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a b s t r a c t

De novo transcriptome sequencing is a robust method for microRNA (miRNA) target gene prediction,
especially for organisms without reference genomes. Following exposure of Megalobrama amblycephala
to ammonia (0.1 or 20 mg L�1 ), two cDNA libraries were constructed from the fish gills and sequenced
using Illumina HiSeq 2000. Over 90 million reads were generated and de novo assembled into 46, 615
unigenes, which were then extensively annotated by comparing to different protein databases, followed
by biochemical pathway prediction. The expression of 2666 unigenes significantly differed; 1961 were
up-regulated, while 975 were down-regulated. Among these, 250 unigenes were identified as the targets
for 10 conserved and 4 putative novel miRNA families by miRNA target computational prediction. We
examined expression of ssa-miRNA-21 and its target genes by real-time quantitative PCR and found
agreement with the sequencing data. This study demonstrates the feasibility of identifying miRNA tar-
gets by transcriptome analysis. The transcriptome assembly data represent a substantial increase in the
genomic resources available for Megalobrama amblycephala and will be useful for gene expression profile
analysis and miRNA functional annotation.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Next-generation sequencing (NGS)-based RNA sequencing
(RNA-seq) methods for transcriptome analysis simultaneously
allows acquisition of sequences for gene discovery and also helps
identify transcripts involved in specific biological processes.
Recent advances in RNA-seq have generated an unprecedented
global view of the transcriptome and provide a more efficient
method to explore the transcriptional landscape [1,2]. In addition,
the properties of RNA-seq (such as its dynamic range, sensitivity
and specificity) also make it ideal for quantitatively analyzing
various aspects of gene regulation [3]. Importantly, RNA-seq
technologies do not require prior knowledge of the genomic
sequence, and compared to traditional sequencing methods, are
more practical in terms of time, cost, labor, amount of data pro-
duced, data coverage, sensitivity and accuracy [4,5]. Therefore,
they are considered to be efficient and reliable for genome and
B.V. This is an open access article u
transcriptome sequencing, and are suitable for the study of non-
model organisms such as economically important freshwater fish
species.

Blunt snout bream (Megalobrama amblycephala), which
accounts for an high proportion of Chinese aquaculture yields,
appears prone to disease out-breaks when exposed to high tem-
peratures and elevated ammonia concentrations [6]. Based on this
finding, we predicted that M. amblycephala is relatively sensitive to
ammonia exposure. This represents an important concern as
ammonia is one of major environmental pollutants in fish culture,
especially in recirculation systems [7–11]. While ammonia can be
removed by biological filtration or water exchange, a transient,
sudden and rapid increase in ammonia levels may be detrimental
to fish [12]. Excessive ammonia can cause fish growth reduction
[13,14], tissue erosion and degeneration [15,16], as well as immune
suppression and high mortality [17]. However, the molecular
mechanisms involved in ammonia detoxification are still unclear.

MicroRNAs (miRNAs) are 20–22-nt non-coding RNAs that play
important roles in post-transcriptional gene regulation. In animal
cells, miRNAs regulate their targets by translational inhibition and
mRNA destabilization [18], and may also play a role in the stress
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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response [19–22]. The growing body of literature showing altera-
tions in miRNA profiles in response to environmental and endo-
genous exposures indicates that miRNAs may play important roles
as stress regulators. Therefore, dissecting their biological function
may be useful in understanding the molecular mechanisms
involved in ammonia-induced toxicity in M. amblycephala. As
identification of the biological functions of these miRNAs requires
target prediction, in this study, we aimed to construct a more
powerful transcriptome dataset for target identification.

Although two parallel M. amblycephala expressed sequence tag
analyses have already been conducted using certain tissues
[23,24], the data generated here represent the first effort to
characterize ammonia exposure-mediated changes in the M.
amblycephala transcriptome. The two cDNA libraries from the
ammonia treatment group and control group used for our miRNA
analysis were constructed and sequenced with Illumina HiSeq
2000. The obtained reads were assembled into transcripts and
annotated by BLAST analysis against various databases before
screening for differentially expressed genes, followed by miRNA
target prediction. Our work will provide an approach to identify
genes targeted by miRNA and to characterize their functional/
regulatory networks to increase our understanding of ammonia-
induced toxicology in M. amblycephala.
2. Materials and methods

2.1. Ethics statement

All fish handling was conducted in accordance with the
Guidelines on the Care and Use of Animals for Scientific Purposes
set up by the Institutional Animal Care and Use Committee
(IACUC) of the Freshwater Fisheries Research Center, Chinese
Academy of Fishery Sciences (Wuxi, China).

2.2. Experimental animals

We obtained 300 healthy, similarly sized (mean weight:
15.1671.24 g) M. amblycephala juveniles from the Freshwater
Fisheries Research Center, Chinese Academy of Fishery Sciences,
China. The fish were immediately transferred to the aquatic
laboratory and held in three 500-L fiberglass tanks (N¼100 fish/
tank). During acclimation, each tank was supplied with pre-
aerated municipal water (pH 7.8570.08; chloride, 15–18 mg L�1;
dissolved oxygen, 5.16–6.53 mg L�1; total ammoniao0.05 mg L�1;
and baseline nitrite, o0.1 mg L�1) and maintained at 2071 °C
with natural light and photoperiod. Fish were provided a com-
mercial pelleted diet twice daily at a ration of 3% total body
weight. The water exchange rate was 33% per day, and the fecal
matter was removed daily from the aerated tanks.

2.3. Sample collection

Based on the LC50 estimate established in a previous study from
our group [25], the fish were subjected to a 48-h ammonia
exposure using two concentrations of ammonia: 0.1 mg L�1

(control) and 20 mg L�1 (test), with three replicate tanks for each
concentration (20 fish per tank). The ambient ammonia con-
centration for each group was adjusted to the required value by
adding a stock solution of total ammonia-nitrogen (TAN). After a
48-h exposure to ammonia, three fish were collected randomly
from each tank and anesthetized with MS-222 (Sigma-Aldrich, St
Louis, MO, USA) to obtain gill-pooling samples that were stored at
�80 °C until RNA extraction for RNA-seq analysis.
2.4. cDNA library construction and sequencing

Total RNA was obtained from the fish gills using a total RNA
purification kit (LC Sciences, Houston, TX, USA) and was further
purified using the TruSeq RNA LT Sample Prep Kit v2 (Illumina, San
Diego, CA, USA) according to the manufacturer’s protocol. Oligo-dT
beads were used to obtain poly (Aþ) mRNA from a total RNA pool
consisting of equal quantities of total RNA from two sample types
(the control and treatment groups). Purified mRNAs were then
fragmented using divalent cations under elevated temperatures,
and then converted to dsDNA by two rounds of cDNA synthesis
using reverse transcriptase and DNA polymerase I. After the end
repair process, DNA fragments were ligated with adaptor oligos
[26]. The ligated products were amplified (15 PCR cycles) to gen-
erate an RNA-seq library. cDNA sequencing was performed using a
Genome Analyzer IIx (Illumina).

2.5. Data processing, assembly and functional annotation

Raw data generated by Illumina sequencing were preprocessed
to remove the adaptor sequences and any ambiguous or low-
quality reads. Subsequently, de novo assembly of the clean reads
was performed using the assembly program Trinity [27,28]. First,
for fast and efficient transcript assembly, the short reads were
assembled into high-coverage contigs that could not be extended
farther in either direction using a k-mer-based approach. Then, the
related contigs were clustered, and a de Bruijn graph was con-
structed for each cluster. Finally, in the context of the corre-
sponding de Bruijn graph and all plausible transcripts, alter-
natively spliced isoforms and transcripts were derived.

All assembled transcripts were compared with publicly avail-
able databases including Nr (NCBI non-redundant protein
sequences), KOG/COG (Clusters of Orthologous Groups of proteins)
[29], Swiss-Prot (a manually annotated and reviewed protein
sequence database) [30], KO (KEGG ortholog database) [31], Pfam
(protein family) [32] and GO (Gene Ontology) (http://www.gen
eontology. org/). The Nr, KOG/COG, Swiss-Prot and KO databases
used BLASTx analysis with a cut-off E-value of 10�5, while Pfam
used Hmmerscan and GO used Blast2GO [33]. The best BLAST hits
from all BLAST results were parsed for a homology-based func-
tional annotation. For the nr annotations, the Blast2GO program
was used to obtain GO annotations of unique assembled tran-
scripts to describe biological processes, molecular functions and
cellular components.

2.6. Differential gene expression profiling

The expression abundance for each assembled transcript was
measured using the reads per kilobase per million mapped reads
(RPKM) values. All reads were mapped onto the non-redundant
set of transcripts to quantify the abundance of assembled tran-
scripts. Bowtie was used for read mapping and applied for RPKM-
based expression measurement. The expression levels for each
read for the two different ammonia concentrations (0.1 mg/L and
20 mg/L) were calculated using the number of reads with a specific
match. When comparing the two samples, a minimum two-fold
difference in log2 expression was required to indicate differential
expression.

2.7. miRNA target prediction

miRNA-seq analysis was conducted in the same biological
samples as the mRNA-seq as described above. Small RNA libraries
were constructed using a Small RNA Cloning Kit (TaKaRa). RNAwas
purified by polyacrylamide gel electrophoresis (PAGE) to enrich for
molecules in the 17–27 nt range, and then was ligated with 5ʹ and
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Table 1
Bluntnose black bream transcriptome sequencing results.

Sample Raw data Valid data Valid ratio (%) Q20 percentage (%)

Read Base Read Base
CG 44,578,630 4,457,863,000 44,103,206 4,410,320,600 98.93 95.24
TG 46,295,912 4,629,591,200 45,331,332 4,533,133,200 98.88 95.42

CG: Gills of Blunt nose black bream without ammonia exposure; TG: gills of Blunt nose black bream under ammonia exposure 48 h.

Table 2
cDNA library sequencing results.

Parameter Number

Number of unigene 46,615
Total bases of unigene (bp) 43,774,977
Number of unigene Z500 bp 24,715
Mean length of unigenes (bp) 939
N50 1593
Maximal length of unigenes (bp) 16,157
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Fig. 1. Size distribution of the assembled unigenes in the sequenced cDNA library.

Table 3
BLAST analysis of non-redundant unigenes against public databases.

Database Number of annotated
unigenes

Percentage of annoted unigenes
(%)

Nr 25,180 50.02
Pfam 18,803 40.34
Swiss-prot 19,997 40.90
KO 14,385 30.86
KOG 18,789 40.31
GO 17,773 38.13

Nr: NCBI non-redundant protein sequences, Pfam: Protein family, Swiss-Prot: A
manually annotated and reviewed protein sequence database, KO: KEGG Ortholog
database, KOG: Clusters of Orthologous Groups of proteins and GO: Gene Ontology.
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3ʹ adapters. The resulting samples were used as templates for
cDNA synthesis, followed by PCR amplification. The obtained
libraries were subjected to sequencing using the Illumina
sequencing-by-synthesis technology. After the run, image analysis,
sequencing quality evaluation and data production summarization
were performed using the Illumina/Solexa pipeline. All small RNA
data has been deposited into the NCBI Sequence Read Archive
(Database ID: SRA322742). The sequencing data was pretreated to
discard low-quality reads, 3ʹ-adaptor reads, 5ʹ-adaptor con-
taminants and sequences shorter than 18 nucleotides. After trim-
ming the 3ʹ adaptor sequence, sequence tags were mapped onto
the transcriptome of M. amblycephala using Bowtie. Any small
RNAs that were exact matches to the transcriptome of M. ambly-
cephala were used from further analysis. The mapped reads were
compared to the miRBase (19.0) to annotate conserved miRNAs. To
predict novel miRNAs, miREvo [34] and miRDeep2 [35] were used.

The miRanda toolbox was utilized for computational identifi-
cation of differentially expressed miRNA targets [36], using the
complementary region between miRNAs and mRNAs and factoring
in the thermodynamic stability of the miRNA-mRNA duplex. All
the mRNAs used for target prediction came from the differentially
expressed unigenes obtained above. Regions of complementarity
between the miRNA and the 3'UTR of the mRNA were examined
using a dynamic programming algorithm of the miRanda toolbox
and the scores, which were based on sequence complementarity
as well as minimum free energy of RNA duplex, were calculated
using the Vienna RNA package [37]. All detected targets with
scores and energies lower than the threshold parameters of S490
(single-residue pair scores) and ΔG o�17 kcal/mol (minimum
free energy) were selected as potential targets.

2.8. Real-time quantitative PCR (RT-qPCR) validation

The sequencing results were validated by RT-qPCR using the
One Step PrimeScript miRNA cDNA Synthesis Kit (TaKaRa) for
miRNA, the PrimeScript RT reagent Kit with gDNA Eraser (TaKaRa,
Shiga, Japan) for mRNA and SYBR Premix Ex Taq II (2x) (TaKaRa)
for RT-qPCR, according to the manufacturer protocols. The fol-
lowing primers were used: For ssa-miR-21b, [F: 5ʹ-
AGCGGCGGTGAGTAT TACTTC-3ʹ, R: 5ʹ-AGCGGCGGTGAGTAT-
TACTTC-3ʹ]; interleukin-10 (IL-10), (F: 5ʹ-AAGGAGCTCCGTTCTG
CATAC-3ʹ, R:5ʹ-AGTCGATGGGTGTTTTCGGG-3ʹ); ferritin (FRIS) (F:
5ʹ-CCGAAATCCGCCAGAACTAC-3ʹ, R: 5ʹ-GCTTATCGGCAT GCTCTCTC-
3ʹ); and C-C chemokine receptor type 9 (CCR9) (F: 5ʹ-CACACTTCAC
AAACCGCCTG-3ʹ, R: 5ʹ-AGCCATAGATGGAATCGGCG-3ʹ). Unless
specified, the primers were purchased from Sangon Biotech
(Shanghai, China) and RT-qPCR quantification was carried out
using the PRISM

s

7900HT Real-Time PCR System (Life Technolo-
gies/Applied Biosystems, Foster City, CA, USA). To normalize
expression values, U6 snRNA for miRNA and β-actin for mRNA
were used as housekeeping controls [38,39]. Expression levels
were quantitatively analyzed using the 2�ΔΔCT method [40]. One-
way ANOVA tests were performed using SPSS 17.0 to determine
significant differences. Each experiment was repeated in triplicate.
3. Results and discussion

3.1. De novo assemblies and annotation of unigenes

We generated 90.87 million raw reads by sequencing, and
submitted this raw data to the NCBI Short Read Archive under the
accession numbers SRX1021887 and SRX1021888. After trimming,
89.43 million clean reads corresponding to 10.87 GB clean bases
(Table 1) remained, which were then assembled using the de novo
assembly program Trinity [27]. These short reads were further
assembled into 46,615 unigenes, which had an average length of
939 bp (Table 2). The size distribution of these transcripts ranged
from 201 to 16,157 bp, of which 24,715 were larger than 2000 bp.
Fig. 1.



Fig. 2. KOG annotations. of the identified M. amblycephala unigenes.

Fig. 3. Level 2 GO term distributions for the biological process, cellular component and molecular function categories.

Table 4
Top 10 list of the gene number of pathway.

Pathway hierarchy 2 Unigene number

Signal transduction 1502
Cell communication 1185
Immune system 1140
Signaling molecules and interaction 802
Endocrine system 707
Cancers 704
Carbohydrate metabolism 542
Amino acid metabolism 485
Nervous system 450
Lipid metabolism 407
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3.2. Annotation of predicted proteins

A total of 46,615 unigenes (50.02% of the transcripts) matched
known genes corresponding to 25,180 annotated proteins (Table 3,
Table S1). An additional functional annotation of the unigenes of
M. amblycephala was performed by searching for putative ortho-
logs and paralogs within the KOG database. A total of 46,615
unigenes (37.46%) were assigned to 26 eukaryotic orthologous
groups (Fig. 2). The category “General function prediction only,”
under which 3,151 unigenes (18.04% of 17,462 unigenes) could be
grouped was the largest, followed by the categories “Signal
transduction mechanisms” (3140, 17.98%), “post-translational
modification, protein turnover, chaperone” (1468, 8.41%) and
“Transcription” (1238, 7.10%).

3.3. GO annotation and KEGG pathway analyses

After GO annotation, M. amblycephala transcripts could be
assigned to three categories: biological processes, molecular
functions and cellular components (Fig. 3). Searching against the
Kyoto Encyclopedia of Genes and Genomes Pathway database
(KEGG) revealed that 18,780 unigenes could be matched to 148
KEGG pathways. The most represented pathways in hierarchy
2 were the “Cell Communication” (1185 unigenes) and the
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“Immune System” (1140 unigenes) pathways (Table 4). Multiple
pathways and processes related to immune function were also
identified, such as the “Toll-like receptor signaling” pathway [41],
the “chemokine signaling” pathway [42] and “Complement and
coagulation cascades” [43]. This suggests that exposure of M.
amblycephala to higher concentrations of ammonia affects various
processes involved in immune activation and functioning.

3.4. Differential gene expression in response to ammonia exposure

Based on the transcriptome sequence data, two differential
gene expression (DGE) libraries representing the control and
treatment groups were constructed to identify the differentially
expressed unigenes. After removing low-quality reads, 44,103,206
and 45,331,332 clean reads were generated, respectively, for the
control and treatment libraries (Table 1). Among these clean reads,
36,138,990.41 readcounts from the control group and
37,738,333.89 readcounts from the treatment group could be
mapped to unigenes.

Analysis revealed that 2666 genes showed significantly differ-
ent expression when comparing the M. amblycephala in two dif-
ferent ammonia concentrations (0.1 mg/L and 20 mg/L). Of these,
1691 were up-regulated and 975 were down-regulated in the
control samples compared to the treatment samples (Fig. 4 and
Table S2). GO enrichment analysis of the DEGs indicated that these
genes were significantly enriched in oxidation–reduction pro-
cesses (biological processes), integral to membrane (cellular
components) and protein binding (molecular functions) (Table S3).
Pathway enrichment analysis found the DEGs to be mainly enri-
ched in complement and coagulation cascades (Table S4). Addi-
tionally, the findings of this study were consistent with well-
established reports of heat shock protein upregulation in response
to a wide range of environmental stressors: 70-kilodalton heat
shock protein (HSP70), HSP 27 and HSP90 were significantly up-
regulated in M. amblycephala following ammonia exposure. HSP
are also potent activators of the innate immune system [44,45]. To
inhibit innate immunity and ensure successful infection,
Fig. 5. MicroRNA-gene network analysis. Depiction of gene targets of the differentially
amblycephala ammonia exposure were assembled in a network based on GO annotations
the rectangles represent the target genes.
pathogens have evolved mechanisms involving host miRNA-
mediated down-regulation of heat shock protein expression.
Interestingly, ammonia exposure resulted in down-regulation of
alpha-2-macroglobulin, complement components and C-type lec-
tin, all of which play important roles in the innate immune
response [46–49]. These findings suggest that exposure to
ammonia may impair immune responses in fish. Thus, prolonged
ammonia exposure may have population consequences stemming
from a reduced the ability to resist disease following increases in
the ammonia levels.

3.5. miRNA target prediction

The identification of miRNAs and their targets is important in
understanding their physiological and functional roles. To probe
the targets of differentially expressed miRNAs following ammonia
exposure in fish, we produced small RNA libraries from the gill
samples of control or ammonia-exposed M. amblycephala and
subjected these to Illumina deep sequencing. Small RNA deep
sequencing data were aligned with miRBase 18.0 to search for
known miRNAs with complete matches, that is, to narrow down
potential targets to those differentially expressed miRNAs whose
expression was inversely related to that of the mRNAs. This
approach increases the strength to enable discovery of the true
target genes and functions affected by miRNA dysregulation. In
total, among the differentially expressed target genes, the 250
genes identified were differentially expressed in the opposite
direction in the target tissue. These genes were found to be the
targets of 10 conserved and 4 putative novel miRNA families,
including ssa-miR-142a-5p, ssa-miR-21b-3p, aca-miR-125a-5p,
ssa-miR-199a-3p, ccr-let-7i, aca-miR-184, aca-miR-214-3p and
dre-miR-144-3p (Table S5). In particular, our analysis revealed that
many of the most highly expressed miRNAs in the treatment group
were those playing a role in the immune response.

As key players in the response to ammonia, the genes targeted
by miR-21, a miRNA down-regulated in the treatment group, were
further analyzed in the present study. miR-21 was predicted to
target 23 differentially expressedM. amblycephala genes, including
protein kinase, interleukin-10 (IL-10), FRIS and CCR9 (Table S6).
Many of these play important roles in the immune response: IL-10,
which was initially identified in the supernatants of Con-A-
stimulated T cells based on its ability to inhibit the synthesis of
pro-inflammatory cytokines, has been shown to be indispensable
for the regulation of inflammation and other immune processes
[50]. Chemokine receptors such as CCR9 act as the main receptors
of chemokines, which are responsible for chemotaxis and are
released at the sites of infection, inflammation and injury [51,52].
Ferritin, which is encoded by FRIS, is likely to play a role in iron
sequestration and protection against oxidative stress [53]. The
increased mRNA levels of JNK1, FRIS, and CCR9 in the ammonia
treatment group samples support our present finding where miR-
21 is significantly down-regulated following ammonia exposure.
expressed miRNA: miRNAs identified as being differentially expressed following M.
. The ovals represent the miRNAs (red, down-regulated; green, up-regulated), while
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We validated the sequencing data by examining miR-21, JNK1, FRIS
and CCR9 expression by RT-qPCR in the same samples, and found
agreement (Fig. 5).

In addition, some members of the let-7 family such as let-7a-e
and i were also expressed abundantly in the two libraries. Previous
studies have shown that the let-7 family can regulate the
expression of major cytokine-inducible proteins in response to
microbial challenge in mammals [54,55]. Taken together, our
results suggest that miRNAs might play a key role in the regulation
of immune-related gene expression in fish exposed to ammonia.

miRNAs play important roles in gene regulation by pairing to
protein-encoding mRNAs to direct their post-transcriptional
repression [56,57]. The identification of the genes targeted by
various miRNAs is an important step in understanding their phy-
siological role and in this study, we provide an overview of
miRNA-mediated gene regulation in M. amblycephala following
ammonia exposure (Fig. 5). Most miRNA-associated computational
methods comprise the prediction of miRNA genes and their tar-
gets, and an increasing number of computational algorithms and
web-based resources such as like miRanda [37], TargetScan [58],
RNAhybrid [59] and PicTar [60] have been developed to aid miRNA
research, However, animal miRNA targets are difficult to predict by
bioinformatics methods since miRNA: mRNA duplexes often con-
tain several mismatches, gaps and G:U base pairs in many posi-
tions, thus limiting the maximum length of contiguous sequences
of matched nucleotides [61]. As alternatives, several studies have
suggested that simultaneous expression profiling [62] or inverse
expression relationship analysis between miRNAs and mRNAs [63]
are effective strategies for more reliably identifying miRNA-target
mRNA pairs in large sets of transcriptome experiments [64,65]. To
decrease the false positive rates in this study, RNA-seq and miRNA-
seq experiments were conducted using the same biological sam-
ples. Likewise, to downsize the number of putative target genes,
the miRNA targets were predicted from only among the differen-
tially expressed genes.
4. Conclusions

In this study, we used a high-throughput sequencing approach
to characterize the transcriptome of M. amblycephala, a species for
which little genomic data are available. By mapping DGE tags to
the assembled transcriptome, a large number of candidate genes
involved in response to ammonia-induced stress were identified.
This study strongly indicates that miRNA is a critical factor in
determining mRNA abundance and regulation during ammonia,
further study will focus on the experimental validation of the
miRNAs of interest, using in vitro experimental knockdown or
over-expression of candidate miRNAs and mRNAs to provide an
enhanced understanding of ammonia-induced toxicity mechan-
isms in M. amblycephala.
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