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eritoneal dialysis (PD) patients have a distinct ure-

mic toxin profile and metabolic abnormalities,
which could be related in part to the differences in gut
microbiota.' Prebiotics are microbial feed supplements
that beneficially affect the host by improving its
intestinal microbial balance and re-establishing symbi-
osis. Treatment with the prebiotic, oligofructose-
enriched p-inulin (p-inulin) is believed to enable
proliferation of beneficial gut bacteria such as Bifido-
bacteria, to attenuate inflammation, and to improve
metabolic functions.”” The aims of this pilot study are (i)
to compare the microbiome profile in PD patients and
individuals without kidney disease, and (ii) to evaluate
the effect of p-inulin treatment on inflammatory
biomarkers and microbiome community composition
and to associate it with host metabolomic profile.

RESULTS

Patients
In a nonrandomized crossover study, 8 PD patients
were followed during 3 sequential 8-week phases of no
intervention, p-inulin (16 g/d) administration, and a
post-intervention phase with no intervention (Supple-
mentary Table S1). We also studied 7 individuals
without kidney disease. Patient characteristics are
summarized in Supplementary Table S2. Patients’ di-
etary intake and gastrointestinal symptoms are sum-
marized in Supplementary Tables S3 and S4.

We measured several markers of inflammation, but
only plasma-level soluble CD14 (sCD14) was signifi-
cantly lower at week 16 compared to that in the
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pretreatment period at week 8 (4267 4= 195.8 vs. 4110 &
191.6 mg/ml, P < 0.02) (Figure la—d).

p-Inulin Alters the Microbial Composition

The 5 most abundant phyla identified in PD patients, in
decreasing order, were Firmicutes, Bacteroidetes, Acti-
nobacteria, Proteobacteria, and Verrucomicrobia (Sup-
plementary Figure S1A). Alpha diversity was not
significantly different between controls and PD patients
(Supplementary Figure 2A). We also did not observe a
significant change in alpha diversity with p-inulin
treatment (Supplementary Figure 2B). Intersubject vari-
ability in community composition was significantly
higher than intrasubject variability (Wilcoxon rank-sum,
P < 2 '°) (Figure 2c). With some exceptions, the overall
gut microbiome composition of PD patients did not differ
from that of controls (adonis P = 1) (Figure 2d). Linear
discriminant analysis effect size (LEfSe) analysis revealed
that 14 taxa were more abundant in PD patients at
baseline compared to healthy controls, whereas 5 taxa
were more abundant in controls (Figure 2e). Eight weeks
of p-inulin treatment did not cause a reduction in cluster
density, indicating that p-inulin intervention did not
overcome intersubject variation (Figure 2d). To further
evaluate the effect of p-inulin treatment, we performed
random-effects mixed models controlling for within-
subject autocorrelation. A total of 86 bacterial strains
(P < 0.05) were significantly altered by p-inulin inter-
vention, with 55 increased and 31 reduced during the
intervention phase compared with baseline (Figure 3).
Among 55 bacterial strains that increased during the
intervention phase, 17 were significantly altered during
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Figure 1. Plasma levels of inflammatory biomarkers. (a) Interleukin-6 (IL-6). (b) C-reactive protein (CRP). (c) Tumor necrosis factor alpha (TNF-a.).

(d) Soluble CD14 (sCD14).

the post-intervention phase compared with intervention
phase, with 8 still increased and 9 decreased (Figure 3a).
Among 31 bacterial strains that were reduced during p-
inulin treatment, 8 increased significantly during the
post-intervention phase (Figure 3b). To assess the effect
of diet on the gut microbiota, we performed multivariate
analysis with linear models (MaAsLin2) using default
parameters, and found a significant positive correlation
among Bacteroides, dietary fiber, and carbohydrate
consumption (Supplementary Figure S1B and Supple-
mentary Table S5).

KEGG Modules Influenced by p-Inulin

Kyoto Encyclopedia of Genes and Genomes (KEGG)
modules were used to characterize the gene sets linked
to microbial metabolic capabilities. Functional alpha
diversity was not significantly different (Supplemen-
tary Figure S1C). While assessing beta diversity, we
noted that that the donor effect persisted irrespective
of the study phase (Supplementary Figure S1D). LEfSe
analysis showed that 9 KEGG modules were signifi-
cantly enriched in PD patients compared to control
subjects, whereas 2 KEGG modules were significantly
decreased (Figure 4a). Furthermore, we examined the
time effects on KEGG modules during the 3 phases of
the study. Among the 11 KEGG modules, which were
different between PD patients at baseline and controls,
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p-inulin treatment effects were significant (overall P <
0.05; intervention vs. baseline P < 0.05) for 2 KEGG
modules (Figure 4b and c). In addition, we noted sig-
nificant treatment effects on 33 KEGG modules, with 17
KEGG modules increased (Figure 4d) and 16 reduced
after p-inulin treatment compared to baseline
(Figure 4e). During the post-intervention phase, some
of these changes were reversed, whereas others per-
sisted (Figure 4d and e).

Plasma Metabolites, TMAQ, IS, and PCS

The interpatient variability was greater than the
intrapatient variability (Figure 5a). p-Inulin treatment
significantly altered 13 metabolites (overall P < 0.05;
intervention vs. baseline P < 0.05), with 7 increased
and 6 decreased during the treatment phase compared
to baseline (Figure 5b). Using weekly data, significant
overall time effects were found for TMAO, IS (both P <
0.0001), and PCS (P = 0.004) (Figure 5c). Top bacterial
strain correlated with each metabolite is shown in
Figure 5d. Next, we examined the bacterial enzymes
involved in IS, PCS, and TMAO biosynthesis pathways
in each patient. The trends between bacterial enzymes
and respective metabolite changes during 3 phases of
the study varied among patients. Interestingly, the
changing trajectory of tryptophanase and IS were
similar in selected patient (Figure 5e). In addition, a
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Figure 2. Microbiota analysis in peritoneal dialysis (PD) patients and control subjects. (a) Alpha diversity of taxonomy in PD patients at baseline
and control subjects. Different colors represent different subjects. (b) The impact of p-inulin intervention on alpha diversity of taxonomy in PD
patients. Post, post-intervention. (c) Inter- and intrasubject variability. (d) Clustering of microbial composition data by individual in the nonmetric
multidimensional scaling (NMDS) ordination. Different colors represent different subjects. (e) Linear discriminant analysis (LDA) effect size
analysis of bacteria in PD patients at baseline and control subjects. LDA > 2.5 are shown.
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Figure 3. Impact of p-inulin intervention on bacterial strains. (a) Increased bacterial strains at intervention phase compared with baseline (overall
P < 0.05; intervention vs. baseline P < 0.05). Red indicates increased strains at post-intervention (Post) phase compared with intervention phase (overall
P < 0.05; Post vs. baseline P < 0.05). Blue indicates decreased strains at Post phase compared with intervention phase (overall P < 0.05; Post vs. baseline
P < 0.05). (b) Decreased bacterial strains at intervention phase compared with baseline (overall P < 0.05; intervention vs. baseline P < 0.05). Red text
indicates increased strains at Post phase compared with intervention phase (overall P < 0.05; Post vs. baseline P < 0.05). Blue text indicates decreased
strains at Post phase compared with intervention phase (overall P < 0.05; Post vs. baseline P < 0.05).
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Figure 4. p-Inulin treatment effects on Kyoto Encyclopedia of Genes and Genomes (KEGG) modules. (a) Linear discriminant analysis (LDA) effect size
analysis of KEGG modules in peritoneal dialysis (PD) patients at baseline and control subjects. LDA > 2.0 are shown. (b) M00076 dermatan sulfate
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Figure 5. Effects of p-inulin treatment on plasma metabolites. (a) Principal component analysis of plasma metabolome. Different colors represent
different subjects. (b) Significantly altered plasma metabolites influenced by p-inulin intervention (overall P < 0.05; intervention vs. baseline P < 0.05).
Red text indicates increased metabolites at post-intervention (Post) phase compared with intervention phase (overall P < 0.05; Post vs. baseline P <
0.05). Blue text indicates decreased metabolites at Post phase compared with intervention phase (overall P < 0.05; Post vs. baseline P < 0.05). (c)
Plasma levels of 3 uremic toxins by week. Left, trimethylamine N-oxide; middle, indoxyl sulfate; right, p-cresol sulfate. A significant overall time effect
on indoxyl sulfate, trimethylamine N-oxide (both P < 0.001), and p-cresol sulfate (P = 0.004) was noted. (d) Correlation between bacterial strains with
3 microbial metabolites in 8 patients. Left, indoxyl sulfate; middle, p-cresol sulfate; right, trimethylamine N-oxide. (e) Trend of bacterial enzymes and
microbial metabolites change over time. Left, tryptophanase and indoxyl sulfate in patient 1; middle, amino-acid transaminase and p-cresol sulfate in
patient 2; right, betaine reductase, trimethylamine-N-oxide reductase, and trimethylamine N-oxide in patient 3. FDR, false discovery rate.
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similar changing trajectory was found among amino
acid transaminase and PCS, betaine reductase, TMAO
reductase, and TMAO (Figure 5e). These results suggest
that the functional changes in microbial gene abun-
dance affects the levels of IS, PCS, and TMAO to some
extent in some patients.

DISCUSSION

The symbiotic relationship between humans and
microbiota allows for co-metabolism of diverse
substrates. As the final readout, the plasma metabolome
revealed the host and microbiota co-metabolism.
We integrated the wuntargeted metabolomics,
lipidomics, and targeted metabolomics (IS, PCS, TMAO)
with metagenomics to reveal the microbiota-host co-
metabolism. Previous studies have shown that oligo-
fructose inulin significantly reduced PCS generation
rates and serum concentrations in hemodialysis pa-
tients, but had no effect on 1S." A randomized
controlled trial showed that resistant starch decreased
IS level in patients treated with hemodialysis.’ In pa-
tients with CKD, synbiotics (a combination of prebiotic
and probiotic) did not significantly reduce serum IS but
did decrease serum PCS.° However, in another small
study in hemodialysis patients, synbiotic treatment
reduced PCS but not IS.” In this small but well-
designed study with stringent patient selection
criteria, we demonstrate that the host co-metabolic
pathways are modulated by p-inulin treatment in PD
patients.

To our knowledge this is one of the first studies to
investigate microbial and host metabolic responses to
p-inulin supplementation in PD patients. Other
strengths include rigorous patient selection criteria,
study design, shotgun metagenomic sequencing, and
use of targeted and untargeted metabolomic ap-
proaches. We show that p-inulin treatment was asso-
ciated with an array of changes in microbiome, their
metabolic pathways, and also plasma metabolome in PD
patients. However, there are some study limitations as
well. First, the sample size is small. Second, a large
number of tests were done, and it is likely that some
results will prove to be false positive; however, as we
were in a hypothesis-generation mode, we did not try
to adjust for multiple testing. The findings reported
here are preliminary and need to be validated in a
study involving larger numbers of patients with longer
duration of follow-up.
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