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Acute glaucoma is one of the leading causes of irreversible vision impairment character-
ized by the rapid elevation of intraocular pressure (IOP) and consequent retinal ganglion
cell (RGC) death. Oxidative stress and neuroinflammation have been considered critical for
the pathogenesis of RGC death in acute glaucoma. Trimetazidine (TMZ), an anti-ischemic
drug, possesses antioxidative and anti-inflammatory properties, contributing to its thera-
peutic potential in tissue damage. However, the role of TMZ in acute glaucoma and the
underlying molecular mechanisms remain elusive. Here, we report that treatment with TMZ
significantly attenuated retinal damage and RGC death in mice with acute glaucoma, with
a significant decrease in reactive oxygen species (ROS) and inflammatory cytokine pro-
duction in the retina. Furthermore, TMZ treatment directly decreased ROS production and
rebalanced the intracellular redox state, thus contributing to the survival of RGCs in vitro.
TMZ treatment also reduced the production of inflammatory cytokines in vitro. Mechanis-
tically, the TMZ-mediated inhibition of apoptosis and inflammatory cytokine production in
RGCs occurred via the regulation of the nuclear factor erythroid 2-related factor 2/heme
oxygenase 1/caspase-8 pathway. Moreover, the TMZ-mediated neuroprotection in acute
glaucoma was abrogated when an HO-1 inhibitor, SnPP, was used. Our findings identify po-
tential mechanisms of RGC apoptosis and propose a novel therapeutic agent, TMZ, which
exerts a precise neuroprotective effect against acute glaucoma.

Introduction
Acute glaucoma is one of the main causes of irreversible visual impairment and blindness, especially
amongst people of Asian descent [1,2]. Acute glaucoma is characterized by considerably high intraoc-
ular pressure (IOP), pain and vision loss [3]. The rapid increase and decrease in IOP cause retinal is-
chemic/reperfusion (I/R) injury, thus resulting in apoptosis of retinal ganglion cells (RGCs). Although
the pathogenesis of RGCs death is not fully understood, oxidative stress and neuroinflammation have
been considered critical for the pathogenesis for RGCs death in retinal I/R injury during acute glaucoma
[4]. Current treatments that lower IOP through medication and surgery cannot completely prevent the
progressive death of RGCs in acute glaucoma. Therefore, safe and effective novel alternatives are needed
for acute glaucoma treatment.

Trimetazidine (TMZ), a piperazine-derived antianginal agent [5,6], has traditionally been used as an
anti-ischemic drug for coronary artery disease. Recently, studies have shown that TMZ possesses antiox-
idative and anti-inflammatory properties and plays cytoprotective roles in various tissues, including ner-
vous tissue, pancreatic tissue and renal tissue [7,8]. Therefore, TMZ may be a potential therapeutic alterna-
tive for acute glaucoma treatment. However, the role of TMZ in acute glaucoma has not yet been explored.
Moreover, the mechanisms by which TMZ mediates antioxidative and anti-inflammatory effects remain
elusive. Thus, in the present study, we investigated the therapeutic effect of TMZ on experimental acute
glaucoma and the antioxidative and anti-inflammatory mechanisms of TMZ.
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Materials and methods
Establishment of the retinal I/R model
Six- to eight-week-old C57BL/6J male mice were purchased from Guangdong Medical Laboratory Animal Center. The
feeding and administration of mice strictly complied with the Association for Research in Vision and Ophthalmology
Statement for the Use of Animals in Ophthalmic and Vision Research.

The mice were anesthetized with 100 mg/kg pentobarbital sodium by intraperitoneal injection. Before operation,
mice corneas were topically anesthetized with 0.5% Alcaine eye drops, and pupils were dilated with 1% tropicamide.
We then conducted cannulation into the anterior chamber of the right eye using a 30-gauge needle supplied with
balanced salt solution to maintain the IOP at 70 mmHg for 60 min. Sham operation was performed in the contralateral
eye without elevating the IOP to serve as the control. After 60 min, the IOP was normalized by withdrawing the needle,
and then tobramycin ointment was used to prevent bacterial infection.

Preparation of TMZ
TMZ with purity higher than 95% was purchased from Sigma Chemical Co. (St. Louis, U.S.A.), dissolved in sterile
PBS to a stock concentration of 0.1 mol/l, and stored at 4◦C in the dark to be used within 2 days after preparation.

Experiment grouping design
The mice were randomly divided into five groups: normal control group (Normal), Tin protoporphyrin IX dichloride
(SnPP) group, I/R group, TMZ (100 μM) group, and TMZ + SnPP group. The mice in I/R, TMZ, and TMZ + SnPP
groups were subjected to experimental I/R. The normal control and SnPP groups had sham cannulation performed
without elevating the IOP as described above. The eyes of mice in the SnPP or TMZ groups were intravitreally injected
with 1μl TMZ [9] or SnPP solution, respectively, before the onset of reperfusion. The eyes of mice in the TMZ + SnPP
group were intravitreally injected with 1μl TMZ and SnPP solution together before the onset of reperfusion. The eyes
of mice in the normal control group were injected with 1 μl of sterile PBS into the vitreous cavity.

RGC labeling and survival quantitation
Mice were anesthetized with 100 mg/kg pentobarbital sodium by intraperitoneal injection and placed in a stereotactic
apparatus (Stoelting, U.S.A.). The skull was exposed and cleaned with PVP-J. Bilateral holes were drilled at the surface
of superior colliculi. Approximately 1 μl of 4% Fluorogold (FG, hydroxystilbamidine; Fluorochrome, U.S.A.) solution
was injected into both superior colliculis. After injection, the microsyringe was kept still for 30 s and then slowly
removed. Finally, the dissected scalp was sutured with topical application of tobramycin.

To ensure proper RGC labeling, the animals were allowed 7 days for retrograde transport of FG before killing.
FG-positive RGCs were identified with a fluorescence microscope (Axio Imager; Carl Zeiss MicroImaging Inc.,
U.S.A.) in retinal flat mount. Surviving RGCs (green dots) were counted automatically using ImageJ (LOCI, Uni-
versity of Wisconsin–Madison).

Histological examination
Seven days after I/R treatment, mouse eyes were enucleated and embedded in paraffin. Every paraffin block was
sectioned 4-μm thick through the optic nerve. Three sections of each eye were cut and stained with Hematoxylin
and Eosin (H&E). The inner plexiform layer (IPL) thickness was measured within 1 mm to the optic nerve center to
quantitate retinal damage by Axiovision software (Carl Zeiss MicroImaging Inc.). The data from three sections per
eye were averaged.

Primary culture of RGCs
Primary RGCs were obtained according to the protocol published by Winzeler and Wang in 2013 [10]. In brief, reti-
nal samples were separated from neonatal mice to prepare single cell suspensions. The retinal suspension was incu-
bated in rabbit anti-mouse macrophage antibody-coated flasks (Cedarlane, U.S.A.) and goat anti-mouse macrophage
antibody-coated flasks (Jackson Immunoresearch, U.S.A.) to remove the adherent macrophages. The non-adherent
cells were transferred to Thy1.2 monoclonal antibody-coated flasks (Millipore Chemicon, U.S.A.) to collect adherent
cells. The adherent RGCs were incubated at 37◦C in 5% CO2 with RGC growth medium containing supplements as
described.
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Mix culture with BV2 cells
Mouse microglia cell line BV2 (ATCC, U.S.A.) was cocultured with primary RGCs in DMEM (high glucose 4.5 g/ml,
Gibco, U.S.A.) supplemented with 10% FBS at 37◦C with 5% CO2 and 95% air. RGCs were placed on the upper
permeable membrane of a transwell chamber, with BV2 cells grown in the lower well of the plate for 24 h before
treatment.

Establishment of the oxygen-glucose deprivation and reperfusion model
The oxygen-glucose deprivation and reperfusion (OGD/R) model was established as follows: the culture medium was
replaced with glucose-free DMEM (Gibco) after washing the cells twice with PBS, and then the cells were placed in
a modular incubator chamber (Billups-Rothenberg, Inc., Del Mar, CA) filled with a gas mixture of 5% CO2 and 95%
N2 at 37◦C for 3 h. The control cells were incubated in serum-free medium with 4.5 g/l d-glucose under normoxic
conditions (5% CO2 and 95% air) for the same duration. At the end of the exposure period, the cells were returned
to normoxic conditions with glucose and incubated for 12 h.

Cell treatment with TMZ
Primary RGCs were cultured in six-well plates or transwell plates before treatment. TMZ was added at indicated
concentrations into cell supernatants 6 h prior to the onset of OGD/R or other assays. TMZ was diluted in DMEM
and added at concentrations ranging from 0.1 to 100 μM.

ELISA
The cytokines TNFα and IL1β were measured in the culture supernatant of BV2 cells. Immunochemical analyses
were conducted using commercially available ELISA kits (eBioscience, Vienna, Austria). For measuring the level of
3-nitrotyrosine proteins in retinal homogenates, a commercial kit was used (OxiSelect Nitrotyrosine kit; Cell Biolabs,
Inc., U.S.A.), following the manufacturer’s instructions.

Viability and apoptosis assays in RGCs
Cell viability was measured using the CCK8 Assay Kit (Beyotime Biotechnology, China) according to the manufac-
turer’s protocol. CCK8-reduction activity was presented as the percentage of the unexposed control cells (100%). Flow
cytometry was also performed to measure OGD/R-induced apoptosis of RGCs by using a propidium iodide (PI) and
Annexin V-FITC detection kit (BD Biosciences, New York, U.S.A.) according to the manufacturer’s instructions. Flow
cytometric analysis using FlowJo 7.6.2 (FlowJo, LLC) was performed following standard protocols.

Inhibition of Ho-1 activity
Ho-1 activity was inhibited in vivo through an intraperitoneal injection of SnPP (40 mol/kg, Tocris Bioscience, U.S.A.)
0.5 h prior to I/R and once daily for 3 days after I/R. SnPP was dissolved in 0.1 N NaOH and diluted with PBS (pH =
7.4).

Cells were seeded in a six-well plate at approximately 70% confluency. Ten micromolar SnPP or vehicle was added
to the culture medium for 6 h. The cells were then treated with TMZ or vehicle for 6 h and subjected to OGD/R.

Detection of intracellular ROS levels
Quantitation of intracellular reactive oxygen species (ROS) accumulation was performed by fluorescence detection as
well as flow cytometry using the fluorescent probe 2′,7′-dichlorofluorescein diacetate (DCFH-DA, KeyGEN, China).
Primary RGCs were subjected to the appropriate treatments and then incubated for 20 min in the dark at 37◦C with
10 μM DCFH-DA solutions. After incubation, the cells were analyzed within 30 min. Mean fluorescence intensity
of ROS was measured using a fluorescence microscope, and flow cytometry was performed using a Fortessa system
(BD). The data were analyzed using ImageJ and FlowJo software.

Analysis on MMP (JC-1 staining)
The changes in mitochondrial membrane potential (MMP) in RGCs were explored using the
5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl benzimidazolyl carbocyanine iodide (JC-1) probe as described by the
manufacturer and then visualized using an inverted fluorescence microscope. The average result of three plates of
cells or mice were obtained for each condition.
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Quantitative real-time PCR
Total RNA was extracted from the retinal samples and cultured cells by TRIzol reagent (Invitrogen, U.S.A.) fol-
lowing the manufacturer’s protocol. cDNA synthesis was conducted with PrimeScript RT Master Mix (TaKaRa,
China). Quantitative analysis was performed with a light cycler 480 real-time PCR system. The expression level
of target mRNA was measured and normalized to Gapdh. The primer sequences are as follows: GAPDH forward
primer CCGGGAAACTGTGGCGTGATGG; GAPDH reverse primer AGGTGGAGGAGTGGGTGTCGCTGTT;
TNFα forward primer GCACCACCATCAAGGACTCAA; TNFα reverse primer TCGAGGCCCAGTGAATTCG;
and IL1β forward primer GGGCCTCAAAGGAAAGAATC, IL1β reverse primer CTCTGCTTGTGAGGTGCTGA.

Western blot
Total protein was isolated from the retinal samples and cultured cells according to standard procedures. Nuclear pro-
tein was extracted using ProteoExtract R© Subcellular Proteome Extraction Kit (Merck Millipore, Germany) following
the manufacturer’s protocol. Proteins were run on 12% polyacrylamide gels following standard protocol. The expres-
sion of total protein and nuclear protein was normalized to Gapdh and Histone H3, respectively, and then quantitated
using ImageJ.

The primary antibodies and dilutions used were as follows: anti-Nrf2 (CST, U.S.A., 1:400), anti-Ho-1 (CST, 1:200),
anti-cleaved-Caspase-8 (CST, 1:400), anti-Gapdh (CST, 1:400), anti-Histone H3 (Abcam, U.K., 1:400).

Caspase-8 activity assay
The Caspase-8 activity of retinal tissues and RGCs were performed using the CaspGLOWTM Fluorescein Active
Caspase-8 Staining Kit (BioVision, Milpitas, U.S.A.) according to the manufacturer’s instructions. One microliter
of FITC-IETD-FMK was added into each tube containing 300 μl of cell suspension and incubated for 1 h at 37◦C in
5% CO2. Then, the cells were resuspended, and the fluorescence intensity was measured at Ex/Em = 485/535 nm.

Statistical analysis
The data were presented as the mean +− S.D. One-way ANOVA was performed, followed by Bonferroni’s post hoc
test using SPSS software, version 17 (SPSS Inc., Chicago, IL, U.S.A.). All statistical tests were two-tailed, and a P-value
below 0.05 was considered statistically significant.

Results
Neuroprotective effects of intravitreal TMZ in IOP-induced retinal damage
To evaluate the role of TMZ in acute glaucoma, TMZ was administered intravitreally before the acute elevation of
IOP. We first investigated the change in retinal thickness in three independent groups of mice. Retinas exposed to I/R
displayed a significant decrease in IPL thickness compared with normal retinas 7 days after reperfusion. However,
the damage to the retina, especially to the IPL, was significantly ameliorated by TMZ (Figure 1A,B). The irreversible
apoptosis of RGCs is another important indicator for the functional damage of the retina. FG analysis demonstrated
that the number of RGCs was decreased in the experimental mice at 7 days after reperfusion compared with that
observed in control mice (Figure 1C,D). Intravitreal TMZ injections significantly decreased the severity of retinal
damage and extent of RGC death (Figure 1C,D). Previous studies have shown that overproduction and accumulation
of neurotoxic mediators, including ROS, TNF-α, and IL-1β, play important roles in the primary and secondary waves
of RGC apoptosis [11-13]. As shown in Figure 1E, the production of nitrotyrosine (a protein derivative of ROS)
was significantly increased in the whole retina at 24 h after reperfusion compared with that in control retinas, and
it declined in the retinas treated with TMZ. In addition, intravitreal injection of TMZ significantly suppressed the
expression of TNFα and IL1β mRNA (Figure 1F,G). Collectively, these data show that TMZ exerts neuroprotective
effects against IOP-induced retinal damage.

TMZ directly protects RGC apoptosis induced by OGD/R
Next, we performed a series of in vitro studies to explore whether TMZ is capable of directly inhibiting the apoptosis
of RGCs and the underlying mechanisms. We first identified primary cultured RGCs by characteristic markers. Im-
munostaining results indicated that primary RGCs indeed expressed Brn-3a, β3-tubulin, and RBPMS (Figure 2A).
CCK8 assay was used to test whether TMZ can influence cellular metabolism or proliferation. The results showed that
cellular metabolism was affected when TMZ concentration reached 50 μM (Figure 2B). Therefore, we selected the
concentration range from 0.1 to 10 μM for subsequent in vitro studies. We then exposed primary RGCs to OGD/R to
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Figure 1. Neuroprotective effects of intravitreal TMZ against IOP-induced retinal damage

(A,B) H&E staining of retinal cross-sections showing that intravitreal TMZ injection significantly inhibited the attenuation of total retinal

thickness and IPL thickness in response to I/R damage 7 days after reperfusion. (C,D) FG labeling was performed 7 days after reperfusion.

The results indicated that TMZ significantly increased the number of surviving cells in the RGC layer compared with that in the untreated I/R

group. (E) The production of nitrotyrosine was significantly decreased by TMZ treatment in the whole retina 24 h after reperfusion compared

with that in the untreated retinas. (F,G) As measured by real-time PCR, intravitreal injection of TMZ significantly suppressed the expression

of TNFα and IL1β mRNA in retinas. Scale bar =50 μm. The data represents the means +− S.D. (n=6); **P<0.01. Abbreviations: GCL, ganglion

cell layer; INL, inner nuclear layer; ONL, outer 462 nuclear layer.

effectively mimic the IOP-induced I/R damage in vivo [4,14]. OGD/R decreased cell viability and TMZ (0.1–10 μM)
treatment significantly increased the number of surviving RGCs (Figure 2C). The flow cytometry results showed that
the number of apoptotic cells marked by PI and Annexin V was increased after OGD/R exposure, whereas TMZ treat-
ment significantly decreased the number of PI + Annexin + cells (Figure 2D,E). The TMZ concentration ranging from
1 to 10μM was found to be the most effective in exerting cytoprotective effects against OGD/R. In addition, TMZ sig-
nificantly decreased caspase-8 activation as measured by Western blotting and caspase-8 activity assay (Figure 2F,G).
These results demonstrate that TMZ decreases OGD/R-induced RGC apoptosis in vitro.

The antioxidative effect of TMZ is involved in the TMZ-mediated
neuroprotection in RGCs
Primary RGCs in the OGD/R group display a greater extent of ROS production than the cells in the control group.
TMZ was found to significantly attenuate the overproduction of ROS in RGCs exposed to OGD/R as marked by the
reduction in green fluorescence in a concentration-dependent manner (Figure 3A,B). The diminished ROS produc-
tion in primary RGCs by TMZ could also be observed by flow cytometry. The peak area occupied by FITC+ cells,
representing cells with excess ROS, was found to be significantly decreased by TMZ treatment (Figure 3C,D). OGD/R
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Figure 2. TMZ directly protects RGCs against apoptosis induced by OGD/R

(A) Immunostaining results indicated that primary RGCs indeed expressed characteristic markers of RGCs including Brn-3a (red), RBPMS

(green, left), and β3-tubulin (green, right). (B) CCK8 assay showed that cellular metabolism was affected when TMZ concentration reached 50

μM. (C) CCK8 assay showed that cell survival was significantly increased by TMZ treatment after OGD/R. (D,E) The results of flow cytometry

showed that the proportion of apoptotic cells was increased to 15.8% (+−3.1%) after OGD/R exposure. TMZ significantly decreased the

proportion of PI + Annexin + cells to an average of 2.93%. (F) Western blot analysis demonstrated that TMZ significantly suppressed the

level of cleaved caspase-8. (G) The reduction in caspase-8 activity was confirmed by caspase-8 activity assay. Scale bar =20 μm. The data

represent the means +− S.D. (n=8); *P<0.05, **P<0.01.

also resulted in a decrease in the MMP in RGCs, which was marked by fluorescence shift from red to green. However,
TMZ treatment protected mitochondrial function by restoring the MMP (Figure 3E,F). These results further support
the antioxidative effect of TMZ on RGCs in vitro.

TMZ conferred protection against apoptosis in RGCs via Nrf2/Ho-1
signaling
The above results showed that the antioxidative effects of TMZ are actively involved in the TMZ-mediated protection
of RGCs. Nrf2, a transcription factor, is regarded as a master regulator of cellular responses to oxidative stress. Thus,
we next determined whether Nrf2 and its downstream signaling factor, Ho-1, is associated with the TMZ-mediated
protection against RGC apoptosis. Western blotting results showed that TMZ (10μM) treatment significantly induced
the nuclear translocation of Nrf2 in RGCs under OGD/R conditions (Figure 4A). TMZ treatment also increased Ho-1
protein expression compared with vehicle treatment (Figure 4B). To further confirm the role of Nrf2/Ho-1 signaling
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Figure 3. The antioxidative effect of TMZ is involved in the TMZ-mediated neuroprotective effect on RGCs

(A,B) After OGD/R exposure, primary RGCs were subjected to ROS overproduction (green fluorescence). TMZ could significantly decrease

ROS levels in RGCs. (C,D) As marked by the peak area of FITC+ population, the proportion of cells with excess ROS was significantly

decreased from 80% (+−6.1%) to 30% (+−1.7%) in the OGD/R + TMZ RGCs. (E,F) OGD/R decreased the MMP, which was marked by a

fluorescence shift from red to green in RGCs. TMZ pretreatment elevated the PE/FITC ratio. Scale bar =50 μm. The data represent the

means +− S.D. (n=8); **P<0.01.

in the TMZ-mediated neuroprotection of RGCs, SnPP, a Ho-1 inhibitor was used. Our results showed that SnPP treat-
ment significantly but incompletely reversed the TMZ-mediated neuroprotection of RGCs (Figure 4C,D). The reduc-
tion in intracellular ROS (Figure 4E,F) and alterations in MMP (Figure 4G,H) induced by TMZ were partially inhib-
ited by SnPP. Taken together, these data suggest that TMZ confers neuroprotection through an Nrf2/Ho-1-dependent
mechanism.

Nrf2/Ho-1 signaling is essential for TMZ-mediated anti-inflammatory
effects in vitro
We also performed a series of in vitro experiments to further evaluate the anti-inflammatory effects of TMZ and
to identify the underlying mechanisms. For this purpose, BV2 cells, an established mouse microglial cell line was
cultured under OGD/R conditions. BV2 cells were plated in medium in the presence or absence of TMZ for 6 h
before OGD/R. We used ELISA kits to examine the concentration of TNFα and IL1β in the supernatant of BV2
cells after OGD/R. The OGD/R-induced overproduction of TNFα and IL1β could be inhibited by TMZ (Figure 5A).
The real-time PCR results further confirmed the anti-inflammatory effects of TMZ (Figure 5B). Nrf2/Ho-1 signaling
plays an important role in the TMZ-mediated neuroprotection of RGCs. Thus, we next assessed whether this pathway
is also involved in the anti-inflammatory effects of TMZ. As shown in Figure 5C,D, TMZ significantly induced the
nuclear translocation of Nrf2 and increased the protein expression of Ho-1 in BV2 cells under OGD/R conditions. Our
results demonstrated that SnPP significantly but incompletely reversed the TMZ-mediated inhibition of TNFα and
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Figure 4. TMZ protects RGCs from apoptosis via Nrf2/Ho-1 signaling

(A,B) Western blot analysis demonstrated that TMZ elevated the nuclear translocation of Nrf2 and total expression of Ho-1 in primary RGCs

under OGD/R conditions. (C,D) TMZ suppressed OGD/R-induced apoptosis in primary RGCs. SnPP treatment significantly but incompletely

reversed TMZ-mediated cytoprotective effect on RGCs. (E,F) Flow cytometry assay of ROS accumulation (FITC+) in RGCs. SnPP resulted

in an increase in the proportion of FITC+ cells and inhibited the TMZ-induced antioxidative effect. (G,H) The decrease in PE/FITC ratio

indicated significant disruption of the MMP in the SnPP-treated RGCs, which could not be rescued by TMZ treatment. Scale bar =50 μm.

The data represent the means +− S.D. (n=8); **P<0.01.

IL1β production (Figure 5E,F). In addition, the inhibitory effect of TMZ on caspase-8 activation was significantly
decreased after SnPP treatment (Figure 5G). These results indicate that TMZ is capable of regulating Nrf2/Ho-1
signaling to exert anti-inflammatory effects in vitro.

TMZ protects RGCs from IOP-induced damage via Nrf2/Ho-1 signaling
Our in vitro studies showed that Nrf2/Ho-1 signaling plays a critical role in TMZ-mediated antioxidative and
anti-inflammatory effects. Therefore, we determined whether Nrf2/Ho-1 signaling was also involved in the
TMZ-mediated neuroprotection against IOP-induced retinal damage. Western blotting results showed that TMZ
treatment significantly induced the nuclear translocation of Nrf2 and increased the expression of Ho-1 in the reti-
nas (Figure 6A,B). SnPP was intraperitoneally injected (40 mol/kg) 0.5 h prior to I/R and once daily for 3 days after
I/R. As shown in Figure 6C–F, treatment with the Ho-1 inhibitor significantly blocked the TMZ-mediated neuropro-
tection against IOP-induced retinal damage. The Ho-1 inhibitor also significantly decreased the inhibitory effect of
TMZ on ROS accumulation and inflammatory cytokine production (Figure 6G–I). These findings suggest that the
up-regulation of Nrf2/Ho-1 signaling may contribute, at least in part, to the TMZ-mediated neuroprotection against
IOP-induced retinal damage.
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Figure 5. Nrf2/Ho-1 signaling is essential for the TMZ-mediated anti-inflammatory effects in vitro

(A) As measured by ELISA, the concentration of TNFα and IL1β in supernatants was found to be significantly reduced by TMZ. (B) Real-time

PCR analysis showed that TMZ decreased TNFα and IL1βmRNA in the TMZ group. (C,D) TMZ significantly induced the nuclear translocation

of Nrf2 and increased the protein expression of Ho-1 in BV2 cells under OGD/R conditions. (E,F) SnPP significantly but incompletely reversed

the TMZ-mediated inhibition on TNFα and IL1β production as measured by ELISA and real-time PCR. (G) SnPP treatment significantly

decreased the inhibitory effect of TMZ on caspase-8 activation. The data represent the means +− S.D. (n=8); **P<0.01.

Discussion
Acute glaucoma jeopardizes normal vision due to substantially high IOP. The progressive loss of RGCs caused by
rapid increase in IOP is mainly responsible for irreversible blindness in acute glaucoma [15]. Currently, select-
ing effective drugs to prevent RGC apoptosis in IOP-induced retinal damage has become an attractive alternative
for next-generation glaucoma therapy. TMZ, which improves energy metabolism in ischemic myocytes, was first
developed as an antianginal drug [16]. However, a growing number of studies suggest that TMZ possesses nu-
merous non-antianginal functions, including immunosuppression [17], antioxidation [18], anti-ischemia [19,20],
and anti-apoptosis [21]. The present study demonstrated that treatment with TMZ significantly ameliorated high
IOP-induced retinal damage and RGC apoptosis, with a significant decrease in ROS and inflammatory cytokine pro-
duction in the retina. TMZ primarily exerts its therapeutic efficacy through its antioxidative and anti-inflammatory
effects. These results are consistent with those of previous studies, showing that TMZ treatment attenuates acute in-
flammatory responses and oxidative stress in experimental cardiac remodeling [22] and pancreatitis [23]. Next, we
found that the antioxidative and anti-inflammatory effects of TMZ depended primarily on the Nrf2/HO-1 pathway.
Interestingly, TMZ treatment in IOP-induced retinal damage resulted in an obvious activation of the Nrf2/HO-1
pathway, which plays a crucial role in TMZ-mediated protection against IOP-induced retinal damage. These find-
ings suggest that TMZ exerts neuroprotective effects against acute glaucoma mainly through antioxidative and
anti-inflammatory properties.

The transcription factor Nrf2 is a central regulator of cellular responses to oxidative stress stimulation [24]. Under
normal conditions, Nrf2 is an inactive complex in the cytoplasm with Kelch-like ECH-associated protein 1. When
cells undergo oxidative stress, the complex is disrupted, and, subsequently, Nrf2 translocates to the nucleus, leading
to target gene transcription, including Ho-1, a key heme-degrading enzyme [25,26]. In addition to its well-known
antioxidative properties, the Nrf2/Ho-1 signaling pathway also exhibits anti-inflammatory and anti-apoptotic prop-
erties [27,28]. In the present study, we demonstrated that TMZ treatment promoted the nuclear translocation of Nrf2
and subsequently increased the expression of HO-1 in primary RGCs and BV2 cells. Furthermore, HO-1 blockade
significantly but incompletely reversed the TMZ-mediated antioxidative and anti-inflammatory effects. Importantly,
the HO-1 inhibitor also blocked the TMZ-mediated neuroprotection in RGCs in acute glaucoma. Therefore, these
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Figure 6. TMZ protects RGCs from IOP-induced damage via Nrf2/Ho-1 signaling

(A,B) Western blot analysis demonstrated that TMZ dramatically induced the nuclear translocation of Nrf2 and increased the expression of

Ho-1 in the retinas. (C,D) Treatment with the SnPP significantly blocked the TMZ-mediated neuroprotection in IOP-induced retinal atten-

uation, especially IPL thickness. (E,F) SnPP dramatically inhibited the TMZ-mediated neuroprotection in IOP-induced RGC apoptosis. (G)

SnPP also significantly decreased the inhibitory effect of TMZ on nitrotyrosine production. (H,I) Real-time PCR results confirmed that SnPP

significantly suppressed the TMZ-induced decrease in TNFα and IL1β mRNA levels compared with the TMZ only group. The data represent

the means +− S.D. (n=8); **P<0.01.

compelling findings suggest that Nrf2/HO-1 signaling contributes, at least in part, to the TMZ-mediated neuropro-
tection in acute glaucoma.

Caspase-8, a well-characterized initiator of apoptotic signaling, has been shown to have multiple non-apoptotic
functions. Burguillos et al. reported that caspase-8 promotes microglial activation and neuroinflammation [29]. Our
recent study indicated that caspase-8 mediates the production of cytokines, including IL1β and TNFα in immuno-
cytes, which play important roles in high IOP-induced retinal damage [4]. In the present study, we observed that
TMZ inhibited caspase-8-mediated RGC apoptosis. Furthermore, TMZ reduced caspase-8-dependent inflammatory
reactions both in vivo and in vitro. Therefore, combining our results on the protective role of TMZ in acute glaucoma
with existing evidence enables us to propose a mechanistic model that is described in Figure 7 (proposed model for
the neuroprotective mechanisms of TMZ in acute glaucoma).

The unique pharmacological properties of TMZ enhance its efficacy and enable it to reach its peak concentration
in less than 2 h. Timely treatment is closely associated with efficacy of neuroprotection [1,2]. Hence, TMZ could be
used to halt the early stages of RGCs apoptosis in acute glaucoma, which is attributable to its fast mechanism of action.
Due to its efficacy and safety, TMZ could be used a promising candidate to treat acute glaucoma and other related
ocular diseases.

In summary, our study initially demonstrated the neuroprotective effects of TMZ on experimental acute glaucoma.
Our results showed that TMZ inhibited RGC apoptosis and inflammation in vitro and in vivo, possibly by inhibiting
caspase-8 signaling. Importantly, we further determined the neuroprotective mechanisms of TMZ by demonstrating
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Figure 7. Proposed model for the neuroprotective mechanisms of TMZ in acute glaucoma

I/R damages the function of mitochondria by disrupting the MMP, which leads to the overproduction of ROS. ROS pushes the cells toward

the apoptotic fate and stimulates neuroinflammation. Nrf2/Ho-1 pathway can be activated by TMZ to confer protective effects by inhibiting

the accumulation of ROS. Immunocyte activation during injury results in caspase-8-dependent inflammation by increasing TNFα and IL1β

production, which also induces RGC apoptosis. Proinflammatory reactions can be effectively suppressed by TMZ. Therefore, RGC apoptosis

can be attenuated by pretreatment with TMZ via antioxidative and anti-inflammatory mechanisms in acute glaucoma.

that Nrf2-HO-1 signaling is essential for TMZ-mediated neuroprotective effects in vitro and in vivo. These findings
provide compelling evidence that TMZ can protect against acute glaucoma and emerge as a promising candidate in
the treatment of acute glaucoma.

Clinical perspectives
• Acute glaucoma jeopardizes normal vision due to substantially high IOP and consequent RGCs

death. Currently, an attractive alternative for next-generation glaucoma therapy is to select an
effective drug to prevent RGC apoptosis in IOP-induced retinal damage.

• The present study demonstrated that TMZ significantly ameliorated high IOP-induced retinal
damage and RGC apoptosis, by exerting therapeutic efficacy through its antioxidative and
anti-inflammatory properties via the Nrf2/HO-1 pathway.

• Our findings suggested that TMZ can protect against acute glaucoma and emerge as a promising
candidate in the treatment of acute glaucoma and other neurological disorders.
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