measures, 28
metabolite candidates remained statistically significant (FDR-
adjusted P < 0.05), and another 48 metabolites from lipoprotein
subfractions and lipoprotein fractions ratios were found to be
associated with severely impaired cognition (Table S3).

Participant characteristics and metabolite-cognitive
impairment associations in the validation stage
A total of 272 participants (age: 78.4 ± 3.7 years; female: 51.5%)
without cognitive impairment at baseline were included in the
validation stage (prospective analysis; Table S4). In the conditional
logistic regression, associations of most metabolite candidates
and metabolite scores with cognitive impairment showed the
same directions as in the discovery stage, though the correspond-
ing strengths were attenuated (Table 2). Among them, per SD

Fig. 2 Volcano plot showing the fold change of main metabolite measures between moderately impaired and severely impaired with
cognitively normal. A Fold change between moderately impaired and cognitively normal. B Fold change between severely impaired and
cognitively normal. The horizontal dashed line indicated FDR-adjusted P value of 0.05. MI Moderately impaired, SI Severely impaired, CN
Cognitively normal, BCAA Branched-chain amino acid (sum of leucine, valine, and isoleucine), AAA Aromatic amino acid (sum of
phenylalanine, tyrosine, and tryptophan).
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increments of IDL particle number (OR: 0.72, 0.53–0.98), ApoB in
IDL (OR: 0.72, 0.53–0.98), leucine (OR: 0.71, 0.51–0.99), valine (OR:
0.67, 0.48–0.93), and amino acid score (OR: 0.67, 0.48–0.94) were
significantly associated with lower risk of cognitive impairment. In
addition, several metabolites in the total fractions (i.e., free
cholesterol [OR: 0.35, 0.15–0.82]), IDL fractions (i.e., IDL free
cholesterol [OR: 0.20, 0.07–0.58], IDL cholesterol ester [OR: 0.26,
0.10–0.70]), and inflammation markers (i.e., GlycA [OR: 0.30,
0.12–0.74]) were also related to lower risk of cognitive impairment
when comparing the third to first quartile. A significant non-linear
association between GlycA levels and risk of cognitive impairment
(P for non-linearity <0.05) was found (Fig. S4). After adjusting for
additional covariates, results did not materially change (Table S5).
Although no modification effects were observed in the subgroup
analysis (all P for interaction >0.1), associations between IDL
particle number and ApoB in IDL with cognitive impairment
remained significant among those with age under 80 years and
APOE ε4 non-carriers (Table S6). Similarly, the inverse relationship
between valine and cognitive impairment persisted among
females while relationships of leucine and valine remained
significant among APOE ε4 non-carriers.

Metabolite set enrichment analysis and prediction models
We entered 2 metabolites (leucine and valine) into the metabolite
set enrichment analysis and identified 3 enriched metabolic
pathways, including valine, leucine, and isoleucine biosynthesis;
valine, leucine, and isoleucine degradation; and aminoacyl-tRNA
biosynthesis (Fig. S5). PCA demonstrated the poor discrimination
ability (Fig. 4A) while PLS-DA indicated that the main measures
profiles of individuals with incident cognitive impairment were
significantly different from those of cognitively normal controls (Fig.

4B). Due to the high correlations across metabolites, 13 metabolite
biomarkers (including IDL particle number, acetate, 3-hydroxybuty-
rate, acetoacetate, pyruvate, creatinine, histidine, tyrosine, valine,
polyunsaturated fatty acid to total fatty acid ratio, acetone, glycerol,
and Ca-EDTA) were selected from main measures using Lasso
regression. Incorporating them into the basic model (traditional risk
factors-based) significantly improved the predictability of incident
cognitive impairment (P< 0.001 comparing AUROC of basic model
[0.703, 0.632–0.774] with AUROC of combined model [0.839,
0.782–0.897], Fig. 4C; P < 0.001 comparing AUPRC of basic model
[0.405, 0.308–0.529] with AUPRC of combined model [0.705,
0.594–0.811], Fig. 4D). Furthermore, with adding the selected
metabolite biomarkers, the categorical NRI, continuous NRI, relative
IDI, and absolute IDI were 0.412 (0.263–0.541), 0.735 (0.531–0.943),
2.538 (1.618–4.244), and 0.228 (0.169–0.286), respectively (data not
shown). Performance metrics of the combined model were similar
across subgroups (i.e., AUROC: 0.852 in males vs. 0.826 in females;
AUPRC: 0.710 in males vs. 0.715 in females, Table S7).

DISCUSSION
In this community-based cohort of older adults in China, we
identified 2 branched-chain amino acids (leucine and valine) and 2
IDL fractions (IDL particle number and ApoB in IDL) that were
inversely associated with risk of cognitive impairment. Besides, 3
metabolic pathways (valine, leucine, and isoleucine biosynthesis;
valine, leucine, and isoleucine degradation; and aminoacyl-tRNA
biosynthesis) were found to be potentially related to cognitive
impairment. The utilization of selected metabolite biomarkers
significantly improved the prediction ability of incident cognitive
impairment beyond traditional risk factors.

Fig. 3 Cross-sectional associations of main metabolite measures with moderately impaired and severely impaired. A Circular plot
showing associations of main measures with moderately impaired (in dark) and severely impaired (in red) compared to cognitively normal.
B Forest plot showing associations of metabolite candidates (FDR-adjusted P < 0.05) and metabolite scores with moderately impaired and
severely impaired compared to cognitively normal. Values were ORs (95% CI) derived from multinomial logistic regression models adjusting
for age, sex, education level, and APOE ε4 carrier status. Main measures with FDR-adjusted P < 0.05 were identified as metabolite candidates
and metabolite scores were then calculated based on all or subclasses of metabolite candidates. MI Moderately impaired, SI Severely impaired,
CN Cognitively normal, VLDL Very Low Density Lipoprotein, LDL Low Density Lipoprotein, IDL Intermediate Density Lipoprotein, HDL High
Density Lipoprotein, TG Triglycerides, CH Cholesterol, FC Free Cholesterol, CE Cholesterol esters, PL Phospholipids, ApoA1 Apolipoprotein A1,
ApoA2 Apolipoprotein A2, ApoB Apolipoprotein B100, PN Particle Number, LP Total lipids (sum of triglycerides, cholesterol, and
phospholipids), BCAA Branched-chain amino acid (sum of leucine, valine, and isoleucine), AAA Aromatic amino acid (sum of phenylalanine,
tyrosine, and tryptophan), UFA Unsaturated fatty acid, UFA% Unsaturated fatty acid to total fatty acid ratio, SFA Saturated fatty acid, SFA%
Saturated fatty acid to total fatty acid ratio, PUFA Polyunsaturated fatty acid, PUFA% Polyunsaturated fatty acid to total fatty acid ratio, MUFA
Monounsaturated fatty acid, MUFA% Monounsaturated fatty acid to total fatty acid ratio, GlycA N-acetylglucosamine/N-acetylgalactosamine-
glycoproteins, GlycB N-acetylneuraminoyl-glycoproteins, EDTA Ethylene diamine tetraacetic acid.
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Table 2. Prospective associations of metabolite candidates and metabolite scores with cognitive impairment.

Metabolites Per 1-SD increment Quartile

Q1 Q2 Q3 Q4

Total fractions

TG 0.93 (0.67, 1.29) 1 (ref.) 0.60 (0.27, 1.34) 0.60 (0.27, 1.37) 0.73 (0.32, 1.68)

FC 0.89 (0.64, 1.23) 1 (ref.) 0.54 (0.24, 1.22) 0.35 (0.15, 0.82) 0.70 (0.30, 1.64)

PL 0.90 (0.65, 1.24) 1 (ref.) 0.91 (0.41, 2.02) 0.43 (0.18, 1.03) 0.77 (0.32, 1.87)

VLDL fractions

VLDL-PN 0.95 (0.68, 1.32) 1 (ref.) 0.57 (0.25, 1.31) 0.56 (0.25, 1.29) 0.85 (0.37, 1.98)

VLDL-LP 0.96 (0.69, 1.33) 1 (ref.) 0.63 (0.27, 1.47) 0.81 (0.36, 1.82) 0.83 (0.36, 1.89)

VLDL-TG 0.95 (0.69, 1.32) 1 (ref.) 0.61 (0.26, 1.39) 0.63 (0.27, 1.46) 1.02 (0.45, 2.29)

VLDL-CH 0.94 (0.69, 1.29) 1 (ref.) 0.88 (0.40, 1.95) 0.91 (0.40, 2.09) 1.04 (0.45, 2.40)

VLDL-FC 0.98 (0.71, 1.36) 1 (ref.) 0.69 (0.31, 1.53) 0.83 (0.37, 1.88) 0.94 (0.41, 2.16)

VLDL-CE 0.92 (0.67, 1.25) 1 (ref.) 0.73 (0.32, 1.63) 0.70 (0.30, 1.63) 1.11 (0.49, 2.50)

VLDL-PL 1.00 (0.73, 1.38) 1 (ref.) 0.74 (0.33, 1.65) 0.92 (0.40, 2.10) 0.90 (0.39, 2.06)

VLDL-ApoB 0.95 (0.68, 1.32) 1 (ref.) 0.57 (0.25, 1.31) 0.56 (0.25, 1.29) 0.85 (0.37, 1.98)

IDL fractions

IDL-PN 0.72 (0.53, 0.98) 1 (ref.) 0.67 (0.30, 1.49) 0.38 (0.16, 0.88) 0.46 (0.20, 1.06)

IDL-LP 0.84 (0.61, 1.15) 1 (ref.) 0.85 (0.40, 1.80) 0.40 (0.16, 0.98) 0.83 (0.36, 1.93)

IDL-TG 0.95 (0.68, 1.31) 1 (ref.) 0.76 (0.34, 1.68) 0.65 (0.28, 1.50) 0.91 (0.39, 2.11)

IDL-CH 0.74 (0.53, 1.02) 1 (ref.) 0.89 (0.42, 1.88) 0.34 (0.14, 0.86) 0.60 (0.26, 1.37)

IDL-FC 0.76 (0.55, 1.05) 1 (ref.) 0.93 (0.43, 2.02) 0.20 (0.07, 0.58) 0.84 (0.36, 1.97)

IDL-CE 0.73 (0.53, 1.01) 1 (ref.) 0.98 (0.47, 2.05) 0.26 (0.10, 0.70) 0.59 (0.26, 1.38)

IDL-PL 0.86 (0.63, 1.18) 1 (ref.) 1.13 (0.53, 2.39) 0.29 (0.11, 0.77) 1.09 (0.47, 2.53)

IDL-ApoB 0.72 (0.53, 0.98) 1 (ref.) 0.67 (0.30, 1.49) 0.38 (0.16, 0.88) 0.46 (0.20, 1.06)

Amino acids

Leucine 0.71 (0.51, 0.99) 1 (ref.) 0.89 (0.42, 1.88) 0.69 (0.30, 1.60) 0.45 (0.18, 1.11)

Valine 0.67 (0.48, 0.93) 1 (ref.) 1.50 (0.71, 3.18) 0.73 (0.31, 1.73) 0.60 (0.26, 1.37)

Fatty acids

UFA% 0.91 (0.66, 1.25) 1 (ref.) 0.83 (0.39, 1.81) 0.59 (0.25, 1.37) 0.90 (0.39, 2.04)

SFA% 1.10 (0.80, 1.52) 1 (ref.) 0.66 (0.28, 1.54) 0.93 (0.41, 2.12) 1.11 (0.49, 2.53)

MUFA% 1.06 (0.77, 1.46) 1 (ref.) 1.82 (0.81, 4.08) 0.96 (0.40, 2.30) 1.57 (0.63, 3.89)

MUFA/PUFA 1.10 (0.80, 1.51) 1 (ref.) 1.74 (0.78, 3.88) 0.77 (0.32, 1.86) 1.41 (0.60, 3.35)

UFA/PUFA 1.10 (0.80, 1.51) 1 (ref.) 1.74 (0.78, 3.88) 0.77 (0.32, 1.86) 1.41 (0.60, 3.35)

Inflammation markers

GlycA 0.82 (0.60, 1.12) 1 (ref.) 0.69 (0.31, 1.53) 0.30 (0.12, 0.74) 0.67 (0.28, 1.60)

GlycB 0.76 (0.57, 1.02) 1 (ref.) 0.50 (0.23, 1.12) 0.42 (0.19, 0.94) 0.68 (0.30, 1.53)

Metabolite scores

Composite metabolite score 0.85 (0.62, 1.17) 1 (ref.) 0.56 (0.24, 1.28) 0.64 (0.28, 1.45) 1.00 (0.44, 2.26)

Total fraction score 0.76 (0.54, 1.07) 1 (ref.) 0.56 (0.24, 1.27) 0.44 (0.19, 1.03) 0.65 (0.27, 1.58)

VLDL fraction score 0.99 (0.71, 1.39) 1 (ref.) 0.80 (0.35, 1.80) 0.83 (0.37, 1.88) 1.02 (0.44, 2.34)

IDL fraction score 0.93 (0.67, 1.30) 1 (ref.) 0.99 (0.45, 2.17) 0.75 (0.31, 1.80) 1.16 (0.50, 2.71)

Amino acid score 0.67 (0.48, 0.94) 1 (ref.) 0.89 (0.42, 1.88) 0.64 (0.30, 1.39) 0.43 (0.18, 1.06)

Fatty acid score 0.96 (0.67, 1.37) 1 (ref.) 0.94 (0.35, 2.54) 0.68 (0.32, 1.46) 0.81 (0.37, 1.80)

Inflammation marker score 0.80 (0.57, 1.11) 1 (ref.) 0.27 (0.11, 0.65) 0.63 (0.31, 1.28) 0.30 (0.07, 1.23)

In the prospective analysis, we matched 68 incident casesof cognitive impairment (moderately-to-severely impaired) during the 2-year follow-up with 204
cognitively normal controls by age and sex at a 1:3 ratio. Values were ORs (95% CI) derived from conditional logistic regression models adjusting for age,
education level, and APOE ε4 carrier status.
Bold indicated raw P < 0.05.
VLDL Very Low Density Lipoprotein, IDL Intermediate Density Lipoprotein, TG Triglycerides, CH Cholesterol, FC Free Cholesterol, CE Cholesterol esters, PL
Phospholipids, ApoB Apolipoprotein B100, PN Particle Number, LP Total lipids (sum of triglycerides, cholesterol, and phospholipids), UFA Unsaturated fatty
acid, UFA% Unsaturated fatty acid to total fatty acid ratio, SFA Saturated fatty acid, SFA% Saturated fatty acid to total fatty acid ratio, MUFA Monounsaturated
fatty acid, MUFA% Monounsaturated fatty acid to total fatty acid ratio, PUFA Polyunsaturated fatty acid, GlycA N-acetylglucosamine/N-acetylgalactosamine-
glycoproteins, GlycB N-acetylneuraminoyl-glycoproteins.
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Several prospective studies have reported the inverse associa-
tion between branched-chain amino acids (BCAA) and risk of
cognitive impairment. A study combining data from 22,623
participants with the mean age of 58.4 years found that valine,
leucine, and isoleucine were related to 16%, 17%, and 13% lower
risk of dementia during an average follow-up of 10.9 years [8].
Another study, conducted among 110,655 participants (age:
56.5 ± 8.1 years) in the UK biobank, reported that the correspond-
ing hazard ratios of dementia for valine, leucine, and isoleucine
were 0.86, 0.87, and 0.90 during a median follow-up of 12.2 years
[34]. Nevertheless, these studies were conducted in the Western
population and a large proportion of the included participants
were middle-aged. A study of 1440 Chinese participants (age:
70.7 ± 6.8 years) observed that baseline valine and leucine levels
were lower in individuals who developed dementia compared to

non-converters. However, no significant associations of BCAA
were found in the multivariate Cox regression analysis [11]. In our
study, circulating valine and leucine levels were associated with
33% and 29% lower risk of cognitive impairment, confirming the
inverse relationships of BCAA (except for isoleucine) in the Asian
population. Although isoleucine was not identified as cognitive
impairment-related metabolite, the odds ratio for severely
impaired cognition was 0.87 (0.75, 1.00) and the one for incident
cognitive impairment was 0.77 (0.55, 1.08). Given that BCAA are
essential amino acids and their levels are largely determined by
diet, these findings may inform dietary intervention to prevent
cognitive impairment. In addition to the metabolic pathways of
BCAA biosynthesis and degradation, aminoacyl-tRNA biosynthesis
was found to be another enriched pathway in our study. Similarly,
aminoacyl-tRNA biosynthesis pathway was reported to be

Fig. 4 Prediction models for classifying the incident cognitive impairment and cognitively normal controls. A Principal component
analysis (PCA) model with all main measures used. B Partial least square discriminant analysis (PLS-DA) model with all main measures used.
The permutation test indicated the statistical significance of PLS-DA model (P= 0.024). C ROC curves of the prediction models. Basic model
included traditional risk factors. Metabolites model included 13 selected metabolite biomarkers using Lasso regression. Combined model
integrated predictors from basic model and metabolites model. The DeLong test indicated the significant difference between AUROC of the
combined model and basic model (P < 0.001). D PR curves of the prediction models. The bootstrap-based method indicated the significant
difference between AUPRC of the combined model and basic model (P < 0.001). AUROC Area under the receiver operating characteristic
curve, AUPRC Area under the precision-recall curve.
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downregulated in the postmortem hippocampus samples of AD
patients [35]. Downregulation of aminoacyl-tRNA biosynthesis
may affect protein synthesis, as the brains of AD and MCI
individuals were found to show a decreased rate and capability for
protein synthesis [36, 37]. Further studies are warranted to
investigate whether these metabolic pathways contribute to the
underlying mechanisms of cognitive impairment.
Additionally, IDL particle number and ApoB in IDL were both

associated with 28% lower risk of cognitive impairment in our
study. Although previous prospective studies didn’t observe
consistent associations, the corresponding hazard ratios of IDL
particle concentration for dementia were 0.91 (0.80, 1.03) and 0.95
(0.90, 1.01) in the two mentioned Western studies [8, 34]. We also
found that triglycerides, cholesterol, and phospholipids from
VLDL1 to VLDL4 were inversely related to severely impaired
cognition while those from VLDL5 showed no association,
suggesting potentially different roles of diverse lipoprotein
subfractions. However, findings from our study and previous
studies are inconclusive, and relationships between lipoprotein
subfractions and cognitive impairment need further research to
clarify. RCS showed that GlycA was non-linearly related to risk of
cognitive impairment (P for non-linearity <0.05), with the OR of
0.30 (0.12, 0.74) when comparing the third with first quartile.
Studies with larger sample sizes are required to further uncover
the potential non-linear relationships.
Recent studies have increasingly utilized blood-based metabo-

lite biomarkers to improve the prediction ability of cognitive
impairment beyond traditional risk factors [4, 11, 34, 38, 39]. In our
study of older Chinese adults, the traditional risk factors-based
prediction model yielded an AUROC of 0.703 and AUPRC of 0.405.
Incorporating selected metabolite biomarkers into the model
substantially increased the AUROC to 0.839 and AUPRC to 0.705,
with significant improvement in both NRI and IDI. The positive NRI
and IDI indicated the increased proportion of participants
assigned to the correct group when comparing the combined
model with basic model. Another prediction model of dementia
targeting older Chinese adults didn’t compare the accuracy
between the covariates model (AUROC not provided) and the
model combining covariates with metabolites (AUROC: 0.900) [11].
As no external validation was conducted in the current study,
further validation of prediction models is required. In addition,
predictive performance of metabolomics-based models built with
different assumptions (i.e., Lasso, random forest, support vector
machine, XGBoost) should be compared in the future studies.
The strengths of our study include the application of a two-step

strategy of cross-sectional discovery followed by prospective
validation and inclusion of the population at high-risk of
developing cognitive impairment from a community-based cohort
in China. Nevertheless, several limitations should be considered
when interpreting the results of our study. The primary limitation
is the nature of an observational study design where the observed
associations may be impacted by residual and unmeasured
confounding, although the adjustment of multiple covariates
have partially mitigated this issue. Second, as in most previous
studies, plasma metabolome was measured only once at baseline,
thus whether it was representative of long-term exposure status
was unclear. Another limitation is the relatively low follow-up rate
(52%) in 2021 (Wave 5) due to the COVID-19 pandemic, which may
reduce the statistical power of prospective analysis. Fourthly, we
failed to find other cohorts with a similar study design to
externally validate the identified cognitive impairment-related
metabolites and prediction models. Hence, the results should be
interpreted cautiously and further independent external valida-
tions are required.
In conclusion, our study identified specific plasma metabolites

(leucine, valine, IDL particle number, and ApoB in IDL) and
potential enriched metabolic pathways (valine, leucine, and
isoleucine biosynthesis; valine, leucine, and isoleucine

degradation; and aminoacyl-tRNA biosynthesis) related to cogni-
tive impairment. Incorporation of 13 metabolite biomarkers
significantly improved the prediction performance for cognitive
impairment beyond traditional risk factors. Our findings may
contribute to understanding the underlying etiology of cognitive
impairment and to identifying high-risk individuals early.
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