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Simple Summary: After surgery, about 60–70% of early hepatocellular carcinoma patients suffer from
relapse within 5 years, hindering long-term survival. Clinical and pathologic features cannot provide
an accurate evaluation. We aimed to construct a stratification model from the metabolic aspect to
predict the clinical outcome and reveal the molecular characteristics of different prognostic subgroups.
An individualized metabolic signature of 10 gene pairs was developed from 250 early HCCs and
validated in 311 samples from different datasets. The signature stratified early HCC cases one-by-one
into two risk groups with different survival rates. The molecular characteristics of the two risk
groups were analyzed by multi-omics data. The relationships with proliferation, immunity, and drug
benefits were summarized. The signature was further validated in 47 institutional transcriptomic
HCC samples and 101 public proteomic samples.

Abstract: Recurrence is the main factor affecting the prognosis of early hepatocellular carcinoma
(HCC), which is not accurately evaluated by clinical indicators. The metabolic heterogeneity of HCC
hints at the possibility of constructing a stratification model to predict the clinical outcome. On
the basis of the relative expression orderings of 2939 metabolism-related genes, an individualized
signature with 10 metabolism-related gene pairs (10-GPS) was developed from 250 early HCC samples
in the discovery datasets, which stratified HCC patients into the high- and low-risk subgroups with
significantly different survival rates. The 10-GPS was validated in 311 public transcriptomic samples
from two independent validation datasets. A nomogram that included the 10-GPS, age, gender,
and stage was constructed for eventual clinical evaluation. The low-risk group was characterized
by lower proliferation, higher metabolism, increased activated immune microenvironment, and
lower TIDE scores, suggesting a better response to immunotherapy. The high-risk group displayed
hypomethylation, higher copy number alterations, mutations, and more overexpression of immune-
checkpoint genes, which might jointly lead to poor outcomes. The prognostic accuracy of the 10-GPS
was further validated in 47 institutional transcriptomic samples and 101 public proteomic samples.
In conclusion, the 10-GPS is a robust predictor of the clinical outcome for early HCC patients and
could help evaluate prognosis and characterize molecular heterogeneity.

Keywords: metabolism-related genes; hepatocellular carcinoma; risk stratification model; prognosis;
molecular characteristics
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1. Introduction

Liver cancer is the third-leading cause of cancer death [1]; 90% of cases are primary
hepatocellular carcinoma (HCC) [2]. Surgical resection is the first choice of treatment for
early HCC patients whose liver function is well-preserved. Nevertheless, approximately
60–70% of patients suffer from relapse within 5 years. The high recurrence rate after
resection has become an important factor hindering the long-term survival of patients [3].
Clinical and pathologic features, such as the tumor–node–metastasis (TNM) stage, alpha-
fetoprotein (AFP) level, and abnormal thrombin, cannot provide an accurate evaluation of
clinical outcomes in HCC patients [4,5]. Moreover, liver cancer is considered a metabolic
disease with high heterogeneity [6,7] that is selectively advantageous for tumor growth,
proliferation, and survival [8]. The distinct metabolism of HCC patients hints at the
possibility of constructing a stratification model from the metabolic aspect to predict the
clinical outcome.

Previously reported prognostic signatures for HCC are based on risk scores obtained
from the expression levels of marker genes [6,9,10], which are susceptible to batch effects.
A batch of samples needs to be collected in advance and to be normalized together for the
application of such signatures, which is not in accord with clinical practice. Moreover, nor-
malizing samples together would have an impact on the risk classification of a patient [11].
By contrast, it has been demonstrated that the relative expression orderings (REOs) of genes
within samples are resistant to batch effects [12] and are robust across various platforms
with different designs [13]. More notably, within-sample REOs can provide personalized
judgment for a single sample without data normalization. A sample is individually clas-
sified according to the REOs of gene pairs in the signature [14–16], which is more in line
with actual clinical needs.

Using 2939 metabolic genes encoding human metabolic enzymes and small-molecule
transporters, an individually prognostic signature was developed from 250 stage I–II HCC
patients and validated in 311 transcriptomic samples from four public datasets. Then,
multivariate Cox regression analysis and nomogram establishment with clinical factors
were performed. The functional and clinical characteristics, epigenomic and genomic
alterations, immune infiltration, and therapeutic benefits of the two prognostic groups were
analyzed. The 10-GPS was further validated in 47 institutional transcriptomic samples
and 101 public proteomic samples. By relating the expressions of metabolic genes with
the prognosis of early HCC, the metabolism-related signature developed in this study
can individually stratify patients, which will improve their prognosis, provide biological
insights, predict therapeutic benefits, and assist in clinical management.

2. Materials and Methods
2.1. Study Selection Criteria

Publications that explored the prognosis of HCC and were with sufficient and available
transcriptomic data and prognostic data, such as the progression-free interval (PFI, time
from primary treatment to disease recurrence), disease-free survival (DFS, time from
surgery to tumor recurrence, distant metastasis, or death), and overall survival (OS, time
from surgery to death) were included in this study. The survival times were defined as
described in the original publications [17–20]. Only TNM stage I–II HCC samples with
resection were collected and analyzed.

2.2. Data Collection and Preprocessing

In total, 197 samples from The Cancer Genome Atlas [21] (TCGA, version 26.0,
https://portal.gdc.cancer.gov/, accessed on 27 October 2020), 53 samples in GSE116174
and 170 samples in GSE14520 from Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/geo/, accessed on 27 October 2020), and 141 samples from International Can-
cer Genome Consortium [19] (ICGC, version 28, https://dcc.icgc.org/projects/LIRI-JP/,
accessed on 27 October 2020) were downloaded. All datasets were renamed as HCC with
the sample size, e.g., HCC197. The demographic and clinicopathologic characteristics of

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://dcc.icgc.org/projects/LIRI-JP/
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samples are described in Table 1. Datasets HCC197 and HCC53 were used to identify the
signature; HCC170 and HCC141 were used for independent validation. The raw count
represented the gene expression value of the RNA-Seq samples. The robust multiarray
average algorithm was used to process the raw mRNA expression data (.CEL) from a
microarray [22]. The probe ID was matched with the Entrez gene ID. One probe that
matched multiple genes was deleted. The mean expression value of a gene was taken if the
gene was mapped by multiple probes.

Table 1. Description of the data used in this study.

Discovery Validation Institutional Validation

HCC197 HCC53 HCC170 HCC141 HCC101 HCC47

Accession TCGA GSE116174 GSE14520 LIRI-JP CPTAC HRA000464

Platform Illumina Hiseq GPL13158 GPL3921 Illumina Hiseq Whole
Proteome Illumina Hiseq

Survival PFI and OS OS DFS and OS OS DFS and OS RFS and OS
Country Mix China USA Japan China China

Sample size 197 53 170 141 101 47
Age
≥60 104 19 37 114 40 22
<60 93 34 133 27 61 25

Gender
Male 142 47 143 96 77 37

Female 55 6 27 45 24 10
TNM stage

I 138 8 93 36 87 24
II 59 45 77 105 14 23

AFP
>300 ng/mL 34 - 66 - 64 9
≤300 ng/mL 132 - 101 - 37 38

Cirrhosis
Yes - - 153 - 71 29
No - - 17 - 30 17
NA 1

Viral infection
HBV 78 38 165 - 101 21
HCV 28 0 - - 0

HBV/HCV 5 0 - - 0
NA 86 15 5 - 0 26

Histologic
grade

G1/G2 118 - - - - -
G3/G4 78 - - - - -

NA 1 - - - - -
Vascular
invasion

Yes 51 - - - - -
No 134 - - - - -
NA 12 - - - - -

Child-Pugh
A 146 - - - - -

B/C 10 - - - - -
NA 41 - - - - -

Proteomic data and clinical information of 101 stage I–II HCC patients, denoted as
HCC101 (Table 1), were downloaded from the clinical proteomic tumor analysis consortium
(CPTAC) [23] database. These data were used to validate the signature at the proteomic
level, which might facilitate its routine implementation in clinical settings.
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2.3. Samples Collection and Data Measurement

Primary tumor tissues from 72 institutional HCC patients were collected during
surgery operations at Mengchao Hepatobiliary Hospital of Fujian Medical University. Pri-
mary HCC was diagnosed by at least two experienced pathologists. No patient received
treatment before surgical resection. All participants signed informed consent before enrol-
ment. All study protocols were approved by the Institution Review Board of Mengchao
Hepatobiliary Hospital of Fujian Medical University and performed under the Helsinki
Declaration.

RNA extracted from 72 HCC samples was subjected to whole-transcriptome sequenc-
ing on an Illumina HiSeq ×10 platform (paired-end, 150 bp) by Annoroad Gene Tech.
(Beijing, China) Co., Ltd. These institutional transcriptomic data of 47 patients at stage
I–II, denoted as HCC47, were used to further validate the signature, and the raw counts
of the genes in the RNA-Seq profiles were analyzed. The relapse-free survival (RFS, time
from surgery to disease recurrence or death) and clinical information are shown in Table 1.
Institutional transcriptomic data are available in the Genome Sequence Archive (GSA)
repository (GSA accession number: HRA000464). More detailed information can be found
in our previous work [24].

2.4. Multi-Omics Data of TCGA Portal

The multi-omics data of samples in the HCC197 dataset from TCGA were used to
investigate the distinctive epigenomic and genomic characteristics between the high-risk
and the low-risk subgroups. DNA methylation profiles were directly obtained from the
UCSC Xena portal [20] (https://xenabrowser.net/datapages/, accessed on 27 November
2020). Probes with any “NA”-masked data points designed for sequences on sex chro-
mosomes were deleted. CpG sites within the promoter regions with zero expression in
more than 80% of the samples were deleted. In total, 9936 genes mapped by 17,028 CpG
sites were analyzed. Somatic mutation data and copy number variation (CNV) were ob-
tained from the GDC Data Portal (version 27.0, https://portal.gdc.cancer.gov/, accessed on
27 November 2020). For CNV data, the significant regions of gain or loss were identified by
GISTIC 2.0 [25].

2.5. Identification of the Prognostic Signature with Metabolism-Related Gene Pairs

A list of 2939 metabolism-related genes was integrated from a previous study [26]
and the latest metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes [27]
(KEGG) (version 97.0, http://www.genome.jp/kegg/kegg1.html, accessed on 15 January
2021) (Supplementary Table S1). The univariate Cox proportional-hazards regression
model was used to find the candidate genes or gene pairs that were significantly correlated
with the clinical outcome of early HCC. A gene whose expression level was significantly
correlated with PFI in the HCC197 dataset was defined as a prognosis-associated gene. Two
prognosis-associated genes, G1 and G2, with expression levels of E1 and E2, respectively,
were constructed into a gene pair. Then, the REO pattern of the gene pair (E1 < E2 or
E1 > E2) divided the samples into two groups. Gene pairs that were significantly associated
with PFI were defined as prognosis-associated gene pairs. Then, all prognosis-associated
gene pairs were ranked in descending order of the concordance index (C-index). Every
prognosis-associated gene pair was selected as the seed, and a forward selection procedure
starting with the first gene pair was performed to obtain the optimal subset that reached
the highest C-index in dataset HCC197 and obtained a significant p-value of OS in dataset
HCC53. The optimal subset of gene pairs was selected as the prognostic signature. The
half-voting rule was used to decide the classification: a patient was classified into the
high-risk group when at least half of the gene pairs in the prognostic signature voted for
high risk; otherwise, the patient was classified into the low-risk group.

https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov/
http://www.genome.jp/kegg/kegg1.html


Cancers 2022, 14, 3957 5 of 19

2.6. Survival Analysis and Differential Analysis

The multivariate Cox proportional hazards regression model was used to compute the
independent prognostic value of the prognostic signature after adjusting for clinical factors.
Survival curves were calculated by the log-rank test and visualized with the Kaplan–Meier
plot. A nomogram with the signature, age, gender, and stage was constructed, and the 1-,
2-, and 3-year survival probability in overall samples was predicted. EdgeR and Student’s
t-test were used to identify differentially expressed genes (DEGs) in the RNA-Seq count
profiles and microarray profiles, respectively. The Wilcoxon rank-sum test was used to
identify significant differential methylation (DM) sites between two risk groups. Fisher’s
exact test was used to identify the differential frequencies of copy number alteration and
mutation. Functional enrichment analysis of DEGs between the two risk groups was
performed using the Database for Annotation, Visualization, and Integrated Discovery
online tool (DAVID, version 6.8, https://david.ncifcrf.gov/, accessed on 15 January 2021).
The Benjamini and Hochberg (BH) procedure was used to control the false discovery rate
(FDR).

2.7. Statistical Analysis

Fisher’s exact test was performed to compare the distribution of samples classified
by clinical factors or the 10-GPS. Eight representative proliferation genes obtained from
the study by Désert et al. [28] were used to estimate the proliferation differences in two
prognostic groups (Supplementary Table S2). The median score of the principal component
analysis (PCA) of the eight genes was defined as the cut-off. A sample was assigned to the
non-proliferative periportal phenotype (PP) if the risk score was greater than the cut-off
value; otherwise, it was assigned to the proliferative HCC subclass. The average expression
levels of 43 proliferation-associated genes were also used to calculate the proliferation
scores [29] (Supplementary Table S3). Moreover, 108 metabolic pathways [30] with DEGs
were used to explore the metabolic differences between the two prognostic groups. The
metabolic activity was scored by gene set variation analysis (GSVA) using DEGs in each
pathway, and the difference was compared by limma (Supplementary Table S4). The
29 immune-associated cell types [31] calculated by single-sample GSEA (ssGSEA) and
48 immune checkpoint genes [32] were used to estimate the different immune characteris-
tics of the two prognostic groups. Tumor immune dysfunction and exclusion (TIDE) was
calculated online (http://tide.dfci.harvard.edu/, accessed on 15 August 2021). A high
TIDE score suggested that the patients were less likely to benefit from immune check-
point inhibition (ICI) therapy [33]. Wilcoxon rank-sum tests were performed to compare
these differences. The pRRophetic algorithm was used to evaluate the 50% inhibitory
concentration (IC50) values of 138 antitumor drugs (including chemotherapy and targeted
therapy) and identify potentially effective agents for patients in the two groups [34]. A
p-value < 0.05 was considered significant for all analyses in this study unless otherwise
stated. All statistical analyses were performed using R 3.6.3.

3. Results
3.1. Development and Validation of the Metabolism-Related Gene Pairs for Risk Stratification in
Public Transcriptomic Datasets

The general flowchart of this study is described in Figure 1A. We first compared the
sample distribution classified by available clinical factors in four transcriptomic datasets.
The results showed that most clinical features among datasets were significantly different,
suggesting the diversity of early HCC after surgery (Table 2). We then developed the
signature to predict the clinical outcome of early HCC on the basis of the metabolism-related
genes. In the HCC197 dataset, 164 metabolism-related genes whose expression levels were
significantly correlated with the PFI of HCC patients were identified as prognosis-associated
genes (FDR < 20%). Two of the 164 prognosis-associated genes were constructed into a
gene pair. In total, 766 prognosis-associated gene pairs whose REOS were significantly
correlated with PFI (p < 0.05) were identified. Then, the 10 gene pairs with the highest

https://david.ncifcrf.gov/
http://tide.dfci.harvard.edu/
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C-index values (C-index = 0.6933) in the HCC197 dataset and a significant p-value of OS
in the HCC53 dataset, denoted as 10-GPS, were selected as the final risk stratification
signature (Figure 1B). According to the half-voting rule, a patient was classified into the
high-risk group if at least five gene pairs voted for high risk; otherwise, the patient was
classified into the low-risk group. The 197 samples were separately classified into the high-
and low-risk groups with 64 and 133 samples. The survival analysis showed that patients
in the low-risk group had significantly longer PFI and OS than those in the high-risk group
(PFI: HR = 4.35, 95% CI: 2.76–6.85, p = 6.17 × 10−12, C-index = 0.6933; OS: HR = 3.94, 95%
CI: 2.22–6.99, p = 4.48 × 10−7, C-index = 0.6627) (Figure 1C). In the HCC53 dataset, 34 and
19 samples were separately stratified into the high- and low-risk groups. Similarly, the OS
of the latter was significantly longer than that of the former (HR = 2.98, 95% CI: 1.00–8.86,
p = 0.039, C-index = 0.6173, Figure 1D).

Table 2. The comparison of demographics and clinical features among datasets.

Variable HCC197
(n = 197)

HCC53
(n = 53)

HCC170
(n = 170)

HCC141
(n = 141) p-Value

Age ≥60 104 19 37 114 p < 2.2 × 10−16

Gender Male 142 47 143 96 p < 5.8 × 10−4

TNM stage I 138 8 93 36
p < 2.2 × 10−16

II 59 45 77 105
AFP >300 ng/mL 34 - 66 - p < 1.9 × 10−4

Viral
infection HBV 78 38 165 - p < 2.3 × 10−15

Note. Chi-square test was used for all variables but viral infection. Fisher’s exact test was used for viral
infection variable.

The 10-GPS was validated on two independent datasets that included 311 stage I–
II samples. Consistent with the results observed in the discovery datasets, the survival
analysis showed that the low-risk group had a significantly longer OS in the HCC141 dataset
(HR = 2.93, 95% CI: 1.04–8.22, p = 0.033, C-index = 0.6992, Figure 1E) and significantly
better DFS and OS in the HCC170 dataset (DFS: HR = 1.65, 95% CI: 1.08–2.52, p = 0.019,
C-index = 0.5638; OS: HR = 2.41, 95% CI: 1.40–4.167, p = 0.001, C-index = 0.5990) (Figure 1F).
Univariate Cox regression analysis showed that the 10-GPS and the stage were significantly
associated with the prognosis of early HCC, and multivariate Cox regression analysis
confirmed that the 10-GPS remained an independent predictor after adjusting for clinical
variables, including stage, histologic grade, vascular invasion, AFP, and Child–Pugh grade
of cirrhosis (Figure 1G).

In addition, the univariate and multivariate Cox regression analysis showed that stage
was an important factor in a patient’s prognosis. Then, all samples in the four datasets
were integrated, and the population was split into stages. The results showed that both
stage I and stage II patients were divided by the 10-GPS into two prognostic groups with
significantly different OS. Specifically, significantly more patients were predicted to be at
high risk in stage II than in stage I (Chi-squared test, adjusted p = 5 × 10−6, Figure 2A),
indicating that stage II HCC patients were more likely to be classified into the high-risk
group. Furthermore, vascular invasion is also a significant factor for HCC prognosis.
Patients with and without vascular invasion in HCC197 were divided by the 10-GPS into
two prognostic groups with significantly different OS (Supplementary Figure S1). No
difference in vascular invasion was found between the distinct prognostic groups (Chi-
squared test, adjusted p = 0.43). These results showed that the 10-GPS was associated with
the OS of early HCC independent of stage and vascular invasion.
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Figure 1. Identification and validation of 10-GPS in transcriptomic datasets. (A) The general flowchart
of this study. (B) The 10-GPS for risk stratification. Genes shown in bold appeared twice in the
signature. The univariate Cox regression model calculated the Beta and p-value. Beta was the risk
coefficient of the REO of gene pair in 10-GPS, where Beta > 0 indicates that E1 < E2 is a risk factor
and vice versa. *, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001, respectively. (C,D) The 10-GPS
predicted the PFI and OS of two prognostic groups in datasets HCC197 and HCC53. According to
the half-voting rule, a patient was classified into the high-risk group (red line) if at least five gene
pairs voted for high risk; otherwise, the patient was classified into the low-risk group (blue line).
(E,F) The DFS and OS of two prognostic groups in HCC141 and HCC170 were independent validation
datasets. (G) Univariate and multivariate Cox regression analyses for the 10-GPS in the discovery
and validation datasets.
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Figure 2. Analysis of 10-GPS in overall stage I–II samples. (A) OS of two prognostic groups in overall
stage I and overall stage II samples. (B) Development of a composite nomogram to predict 1-year,
2-year, and 3-year survival probability. The nomogram was constructed on the basis of 10-GPS, age,
gender, and stage in overall HCC samples. (C) The survival difference between patients divided by
the median of the composite score.

Moreover, we assessed the 3 common clinical variables in the overall series of HCC
patients, which included gender, age, and stage, to develop a composite prognostic pre-
dictor of the 10-GPS. The nomogram showed the contribution of each variable to predict
1-year, 2-year, and 3-year survival probability (Figure 2B). Patients divided by the median
of the composite score had significantly different survival (Figure 2C).

Conclusively, these results highlighted the robustness of the 10-GPS to stratify stage I–II
HCC samples from different types of data into high- and low-risk groups with significantly
different prognoses.

3.2. Distinct Proliferation and Metabolism Characteristics between the Two Prognostic Groups

With 10% FDR control, 3678 and 1777 DEGs were identified between the high- and low-
risk groups in the HCC197 and HCC 141 datasets (edgeR, log2|Fold Change (FC)| > 1),
while 20 and 1810 DEGs were identified between the two prognostic groups from the
HCC53 and HCC170 datasets (Student’s t-test), respectively. Dataset HCC53 was excluded
from the functional enrichment analysis because it had few DEGs. The overexpressed
genes in the high-risk group of three datasets were all significantly enriched in cancer-
related pathways, such as cell cycle and DNA replication pathways. By contrast, the
underexpressed genes in the high-risk group of three datasets were all significantly enriched
in metabolism-related ways, including fatty acid degradation and carbon metabolism
(FDR < 5%, Figure 3A). These findings indicated that the high-risk patients with poor
prognosis were considerably associated with faster proliferation ability and suppressed
metabolism, which was in line with a previous report [35].
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Figure 3. Distinct proliferation and metabolism characteristics of the two prognostic groups.
(A) Functional enrichment analysis of DEGs between the two prognostic groups. Red and green
respectively represent pathways enriched by the differentially overexpressed and underexpressed
genes in the high-risk group compared with the low-risk group. The p-values were adjusted by BH
(FDR < 5%). (B) The distribution of PP and non-PP subtypes, age, gender, stage, AFP level, and
malignancy along with two prognostic groups. Patients were classified into the PP and non-PP sub-
types according to the median value of the principal component analysis (PCA) of eight representative
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proliferation genes; * p < 0.05, *** p < 0.001. (C) The split violin plots of the average expression
levels of 43 proliferation-associated genes. * p < 0.05, **** p < 0.0001. (D) Heatmap of 67 differential
metabolism pathways. Blue and red bars represent low- and high-risk samples, respectively. The
activity scores were quantified by GSVA using DEGs in each pathway and compared by limma with
p < 0.05.

Désert et al. reported that a non-proliferative PP subtype in HCC has the lowest
potential to recur [28]. Compared with the high-risk group of HCC197, the proportion of
samples classified as the PP subtype in the low-risk group was predominantly higher (44/64
versus 54/133, Fisher’s exact test, p < 0.001, Figure 3B). Consistent results were observed in
the other three datasets (Supplementary Figure S2). In addition, the proliferation ability
summarized from the expression levels of 43 proliferation-relevant genes in the high-risk
group was significantly higher than that in the low-risk group (Wilcoxon rank-sum test,
p < 0.05, Figure 3C).

The metabolic characteristics between distinct prognostic groups in the HCC197
dataset were further explored on the basis of the activity of 108 metabolic pathways. The
results showed that 67 metabolic pathways, which were divided into seven modules
(amino acid-related metabolism, carbon metabolism, drug metabolism, biosynthesis and
metabolism of polysaccharides, lipid metabolism, cofactor and vitamin metabolism, and
other metabolism), were significantly different between the high- and low-risk groups
(limma, FDR < 5%, Figure 3D). Furthermore, compared with the low-risk group, these
metabolic pathways in the high-risk group exhibited significantly lower GSVA scores.
Additionally, the clinical and pathologic characteristics, except for stage, were equally
distributed between the two prognostic subgroups (Figure 3B).

Collectively, these results indicated that samples in the high-risk group exhibited a
higher proliferation ability and lower metabolic activity than those in the low-risk group.

3.3. Distinct Epigenomic and Genomic Characteristics between the Two Prognostic Groups

In HCC197, 6 and 132 DM sites corresponding to 6 and 126 genes were significantly
hypermethylated and hypomethylated in the high-risk group versus the low-risk group
(Wilcoxon rank-sum test, FDR < 1%), respectively. Among the above 132 methylated
genes, 58 genes overlapped with 3678 DEGs. Strikingly, 47 hypomethylated genes were
consistently differentially overexpressed in the high-risk group, including TNFRSF11A and
TP73 (Figure 4A).

The CNV analysis showed that the frequencies of copy number gain at 8q24.13 and
8q21.13 in the high-risk samples were significantly higher than the corresponding fre-
quencies in the low-risk patients (76.56% versus 58.02% and 73.44% versus 48.85%, left
of Figure 4B). There were 29 genes located in the two amplified regions, of which 27
genes were significantly overexpressed in the high-risk group (Supplementary Table S5).
Overexpression of ATAD2 and PVT1 in 8q24.13, RAD54B, LAPTM4B, and RRS1 in 8q21.13
were reported to be associated with tumor proliferation and progression of HCC [36–40].
Meanwhile, the frequencies of copy number loss at 13q14.2, 13q22.2, and 17p11.2 were
62.50%, 50%, and 46.88% in the high-risk patients, respectively, which were significantly
higher than the corresponding frequencies of 40.46%, 27.48%, and 27.48% in the low-risk
patients (right of Figure 4B). Interestingly, 11 genes located in the three deleted regions were
significantly underxpressed in the high-risk group (Supplementary Table S5), including
tumor suppressor gene RB1 in 13q14.2.
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Figure 4. Multi-omics characteristics of the two prognostic groups. (A) The volcano plot of the
CpG sites (the top pane) and the concordance of DM sites with DEGs (the bottom panel). Wilcoxon
rank-sum test with FDR < 1% was used to identify the DM sites between two prognostic groups.
(B) The CNV alterations of samples. The green line represents the cut-off point that determined the
significance, q-value < 0.25. (C) The top 10 genes with the highest mutation rates in the high-risk (top)
and low-risk (bottom) groups. (D) Genes with significant mutations in at least five samples from
either prognostic group. Fisher’s exact test was used to calculate p-values. * p < 0.05, ** p < 0.01.

Compared with the low-risk group, a higher somatic mutation frequency was observed
in the high-risk group. The top 10 genes with the highest mutation rates in the two
risk subgroups are shown in Figure 4C. Notably, the driver mutation genes were not
consistent between the two prognostic groups. The top six genes in the high-risk group
were TP53, CTNNB1, TNN, PCLO, ALB, and MUC16, which all had varied ranks in the
low-risk group. The somatic mutation on TP53 was more prevalent in the high-risk group,
which is concordant with the fact that the TP53 mutation was positively associated with
a poor prognosis of HCC [41]. Additionally, compared with the low-risk group, 75 genes
had significantly higher mutation frequencies in the high-risk group (Fisher’s exact test,
p < 0.05). Among them, nine genes that were mutated in at least five samples from either
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prognostic group are shown in Figure 4D. Moreover, the high mutation frequency of RB1
in the high-risk group might also contribute to its significant underexpression.

These results suggested that the epigenomic and genomic alternations exerted joint
effects on the transcriptional dysregulations between the two prognostic groups, leading to
poor prognoses for early HCC patients.

3.4. Distinct Immune Landscape for HCC Prognostic Groups

The immunologic landscape between different prognostic groups showed that higher
scores of activated dendritic cells (aDCs), human lymphocyte antigen (HLA), MHC class
I, macrophages, Th1 cells, Th2 cells, and Treg cells were observed in the high-risk group,
while higher scores of B cells, mast cells, NK cells, and type II IFN response were observed
in the low-risk group (Wilcoxon rank-sum test, p < 0.05, Figure 5A and Supplementary
Figure S3). The higher scores of macrophages and Treg cells, which created an immunosup-
pressive microenvironment, were both correlated with a poor prognosis of HCC [42,43].
Furthermore, the higher score of type II IFN response in the low-risk group indicated an
activated immune microenvironment with NK cells, which might protect against tumor
development [44].

Then, we investigated the relationship between immune-checkpoint genes and the
two prognostic groups. Compared with the low-risk group, more immune-checkpoint
genes were significantly overexpressed in the high-risk group (Wilcoxon rank-sum test,
p < 0.05), including TIM3, B7-H3, TIGIT, TNFSF15, and CD44, which further confirmed an
immunosuppressive microenvironment in the high-risk group (Figures 5B and S4).

3.5. Distinct Therapeutic Benefits for HCC Prognostic Groups

We further investigated the potential drugs for two prognostic subgroups in the
HCC197 dataset. In the 138-drug screen, patients in the low-risk group were predicted
to be more sensitive to 40 kinds of drugs, e.g., gefitinib, whereas patients in the high-risk
group were predicted to be more sensitive to the other 42 kinds of drugs, e.g., gemcitabine
(Figure 5C). It is well known that gefitinib is effective against certain types of cancer.
Furthermore, we observed that EGFR, the target gene of gefitinib, was significantly overex-
pressed in the low-risk group (edgeR, log2|Fold Change (FC)| > 1, FDR < 10%). These
results were consistent with those of a previous study, which indicated that high expression
of EGFR was associated with a good response to gefitinib in non-small cell lung cancer [45].
Our results might provide new strategies for therapy in HCC.

Furthermore, a lower TIDE score was observed in patients in the low-risk group
(Figure 5D), indicating that they might have a better response to immunotherapy than
patients in the high-risk group.
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Figure 5. The immune characteristics and therapeutic benefits of two prognostic groups. (A) Heatmap
of the levels of immune cell infiltrates in four datasets. The differences in ssGSEA scores between
the high- and low-risk groups were calculated using the Wilcoxon rank-sum test. (B) The expression
levels of 48 immune-checkpoint genes between the high- and low-risk groups in four datasets. Red
and green represent a higher expression in the high- and low-risk groups, respectively. *, **, and ***
indicate p < 0.05, p < 0.01, and p < 0.001, respectively. (C) Estimated drug sensitivity for patients in the
high- and low-risk groups. The horizontal axis represents drugs, and the vertical axis represents the
difference in the median of log2|IC50| values between the high- and low-risk groups. Red and green
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represent the drugs that might be more sensitive in the high- and low-risk groups, respectively.
(D) Split violin plot of the TIDE scores for patients in the high- and low-risk groups in the four datasets.

3.6. Validation of the 10-GPS in the Institutional Transcriptomic Data and Public Proteomic Data

The prognostic performance of the 10-GPS was further evaluated in the 47 stage I–II
samples generated in our previous study [24]. A total of 29 patients were classified into
the low-risk group by the 10-GPS, which was associated with moderately good RFS and
significantly long OS (Figure 6A). Moreover, the 10-GPS was able to predict the RFS and
OS in the 72 samples (Supplementary Figure S5). These results further demonstrate that
the 10-GPS can predict the prognosis of early HCC after surgery.
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Figure 6. Validation of the signature at institutional transcriptomic data and public proteomic data.
(A) Kaplan–Meier curves of the RFS and OS for the 47 institutional transcriptomic HCCd. (B) Six
protein pairs in the proteomic data. Green indicates that the protein was detected in the proteomic data,
and gray indicates that the gene was not detected in the proteomic data. (C) Kaplan–Meier curves of the
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DFS and OS for the proteomic data of HCC101. According to the half-voting rule, a patient was
classified into the high-risk group (red line) when at least three protein pairs voted for high risk;
otherwise, they were classified into the low-risk group (blue line).

The proteomic data of 101 stage I–II HCC patients in the CPTAC data portal helped us
to validate the 10-GPS at the proteomic level. In the proteomic data, 11 proteins encoded
by the signature genes in the 10-GPS were measured and constructed into six protein pairs.
Similarly, according to the half-voting rule, a patient was classified into the high-risk group
when at least three protein pairs voted for high risk; otherwise, they were classified into
the low-risk group (Figure 6B). The six protein pairs divided 40 patients into the high-
risk group and 61 patients into the low-risk group, and the two groups had significantly
different DFS (HR = 2.56, 95% CI: 1.1–5.97, p = 0.024, C-index = 0.623) and OS (HR = 2.30,
95% CI: 1.12–4.74, p = 0.02, C-index = 0.604) (Figure 6C). The results suggest that the 10-GPS
can perform well in the proteomic data, which might facilitate its routine implementation
in clinical settings.

4. Discussion

In this study, an individual prognostic signature consisting of 10 gene pairs with
16 metabolism-related genes, named the 10-GPS, was developed to predict clinical outcomes
of early HCC. The signature was validated in multiple independent transcriptomic and
proteomic datasets. Patients in the high-risk group had significantly shorter survival than
patients in the low-risk group. Compared with the low-risk group, the high-risk group
was characterized by lower metabolic activity, higher proliferation abilities, lower immune
cells infiltration, and less immunotherapy benefit. The multi-omics analysis showed that
the epigenetic and genomic alternations could corporately contribute to the transcriptional
differences between the two prognostic groups. The 10-GPS was further prospectively
validated in 47 institutional transcriptomic samples and 101 public proteomic samples.

At present, the treatments for early HCC and advanced HCC are considerably different.
Surgical resection is the first choice of treatment for early (TNM stage I–II) HCC patients
whose liver function is well-preserved but not for advanced HCC with high malignancy.
Nevertheless, approximately 60–70% of patients suffer from relapse within 5 years, which
is the main factor for poor prognosis. Previously, Nault et al. identified a five-gene score
from I–IV stage HCC samples to predict the prognosis of HCC patients after resection [10],
which might result in irrelevant features in the prognosis of early HCC. In this study, we
aimed to develop a risk stratification model to predict the clinical outcome of early HCC
patients after surgery, and only TNM stage I–II samples with resection were collected and
analyzed. Univariate and multivariate Cox regression analysis confirmed that the 10-GPS
remained an independent predictor after adjusting for clinical variables, e.g., stage and
histologic grade. In addition, treatment history before hepatic resection is a potential factor
for the prognosis. Although 197 stage I–II samples without any treatment before surgery
from TCGA were selected as the discovery dataset, the treatment histories for samples in
HCC170 and HCC53 were not unknown. The influence of treatment history on the risk
stratification model for early HCC prognosis needs to be further evaluated.

We also noticed that the robustness of the 10-GPS was reduced when most genes in
the signature were not expressed or detected. Our previous study and the present study
revealed that the gene pair signature can be robust when more than 60% of gene pairs are
detected [16]. This study also showed that 60% of protein pairs that consisted of proteins
encoded by the signature genes achieved good performance at the proteomic level. How-
ever, the impact of the gene pair signature needs further assessment, and the generalization
of the signature needs to be further improved and optimized in clinical application.

ICI therapy is a promising approach to improve survival in several cancers, and
some immune-checkpoint proteins, e.g., CTLA-4, PD-1, and PD-L1, are viewed as potential
biomarkers of ICI response. Patients with high expression of immune checkpoints are
more likely to respond to immunotherapy [46]. Nevertheless, conflicting results were



Cancers 2022, 14, 3957 16 of 19

obtained in subsequent studies [47]. Zhang et al. showed that not all patients with high
expression of PD-L1 responded to anti-PD-L1 therapy [48]. A recent study also reported that
there was no relationship between PD-L1 expression and treatment outcome in HCC [49].
The mechanism of immune checkpoints as biomarkers for immunotherapy is not fully
understood. As a comprehensive index, TIDE mimics the dysfunction and exclusion of
immune cells, which might serve as a more reliable alternative biomarker for predicting
the ICI response [33]. In this study, the TIDE score did not indicate that patients in the high-
risk group with more immune checkpoints with high expression had a better response to
immunotherapy. The complex immune microenvironment and the interaction with tumor
cells might explain the conflicting results. The differences in tumor immune infiltration
and the immunotherapy benefit between the two groups need further investigation in bulk
and single-cell sequencing data. The findings regarding the immune landscape in Figure 4
also need to be confirmed by experiments, e.g., by IHC.

We noticed that four genes, EZH2, SETD1B, PGS1, and G6PD, appeared twice in
the 10-GPS, and they might play important roles in determining the clinical outcome.
Specifically, G6PD is the rate-limiting enzyme of the pentose phosphate pathways, which is
elevated in many cancers to promote tumor growth [29]. Our results showed that G6PD
was consistent significantly overexpressed in the high-risk group in all four transcriptomic
datasets (Supplementary Figure S6A). The protein level of G6PD was also higher in the
high-risk group than in the low-risk group. The Kaplan–Meier curves showed that high
expression of G6PD was significantly associated with short PFI, RFS, and OS times in
all four transcriptomic datasets (Supplementary Figure S6B–E). Similar results regarding
G6PD were observed in the proteomic data of HCC101 (Supplementary Figure S6F). These
results are in concordance with those of a previous study [50] and suggest that G6PD is a
potential prognostic biomarker for HCC.

5. Conclusions

In summary, this study proposes an individual prognostic signature consisting of
16 metabolism-related genes that can accurately evaluate the outcome of early HCC and
characterize inter-tumor heterogeneity in HCC.
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