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Abstract

Original Article

IntroductIon

The multiple linear regression model is a widely used 
tool across all fields of research. The standard frequentist 
methods are used ubiquitously, but late Bayesian methods 
are used as an alternative to the frequentist methods 
for model comparisons. The concept of Bayesian linear 
regression on default Bayes factors for multiple regression 
designs was discussed by Liang et al. (2008).[1] Rouder and 
Morey (2012)[2] proposed the default Bayes factors for model 
selection in regression. Nevertheless, due to the lack of 
practical guidance and application of software for interpreting 
Bayes factors in multiple regression, these proposals did 
not gain much popularity among researchers earlier. The 
advancements in information technology in the last one 
decade have made it possible to apply Bayesian concepts 
more definitively. Yu et al. (2013)[3] developed Bayesian 
methods for variable selection, with a simple and efficient 

stochastic search variable selection (SSVS) algorithm 
proposed for posterior computation and demonstrated the 
same with simulated data. Kelter (2020)[4] who investigated 
the behavior of Bayesian indices of significance in medical 
research applying frequentist methods used Bayesian analysis 
on the simulation datasets to draw significant conclusions. 
Vijayaragunathan and Srinivasan (2020)[5] discussed Bayes 
factors for comparison of two‑way analysis of variance 
models with illustration through the concept of the Bayesian 
multiple regression model.

Background: In this article, we attempt to demonstrate the superiority of the Bayesian approach over the frequentist approaches of the multiple 
linear regression model in identifying the influencing factors for the response variable. Methods and Material: A survey was conducted among 
the 310 respondents from the Kathirkamam area in Puducherry. We have considered the response variable, body mass index (BMI), and the 
predictors such as age, weight, gender, nature of the job, and marital status of individuals were collected with the personal interview method.  
Jeffreys's Amazing Statistics Program (JASP) software was used to analyze the dataset. In the conventional multiple linear regression model, 
the single value of regression coefficients is determined, while in the Bayesian linear regression model, the regression coefficient of each 
predictor follows a specific posterior distribution. Furthermore, it would be most useful to identify the best models from the list of possible 
models with posterior probability values. An inclusion probability for all the predictors will give a superior idea of whether the predictors are 
included in the model with probability. Results and Conclusions: The Bayesian framework offers a wide range of results for the regression 
coefficients instead of the single value of regression coefficients in the frequentist test. Such advantages of the Bayesian approach will catapult 
the quality of investigation outputs by giving more reliability to solutions of scientific problems.
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Ranjani et al. (2016)[6] analyzed the overweight and obesity 
rates in children and adolescents and found them increasing 
among lower and higher socioeconomic groups. Chu and 
Yuan (2018)[7] have proposed and compared the Bayesian 
hierarchical model approach to evaluate the treatment effect 
in basket trials. A study on body mass index (BMI) was 
conducted broadly based on parameters such as region, 
country, gender, and income based on data belonging to 
more than 30 years. In particular, the researchers focused 
on women from rural areas that belong to increasing obesity 

NCD Risk Factor Collaboration (NCD‑RisC) (2017).[8] In a 
study by Sutin et al. (2021),[9] data were collected from three 
different time periods from the participants and analyzed 
against personal details such as weight, height, depression 
effect, and loneliness. It was also observed that the coronavirus 
pandemic increases the risk of incident depression and leads to 
a decline in well‑being among the participants. Nikooseresht 
et al. (2015)[10] found that the application of the Bayesian 
technique for the treatment of any disease calls for integrating 
the results of multiple tests and is also based on available 
prior knowledge that needs to be analyzed before arriving 
at a decision.

SubjectS and MethodS

The concepts of frequentist and Bayesian approaches to 
multiple linear models will be discussed in this section.

Classical multiple linear regression model
The classical linear regression model may be written as 
follows:

y = X +β ∈  (1)

w h e r e  T
1 2 ny = (y , y ,...y )  i s  n × 1  c o l u m n  v e c t o r , 

d
i1 i2 id i=1X = (x , x ,..., x )  is n×d design matrix containing 

all variables, T
0 1 d‑1= ( , ,..., )β β β β  is the d×1 vector of 

parameters, and T
1 2 n = ( , ,..., )∈ ∈ ∈ ∈  is the n×1 vector of errors 

and 2N(0, I).σ∈

In the classical context, the asymptotic distribution for
 ( )‑12 TN( , X X )β β σ

 and in the Bayesian context the 
distribution β  of depend on the choice of the prior distribution, 
so it will not necessarily be a normal distribution.

Variance inflation factor (VIF)
When two variables are in near‑perfect linear combinations 
with one another, collinearity will arise. When this involves 
more than two variables, it is known as multicollinearity. If 
the regression estimates are unstable and have high standard 
errors, it is an indication of the presence of multicollinearity. 
VIFs are a measure of the inflation in variances of estimates 
of the parameters due to collinearities that exist among the 
independent variables. The VIF for the jth explanatory variable 
is defined as follows:

j 2
j

1VIF =
1- R  (2)

where Rj
2 is the coefficient of determination obtained when Xj is 

regressed on the remaining (k−1) variables. If VIF is 1, there is 
no correlation between predictor and remaining predictors, and 
then, the variance of the regression coefficient of a predictor 
is not inflated at all. If the VIF value is more than 5 or 10, a 
particular coefficient is estimated poorly or unstable because 
of near‑nonlinear dependence among the regressor.

Condition index
This is like an alternate method to VIFs, which shows the 
degree of multicollinearity in a regression design matrix. 
Almost all the statistical packages used this index to find the 
collinearity between the variables. The condition indices are 
as follows:

max
j

j

C =
λ
λ  (3)

where 1 2 k, ,...,λ λ λ  be the eigenvalues of XˊX. However, 
if the eigenvalue is very small, a symptom of seriously 
ill‑conditioned data and also the condition index are large, say 
more than 1000, which means that it is near‑linearly dependent.

Bayesian multiple linear regression model
Bayesian linear regression is used when the data are 
distributed poorly or one has to deal with insufficient 
data. In the absence of data, the priors can take over, 
and this mechanism allows us to set prior based on the 
coefficients and the noise. In the Bayesian inference, the 
response variable y is not estimated as a single value; it is 
assumed to be drawn from a specific distribution. Rouder 
and Morey (2012)[2] discussed default Bayes factors for 
model selection in regression. Rockafellar et al. (2014)[11] 
presented a super‑quantile regression with several numerical 
examples in the area of uncertainty quantification. Tsionas 
and Izzeldin (2018)[12] provided the Bayesian interpretation 
of the conditional value at risk; that is, super‑quantile 
regression and computations are based on particle filtering 
using a special posterior distribution consistent with the 
super‑quartile concept.

Consider a Bayesian linear model is y = X +β ∈  where 
2  N(0, I)σ∈ , and then, the likelihood function is as follows:

( )
( )

2 T
y n 2 2 2

1 1f X, , = exp - (y - X ) (y - X )
22

β σ β β
σπσ

 
 
 

 (4)

We assume a conjugate prior distribution for 2|β σ  as follows:
2N(m, V)σ . Thus, the data and prior information are involved 

in the interpretation of Bayesian inferences.

( ) ( )
n d- -2 2 2 2f ,m,V = 2   V  σ πσ

T -1
2

1exp -  ( - m) V ( - m)
2

β β
σ

 
 
 

 (5)

The inverse‑gamma distribution plays a conjugate prior 
distribution for σ2 as follows:
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( ) ( )
a
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2
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a
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a >0, b>0 (6)

The posterior distribution of the parameters β and is σ2 as 
follows:

( ) ( ) ( ) ( )T -1d-2 2
2

-  -
f y, X  exp - 

2
β µ Λ β µ

σ
σ

  ∝  
  

( )
T -1 T -1 T

2
m V m- +2b+y yn - - +a-1 22 2  e

µ Λ µ
σσ

  
 
    (7)

Thus,

( ) ( ) ( )2 * *f y, X N ,  ×IG a ,bµ σ Λ∝  (8)

where 2
* n a = - + a,

2

T -1 T -1 T
* m V m - + 2b+ y yb = µ Λ µ

StatIStIcal analySIS and reSultS

We considered the example of BMI as a response variable 
with important independent variables such as age, weight, 
gender, job, and marital status of each individual for the 
linear regression model. To begin with this illustration, we 
applied the classical multiple linear regression model and 
identified the influencing factors of BMI. Additionally, the 
same illustration was applied in the Bayesian multiple linear 
regression model to identify the posterior distribution of 
independent variables.

Classical multiple linear regression model
The multiple regression equation of BMI on five predictors 
is as follows:

Y= 24.141 + 0.025 X1+0.321 X2

 +2.595 X3–0.169 X4–0.467 X5  (9)

where Y = BMI, X1= age (in years), X2= weight (in Kgs), 
X3= gender (1 = male, 2 = female), X4= job (5 = agriculture, 4 = hard 
work, 3 = office work, 2 = business, 1 = others), X5= marital 
status (1 = married, 2 = unmarried).

From Table 1, the intercept is β0= 24.141, and it shows that BMI 
would be expected if all the predictors are zero. The regression 
coefficient for the predictor “age” is 0.025, which indicates 
that for each year of age increase, the BMI increases by 0.025 
if other predictors are the same. The regression coefficient 
for “weight” is 0.321, indicating that for every additional 10 
kilograms of individual weight, BMI will increase by 3.21 if 
the other predictors are the same. Also, the predictor “gender” 
will add another 2.595 for males and 5.19 for females in BMI. 
However, the other two predictors such as “job” and “marital 
status” have negative values. According to the individual’s 
nature of the job and marital status, the BMI will decrease 
by ‑0.169 and ‑0.467 (a married person’s BMI to some extent 
more than the unmarried), respectively, but these do not 
significantly influence the response variable BMI.

The R‑square value for the regression multiple linear models 
is 0.812; that is, 81.2% of total variations in the response 
variable BMI are explained by the predictors such as “age,” 
“weight,” and “gender” because their significant values are 
less than 0.05. Furthermore, in the ANOVA (Analysis of 
Variance) output, we observed that the F ratio is 247.901 and 
the corresponding P value is less than 0.05, which means all 
the regression coefficients are significantly different. In our 
results, the VIFs for all the predictors are all less than 10, 
which indicates that multicollinearity is not a serious concern.

From Table 2, there are five predictors so we have six 
dimensions and the eigenvalue for all the dimensions is 
less than 1 except the first dimension. It is an indication 
of multicollinearity as several eigenvalues are close to 0. 
The interpretation of the condition index is the square root 
of the ratio of the largest eigenvalue to the eigenvalue of 
the dimension. The condition index for dimensions 1 to 5 
in Table 2 is less than 15; therefore, multicollinearity does 
not arise. However, the condition index for dimension 6 is 
25.840, which is greater than 15, indicating the presence of 
multicollinearity. Furthermore, to find the variance proportions 
or variance decomposition proportions we used eigenvalues to 
calculate eigenvectors. For each condition index, the variance 
proportions are calculated for each predictor. The sum of the 
variance proportion for each predictor is 1. However, if the 
condition index is higher than 30 then the at least two predictor 
variance proportions are exceeded by 80% to 90%, which 
shows that multicollinearity is present between the respective 

Table 1: Regression coefficients, their significant values, and variance inflation factors

Model Coefficient Unstandardized S.E. Standardized t P Collinearity

Tolerance VIF
H0 Intercept 24.141 0.267 90.352 <0.001
H1 Intercept 0.626 1.147 0.545 0.586

Age 0.025 0.009 0.083 2.822 0.005 0.752 1.331
Weight 0.321 0.009 0.918 34.468 <0.001 0.924 1.082
Gender 2.595 0.255 0.279 10.158 <0.001 0.865 1.156
Job ‑0.169 0.112 ‑0.043 ‑1.502 0.134 0.804 1.244
Marital ‑0.467 0.330 ‑0.042 ‑1.417 0.158 0.743 1.345
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predictors, but in our example, all the variance proportions are 
below 80%, which means that multicollinearity does not occur.

The Q–Q plot (quantile–quantile plot) is a graphical tool to 
help us assess a set of data drawn from the specified theoretical 
distribution. Here, we used a Q–Q plot to check the assumption 
that the dependent variable is normally distributed. From 
Figure 1, the dependent variable is normally distributed since 
most of the points are on the line. The difference between 
the observed value and the predicted value is residuals that 
are equal across the values of the dependent variable, which 
is known as homoscedastic. In this case, the points are 
randomly scattered around the x‑axis, and therefore, the data 
are homoscedastic.

Bayesian multiple linear regression model
The aim of using Bayesian linear regression is to determine 
the posterior distribution for the model parameters instead of 
finding the single “best” value of the model parameters in the 
classical linear regression model. In the Bayesian multiple 
linear regression model, we used a uniform distribution as a 
prior probability of the model, and it produces a probability 
value of 0.077; furthermore, we compare 15 possible models 
to identify the best model as shown in Table 3.

The posterior probability of the model for the top three models 
is 0.942, and the remaining models have the least probability. 
The prior probabilities will be redistributed to the posterior 
probabilities for these models according to the strength of 
independent variables. The best model consists of the three 
predictors such as “age,” “weight,” and “gender,” and its 
posterior distribution probability value is 0.614, which is 
among all possible models, and this model result explains 
61.4% of the response variable compared with all other 
models. Additionally, the second‑best model consists of four 
predictors such as “age,” “weight,” “gender,” and “job” of 
the individuals and will provide 17.4% posterior probability 
compared with other models. Similarly, the third‑best model 
also provides almost the same result of 15.4% when the “job” 
is replaced by “marital” in the model. However, the posterior 
distribution probabilities for the other remaining models are 
2.6%, 1.3%, 1.0%, and less than 1% compared with other 
models. Interestingly, the multiple linear regression model (full 
model) consisting of all the predictors provides only 2.6% 
of the posterior probability compared with all other possible 
models.

The R‑square value for the multiple linear regression equation 
with all predictors is 0.812, and the R‑square value for the 
best model, which consists of three predictors such as “age,” 
“weight,” and “gender,” is 0.808. These two models provide 
almost the same results in model fitting. The inclusion 
probabilities for the predictors such as “weight,” “gender,” 
and “age” are 0.846, 0.615, and 0.462, respectively. Also, the 
probability of inclusion given the data for “intercept,” “weight,” 

Table 2: Collinearity diagnostics for the multiple regression model

Dimension Eigenvalue Condition 
index

Variance proportions

Intercept age Weight gender Job Marital
1 5.521 1.000 0.000 0.003 0.001 0.002 0.004 0.002
2 0.227 4.935 0.000 0.189 0.001 0.009 0.237 0.041
3 0.103 7.330 0.000 0.161 0.007 0.539 0.008 0.052
4 0.085 8.045 0.001 0.082 0.002 0.001 0.670 0.441
5 0.056 9.916 0.002 0.205 0.520 0.034 0.044 0.159
6 0.008 25.840 0.996 0.359 0.470 0.414 0.038 0.305

Figure 1: Scatter plot for residual against BMI and Q–Q plot for 
standardized residuals
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“gender,” and “age” has the highest probability, which indicates 
that these predictors are compulsorily included in the model. 
However, the other predictors such as “job” and “marital status” 
have small probabilities to include in the model. The mean and 
SD (Standard Deviation) of regression coefficients are given in 
Table 4, and the mean of intercept, age, weight, gender, job, and 
marital status is 24.141, 0.031, 0.321, 2.688, ‑0.046, and ‑0.121; 
their standard deviations are 0.117, 0.010, 0.009, 0.256, 0.102, 
and 0.287, respectively. Interestingly, the regression coefficients 
in the frequentist and Bayesian multiple linear regression model 
are reasonably different.

The main advantage of Bayesian approaches to multiple linear 
regression is that each regression coefficient follows a specific 
distribution based on the prior. Here, we used Jeffreys–Zellner–
Siow prior to find the Bayes factors. Similar to the ordinary 
least‑squares procedure, the posterior means and standard 
deviations of the coefficients are extracted from the posterior 
distributions. The mean of regression coefficients is completely 
different from the frequentist multiple regression model. The 
posterior distributions of the regression coefficients with the 
spread of the distribution related to the standard errors are 
visualized in Figure 2. We may give a clearer and more useful 
summary regression model to the five predictors as in the upper 
and lower bounds of 95% credible intervals of all coefficients. 
The 95% credible interval of predictors for “age” is (0.014,0.051), 
for “weight” is (0.304,0.339), for “gender” is (2.199,3.152), for 
“job” is (−0.280,0.001), and for “marital status” is (−0.820,0.004).

The weightage of inclusion of independent variables in the 
model “weight,” “gender,” and “age” is 3.619 × 1098, 3.1 × 1020, 
and 34.78, respectively, but the inclusion of the other two 
independent variables such as “job” and “marital status” is 
negligible.

dIScuSSIon and concluSIonS

In contemporary research, the application of Bayesian concepts 
has become a trend in model‑building problems. In this study, we 
have employed JASP software to do statistical analysis for finding 
frequentist and Bayesian multiple linear regression models. We 
built both the frequentist and Bayesian multiple linear regression 
models using obesity data collected from a section of people in 
Puducherry State, India. As the dataset is not big, applying the 
Bayesian concept is more appropriate. In the frequentist method, 
the percentage of fitting of model, significance of levels of the 
regression coefficients, and for finding multicollinearity, we 
used the measures of VIF and condition index. Particularly, the 
BMI of the individual is influenced by the three predictors such 
as “age,” “weight,” and “gender.” Interestingly, the Bayesian 
multiple regression model provides the “best” model among 
the list of models displaying how much data support the model. 
Furthermore, the independent variables form their own posterior 
distribution with inclusion probability for the model and also 
provide credible intervals for the predictors. From our study, the 
“weight” of the individual has a high probability to be included 
in the model and its posterior distribution shows that there is 

Table 4: Posterior summaries of regression coefficients

Coefficient P (incl) P (excl) P (incl|data) P (excl|data) BF inclusion Mean SD 95% credible interval

Lower Upper
Intercept 1.000 0.000 1.000 0.000 1.000 24.141 0.117 23.914 24.359
Age 0.462 0.538 0.968 0.032 34.780 0.031 0.010 0.014 0.051
Weight 0.846 0.154 1.000 0.000 3.629e+98 0.321 0.009 0.304 0.339
Gender 0.615 0.385 1.000 0.000 3.100e+20 2.688 0.256 2.199 3.152
Job 0.385 0.615 0.219 0.781 0.449 ‑0.046 0.102 ‑0.280 0.001
Marital status 0.385 0.615 0.202 0.798 0.404 ‑0.121 0.287 ‑0.820 0.004

Table 3: Bayesian multiple linear model comparisons for the response variable “BMI”

Models P (M) P (M|data) BFM BF10 R²
Age + weight + gender 0.077 0.614 19.086 1.000 0.808
Age + weight + gender + job 0.077 0.174 2.524 0.283 0.811
Age + weight + gender + marital 0.077 0.154 2.178 0.250 0.811
Age + weight + gender + job + marital 0.077 0.026 0.323 0.043 0.812
Weight + gender + marital 0.077 0.013 0.153 0.021 0.803
Weight + gender + job 0.077 0.010 0.117 0.016 0.803
Weight + gender + job + marital 0.077 0.009 0.113 0.015 0.807
Weight + gender 0.077 8.10e‑4 0.010 0.001 0.795
Age + weight + job 0.077 8.14e‑22 9.77e‑21 1.32e‑21 0.732
Age + weight 0.077 7.93e‑22 9.52e‑21 1.29e‑21 0.727
Weight 0.077 4.07e‑22 4.88e‑21 6.63e‑22 0.719
Marital 0.077 4.09e‑100 4.91e‑99 6.66e‑100 0.030
Null model 0.077 9.30e‑101 1.11e‑99 1.51e‑100 0.000
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less variability. Similarly, the “age,” “gender,” and “intercept” 
have high inclusion probabilities. These results may be helpful to 
doctors or nutritionists to reconstruct the new structure of the BMI 
for region‑wise or country‑wise groups of people and provide 
pertinent treatment to the patients. To conclude, the Bayesian 
framework offers a wide range of results for the regression 
coefficients instead of the single value of regression coefficients 
in the frequentist test. It may be useful to the researcher to draw 
expressive conclusions for a better understanding of variables 
in the data.
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