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A B S T R A C T   

Background: Necroptosis could regulate immunity in cancers, and stratification of colorectal 
cancer (CRC) subtypes based on key genes related to necroptosis might be a novel strategy for 
CRC treatment. 
Method: The RNA-sequencing data of CRC and other 31 types of cancers were obtained from The 
Cancer Genome Atlas (TCGA) database. Consensus clustering was performed based on protein- 
coding genes (PCGs) related to necroptosis score calculated by single sample gene set enrich-
ment analysis (ssGSEA). Module genes showing a significant positive correlation with the nec-
roptosis score were identified by weighted correlation network analysis (WGCNA) and further 
used to develop a risk stratification model applying least absolute shrinkage and selection 
operator (LASSO) and Cox regression analysis. The risks score for each sample in CRC cohorts, 
immunotherapy cohorts and pan-cancer study cohorts was calculated. 
Result: Two subgroups (C1 cluster and C2 cluster) of CRC were identified based on the necroptosis 
score. Compared with C1 cluster, the survival possibility of C2 cluster was greatly reduced, the 
levels of necroptosis score, immune cell infiltration, immune score and expression of immune 
checkpoint molecules were significantly increased and immunotherapy response was less active. 
Low-risk patients defined by the risk model had a significant survival advantage than high-risk 
counterparts in both CRC and the other 31 cancer types. Furthermore, the risk model was also 
more efficient than the Tumor Immune Dysfunction and Exclusion (TIDE) tool in predicting OS 
and immunotherapy response for the samples in the immunotherapy cohort. 
Conclusion: CRC patients were classified by necroptosis score-related PCGs, and a risk model was 
designed to evaluate the immunotherapy and prognosis of patients with CRC. The current mo-
lecular subtype and prognostic model could help stratify patients with different risks and predict 
their prognosis and immunotherapy sensitivity.  
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1. Introduction 

Colorectal cancer (CRC) is now the most frequent malignant tumor of the digestive tract and the second largest cause of cancer- 
related death worldwide [1,2]. It is estimated that by 2030, there will be over 2.2 million new cases of CRC and over 1.1 million 
deaths [3]. Accumulation of genetic susceptibility and epigenetic factors, eating habits, changes in intestinal microbiota and lack of 
physical activity are all associated with the complex pathogenesis of CRC [4]. Most CRC originates from precursors such as adenomas 
and transforms into adenocarcinomas [5]. The standard treatment for CRC is surgery, chemotherapy and radiotherapy [6–8], but there 
is limited variation between the effectiveness of these treatments and long-term survival, particularly for patients with metastatic CRC, 
where approximately 70%–75% of patients survive more than one year and 30%–35% of patients survive more than three years, 
compared to less than five years after diagnosis [9,10]. The molecular landscape of CRC on histological and clinical information of each 
patients differs greatly [11–13]. Therapeutic decisions based on molecular subtypes might be a promising strategy for treating CRC, 
and development of new drugs in a way that targets CRC subtypes has the potential to transform drug discovery research [14]. 

Necroptosis is involved in regulating a variety of pathological mechanisms of tumors, including tumorigenesis, metastasis, and 
immunity [15,16]. Necroptosis plays a dual regulatory role in tumor progression, as it not only promotes anti-tumor immunity, but 
also participates in the promotion of myeloid cell-induced adaptive immunosuppression to stimulate tumourigenesis [17]. Increasing 
evidence suggests that human tumors appear to gain an advantage from the down-regulation of key components in the molecular 
mechanism of necroptosis, which points to the potential of necroptosis as a novel cancer therapy [18,19]. Hence, many studies now 
define subtypes for cancer patients according to the key components involved in the necroptosis molecular mechanism and predict 
cancer prognosis and treatment response from a multi-molecular perspective. A recent study characterized two subtypes of renal clear 
cell carcinoma based on the expression patterns of necroptosis-related genes and established a gene signature as a prognostic predictor 
[20]. Similarly, tumor subtyping and prognostic multi-molecular signature according to necroptosis-related gene expression patterns 
have also been studied in bladder cancer [21], pancreatic cancer [22], hepatocellular carcinoma [23], and ovarian cancer [24] but not 
in CRC. 

The work flow of the work could be seen in Fig. 1. The current study first calculated necroptosis score for CRC samples based on 74 
necroptosis-related genes using ssGSEA. The molecular subtypes of CRC were classified according to the expression of prognostic 
necroptosis score-related genes in CRC, and the differences in survival, tumor microenvironment (TME) and response to immuno-
therapy and targeted/chemotherapeutic drugs were analyzed by multi-group analysis. Finally, we developed a necroptosis-related co- 
expression network and a prognostic risk model for CRC, aiming to improve the current risk stratification of CRC and to guide clinical 
decision-making process. 

2. Materials and methods 

2.1. Acquisition of CRC expression datasets 

The expression profile and clinicopathological data of colon adenocarcinoma (COAD) samples were obtained from TCGA database 
(https://tcga-data.nci.nih.gov/tcga/), which stores data for a wide range of tumor types, including survival data for a total of 437 
cases. The gene expressions of more CRC samples with survival characteristics were collected from the Gene Expression Omnibus 

Fig. 1. The work flow of the study.  
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(GEO) database (https://www.ncbi.nlm.nih.gov/geo/, accession numbers: GSE39582, GSE38832, GSE33113, GSE14333 and 
GSE17538). Additionally, IMvigor210 and GSE135222 cohorts were utilized for immunotherapy evaluation of the risk model. 

2.2. Identification of necroptosis score-related genes 

Xin et al. integrated a necroptosis gene set containing 74 necroptosis-related genes [20]. Specific genetic information can be found 
in Table S1. Here, we utilized ssGSEA applying to calculate the enrichment score of the necroptosis gene set above using the “GSVA” 
package [25]. The PCGs exhibiting significant correlation with the necroptosis score were screened from TCGA-COAD by Pearson 
correlation analysis under the thresholds of |R | > 0.4 and P < 0.05. 

2.3. Consensus clustering for CRC samples 

The prognosis-related PCGs (exhibiting significant correlation with the necroptosis score) obtained above were screened by uni-
variate cox regression analysis. Then, PCGs related to both CRC prognosis and necroptosis score were subjected to consensus clustering 
analysis adopting ConsensusClusterPlus package [26]. When running the program, the Pam unsupervised clustering algorithm was 
selected for 500 iterations, with each iteration randomly containing 80% of the samples, and the cluster number as in the range of 
2–10. 

2.4. Genome variation analysis 

Mutation data of CRC samples were obtained from TCGA. The total number of mutations in the samples was measured, and genes 
with mutation number >3 were screened. Differences in mutation frequency between subtypes was identified by Fisher test and 
visualized by “maftools” [27]. Based on a previously published research [28], the DNA damage score and copy number burden score 
for each sample were calculated, including homologous recombination defect (HRD), fraction altered, number of segments and tumor 
mutation burden, and compared among clusters. 

2.5. Gene set enrichment analysis (GSEA) 

The c2.cp.kegg.v7.0.symbols.gmt gene set obtained from molecular signature database (http://www.gsea-msigdb.org/gsea/ 
downloads.jsp) was used as the reference gene set, and pathway analysis of molecular subtypes in TCGA-COAD cohort and 
GSE39582 cohort was carried out employing GSEA [29]. The input file included the expression profile of CRC and the molecular 
subtype of the sample. Pathways with p < 0.05 and FDR<0.1 were considered as statistically different between subtypes. 

2.6. Immune infiltration analysis 

Microenvironment cell populations-counter (MCP-counter) [30] includes information about immunocytes and stromal cells. The 
abundance of immune cells and stromal cells was calculated here using MCP-Counter. SsGSEA quantified the immune cell fraction of 
each case based on the signature of 28 immune cells. ESTIMATE [31] evaluated the proportion of infiltrating stromal and immune 
components by calculating stromal and immune scores, and gave the ESTIMATE score used to evaluate TME. In addition to comparing 
the infiltration abundance of immune cell, the expression of 21 immune checkpoints from HisgAtlas database [32] in each molecular 
subtype was evaluated. 

2.7. Immunotherapy response and drug sensitivity predictions 

Drug resistance of immune checkpoint blockade (ICB) was evaluated by calculating T cell dysfunction signature, T cell exclusion 
signature and TIDE score using TIDE algorithm [33]. Six chemotherapy drugs including Cisplatin, Sunitinib, Saracatinib, Cyclopamine, 
Imatinib and Dasatinib were used for drug sensitivity prediction. Half-maximal inhibitory concentration (IC50) value was calculated 
by ridge regression algorithm in “pRRophetic” package [34]. 

2.7.1. Weighted gene correlation network analysis (WGCNA) 
WGCNA was used to cluster genes with similar expression patterns into the same gene module for analyzing the relationship 

between gene networks and phenotypes [35]. Firstly, the Pearson correlation coefficients of all gene pairs were calculated to develop 
an adjacency matrix, and then the adjacency matrix with weighted coefficients was used to assess the network connections in the 
topological overlap matrix (TOM). Hierarchical clustering analysis based on TOM formed a cluster tree structure to identify gene 
co-expression modules. Dynamic hybrid-cutting algorithm was used to cluster genes into module, the minimum number of genes in 
each cluster was 300 and similar modules were merged together. The correlation of each coexpression modules with necroptosis score, 
immune score and molecular subtypes was analyzed by WGCNA. The coexpression modules with the highest correlation with nec-
roptosis score from the TCGA-COAD cohort and GSE39582 cohort were selected, and overlapping genes between the two coexpression 
modules were further analyzed for developing a risk model. 
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2.8. Design and evaluation of a risk model 

Of the 437 CRC samples in TCGA, 7/10 were used as the training cohort and 3/10 were used as the validation cohort to design the 
risk model. Firstly, univariate Cox regression analysis was performed to determine the prognostic correlation of necroptosis score- 
related genes screened by WGCNA in the training set. LASSO cox regression analysis using “glmnet” package [36] was performed 
to reduce the number of the candidate genes. Variables were selected according to the penalty parameters that met the minimum 
criteria in the 10-fold cross-validation, and multivariate Cox regression analysis was used to filter the variables and calculate the 
coefficient. The risk model was as follows: Risk score =

∑n
i=1(βi × Expi).where βi refers to the coefficient of the first variable, and Expi 

refers to the expression value of the variable. The grouping threshold for the risk score in each queue was determined by “survminer” 
[37]. According to the risk score and survival data of each sample, survival difference between risk groups in each cohort was esti-
mated and compared by plotting Kaplan-Meier curve and performing log-rank test. 

2.9. Statistical analysis 

All the results of statistical analysis were produced by R program. The Kaplan-Meier curve and ROC analysis was completed in 
“survminer” package and the “survivalROC” package [38], respectively. The T-test and Kruskal-Wallis test were used to compare the 
continuous and ordered categorical variables between the two groups. P < 0.05 was indicated a statistical significance. 

3. Results 

3.1. Immune correlation of necroptosis score 

Immune relevance of necroptosis was explored using correlation analysis between necrosis scores (using ssGSEA for a total of 74 
necrosis-related genes) and TME scores. In the TCGA-COAD cohort, necroptosis score was positively correlated with immune score, 
stromal score and ESTIMATE score, with a correlation coefficient of 0.775, 0.642 and 0.74, respectively (Fig. S1A). The necroptosis 
score in GSE39582 also showed a significant positive correlation with ESTIMATE score, immune score, and stromal score, respectively 
(Fig. S1B). Also a significantly positive correlation between necroptosis score and immune cells were also observed (Fig. S1C). Thus, 
necroptosis score may be a positive factor affecting immunity in CRC. 

Fig. 2. The necroptosis score related gene defined two clusters of CRC. A: The intersection of prognostic necroptosis score-related genes in TCGA- 
COAD and GSE39582 cohorts. B: Cumulative distribution function (CDF) curve with k in the range of 2–10. C: Consensus clustering delta area curve 
with k in the range of 2–10. D: Consensus matrix for k = 2. E: Prognostic Kaplan-Meier curve of two subgroups in the TCGA-COAD cohort. F: Kaplan- 
Meier curve involving OS in two subgroups of the GSE39582 cohort. G: Necroptosis score difference between C1 and C2 in the TCGA-COAD cohort. 
H: Necroptosis score difference between two subgroups in the GSE39582 cohort. 
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3.2. Two clusters of CRC defined based on the necroptosis score-related genes 

By analyzing the correlation between all PCGs and necroptosis score in TCGA-COAD, 1906 genes positively correlated with nec-
roptosis score were screened. Univariate Cox regression analysis identified a total of 83 risk genes (hazard ratio (HR) > 1 and p < 0.05) 
and 10 protective genes (HR < 1 and p < 0.05) as the overlapping genes between TCGA-COAD and GSE39582 cohorts (Fig. 2A). These 
93 prognostic necroptosis score-related genes were adopted to classify CRC. CRC was divided into two subgroups based on the results 
of cumulative distribution function (CDF) curve and consensus clustering delta area curve and Consensus matrix (Fig. 2B–D). Analyses 
on overall survival [31] of the two subgroups showed the same survival outcomes in both the TCGA-COAD cohort and GSE39582 
cohort, specifically, the OS of C1 was always significantly longer than C2 (Fig. 2E and F). Necroptosis score also exhibited significantly 
different levels in the two subgroups of the two cohorts, with C2 having a significantly higher necroptosis score than C1 (Fig. 2G and 
H). 

3.3. Genome variation and clinical characteristics of the two molecular subtypes 

The genome variation and clinical characteristics of the two subtypes in the TCGA-COAD cohort were analyzed. It was found that 
there was no difference in the distributions of T stage, M stage, N stage, tumor stage, gender, or age between C1 and C2 (Fig. S2A). 
Except that the mutation rate of APC in C1 was higher than that in C2, almost all the other genes with a high mutation frequency 
showed higher mutation rate in C2 than in C1 (Fig. S2B). In terms of DNA damage score and copy number burden score, C2 had 
significantly higher number of segments than C1 (Fig. S2C). 

3.4. GSEA and immune-related analysis revealed different immune states in the two molecular subtypes 

Differences of biological pathways affected by C1 and C2 were analyzed in TCGA-COAD cohort and GSE39582 cohort. In the TCGA- 
COAD cohort, we observed that tumor-related pathways, such as JAK_ STAT_ Signaling_ PATHWAY, PATHWAYS_ IN_ CANCER, 
TGF_BETA_SIGNALING_PATHWAY, and WNT_ Signaling, were more enriched in the C2 cluster. Also, immunomodulatory pathways 
including T_CELL_RECEPTOR_SIGNALING_PATHWAY, CHEMOKINE_SIGNALING_PATHWAY, and B_CELL_RECEPTOR_SIGNA-
LING_PATHWAY were more enriched in C2 cluster (Fig. 3A). In the GSE39582 cohort, the pathway in cancer and JAK-STAT signaling 
pathway and TGF- β signaling pathway of C2 were also more activated than in C1 (Fig. 3B). Therefore, we speculated that C2 cluster 
was more closely related to tumor progression and immunological characteristics. In order to explore the immune status of C1 and C2 
from different aspects, the differences of immune cell infiltration and immune molecules between the two clusters were analyzed. All 
the 10 types of immune cells quantified by MCP-Counter showed significantly increased abundance in C2 compared with C1 (Fig. 4A). 
Moreover, the scores of all 28 immune cells in C1 were significantly higher than in C2 (Fig. 4C). Compared with C1, C2 also manifested 
a significant increase in stromal score and immune score and ESTIMATE score (Fig. 4B). Among the 21 immune checkpoint molecules 
analyzed, 19 showed significantly higher expressions in C2, including LAG3, ICOS, CD276, CD244, BTLA, CD80, CTLA4, CD47, CD160, 
ADORA2A, TNFSF4, PDCD1 (PD-1), HAVCR2, IDO1, VTCN1, CD27, CD274 (PD-L1), VISTA, GEM (Fig. 4D). Therefore, the two 
subtypes defined by necroptosis score-related genes played an important role in shaping the different TME characteristics of CRC. 

Fig. 3. GSEA of C1 and C2 in the TCGA-COAD cohort (A) and the GSE39582 cohort (B).  
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3.5. Immune escape, sensitivity to chemotherapy, and targeted therapy of the two CRC subtypes 

C2 was significantly more immunoreactive than C1 but C2 had a significantly worse prognosis than C1, which could be explained 
by the immune escape in C2. To prove this hypothesis, immune escape in two molecular subtypes was detected estimated TIDE score, T 
cell dysfunction score and T cell exclusion score. In the TCGA-COAD cohort, C2 showed significantly higher TIDE score, T cell 
dysfunction score and T cell exclusion score than C1, indicating that immune escape was more likely to occur in C2 than C1. Responses 

Fig. 4. Different immune states were detected in the two molecular subtypes. A: Abundances of 10 immune cell infiltration in two different subtypes 
of the TCGA-COAD cohort. B: The stromal score, immune score and ESTIMATE score of C2 compared to C1. C: The scores of 28 immune cells in two 
different subtypes of TCGA-COAD cohort. D: The expression of 21 immune checkpoint molecules in two different subtypes of TCGA-COAD cohort. 
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of the two molecular subtypes to ICB therapy were also evaluated using TIDE. C1 had a considerably higher response rate to ICB 
therapy than C2 (0.65 vs 0.19). (Fig. 5A). Similarly, in the GSE39582 cohort, C2 had a significantly lower response rate to ICB therapy 
than C, and C2 had a significantly higher TIDE score, T cell dysfunction score, and T cell exclusion score than C1 (0.70 vs 0.22) 
(Fig. 5C). 

The drug sensitivity prediction results showed that C2 cluster was more sensitive to Cisplatin, Sunitinib, Saracatinib, Cyclopamine, 
Imatinib and Dasatinib than C1 cluster in both TCGA-COAD and GSE39582 cohorts (Fig. 5B and D). 

Fig. 5. Immune escape and sensitivity to chemotherapy and targeted therapy for two CRC subtypes. A: In the TCGA-COAD cohort, the TIDE score, T 
cell dysfunction score, T cell exclusion score and the response rate to ICB treatment of C1 and C2. B: The IC50 values of Cisplatin, Sunitinib, 
Saracatinib, Cyclopamine, Imatinib and Dasatinib in the two subtypes of the TCGA-COAD cohort. C: TIDE score, T cell dysfunction score, T cell 
exclusion score and response rates to ICB therapy for the two subtypes in the GSE39582 cohort. D: Sensitivity differences in of the two subtypes in 
the TCGA-COAD cohort to Cisplatin, Sunitinib, Saracatinib, Cyclopamine, Imatinib, and Dasatinib. 
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3.6. Overlapping necroptosis score-related module genes between TCGA-COAD and GSE39582 cohorts 

The optimal soft threshold power for a scale-free network (R2 = 0.85) was 7 when performing WGCNA using the data in TCGA- 
COAD (Fig. 6A). Eight gene modules of TCGA-COAD were obtained by hierarchical cluster analysis (Fig. 6B). In the GSE39582 
cohort, the minimum soft threshold for a scale-free topology fitting index was 5 (Fig. S3A), and six modules were sectioned according 

Fig. 6. Shared necroptosis score-related module genes in TCGA-COAD and GSE39582 cohorts. A: Network topology analysis for each soft- 
thresholding power value in TCGA-COAD cohort. B: Clustering tree of genes in TCGA-COAD cohort. C, D: The heatmap shows the correlation 
between modules in TCGA-COAD chohort and GSE39582 cohort and necroptosis score, immune score, and stromal score. E: The intersection of 
genes in the modules with the highest correlation with necroptosis score in the TCGA-COAD cohort and the GSE39582 cohort. 
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to the clustering of the dynamic cutting method (Fig. S3B). The Pearson correlation coefficients of the gene modules in each cohort 
with immune score and stromal score, necroptosis score were calculated, and we found that the black module in the TCGA-COAD 
cohort had the highest correlation with necroptosis score (Fig. 6C). Among the gene modules in the GSE39582 cohort, the green 
module showed the highest correlation with necroptosis score (Fig. 6D). These two modules in two cohorts also had a significant 
positive correlation with both immune score and stromal score and shared a total of 674 overlapping genes (Fig. 6E). 

3.7. Development of a risk model and its prediction performance in various cohorts 

Univariate Cox regression analysis was performed using the above 674 genes in the training cohort, and 45 of these genes showed a 
p value within the threshold. LASSO Cox regression analysis reduced these 45 genes to 16 (Fig. 7A). Multivariate Cox regression 
analysis identified 8 genes with the most prognostic significance, namely, CXCL11, GPR137B, GZMA, RAB38, TNFRSF17, UPP1, XAF1, 
XCL1 (Fig. 7B). The expression of these 8 genes was weighted by LASSO regression coefficient, and the risk model was obtained: Risk 
score = (− 0.225 × CXCL11) + 0.38 × GPR137B + (− 0.344 × GZMA) + 0.216 × RAB38 + (− 0.194 × TNFRSF17) +0.536 × UPP1 +
0.413 × XAF1+0.445 × XCL1 (Fig. 7C). Risk score was calculated and OS was analyzed in TCGA-COAD training cohort, verification 
cohort and full cohort, GSE39582, GSE38832, GSE33113, GSE14333 and GSE17538 cohorts, and significant survival advantage was 
found in the low-risk group compared with the high-risk group (Fig. 8A–H). 

3.8. Prognostic analysis of pan-cancer based on risk model 

Each patient with different types of cancers in TCGA was also assigned with a risk score and grouped by the risk model to evaluate 
the prediction performance of the risk model in pan-cancer. In the cohort of all cancer types, patients in the high-risk group normally 
had an unfavorable prognosis (Fig. 9A–F). 

Fig. 7. Design of risk model. A: Parameter adjustment of variable selection and 10-fold cross-validation in LASSO model. B: Multivariate Cox 
regression forest map of the 8 most prognostic genes. C: The LASSO regression coefficients of the 8 most prognostic genes. 
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3.9. The value of risk model in predicting immunotherapy response and prognosis in immunotherapy cohorts 

The predictive effects of risk model and TIDE on prognosis and immunotherapy response were compared in two cohorts treated 
with PD-L1 blockade and anti-PD-1, respectively. In the IMvigor210 cohort with PD-L1 blocking therapy, the OS of samples with a 
high-risk score was significantly shorter than those with a low-risk score. The TIDE score was also significantly correlated with OS, but 
the accuracy for predicting OS for 0.5 year (0.62 vs 0.54), 1 year (0.64 vs 0.57) and 1.5 years (0.66 vs 0.57) was significantly lower 
than the risk model (Fig. 10A and B). The area under the ROC curve [11] of risk score for predicting immune treatment response was 
0.61, which was higher than the AUC of TIDE (Fig. 10C). In the GSE135222 cohort treated with anti-PD-1, risk score also showed high 
predictive value, with AUCs of 0.85 and 0.83 at 0.5 and 1 year, respectively, and high-risk score was also significantly associated with a 
poor prognosis (Fig. 10D). However, the OS predicted by TIDE did not differ significantly between samples, although its AUC for 
predicting 1-year prognosis reached 0.81 (Fig. 10E). The risk score also performed significantly better than TIDE in predicting 
immunotherapy response (AUC: 0.81 vs 0.75) (Fig. 10F). 

4. Discussion 

Clinical and molecular data all suggest the presence of heterogeneity in the treatment response of CRC patients and their prognostic 
outcomes, but currently the complex molecular heterogeneity of CRC is not fully understood [11,39]. Genomic analysis defines subsets 
of CRC patients to facilitate personalize treatment decisions [40]. Necroptosis apoptosis is a regulatory form of molecular-defined 
necrosis [15]. In this study, two subgroups of CRC were defined based on the expression patterns of necroptosis score-related prog-
nostic genes. As the molecular characteristics of CRC and detection of specific mutations can be used to evaluate patients’ response to 
treatment and prognostic outcomes, these biomarkers can also serve as key tools for personalized treatment [41]. This study found that 
the necroptosis score was significantly positively correlated with immune score and stromal score, which was consistent with the 
results of a previous pan-cancer study [42]. The current results indicated that targeting necroptosis to induce anti-tumor immunity 
may be a feasible strategy, especially when apoptosis is blocked. 

The necroptosis score calculated by a multi-group study varies significantly with tumor subtypes [43]. This study divided the two 
subgroups according to the expression pattern of prognosis necroptosis score-related genes, and the necroptosis score of C2 was 
significantly higher and closely correlated with the poor prognosis of CRC. Necroptosis participates in immune infiltration and immune 
regulation of cancers [44]. Here, immunomodulatory pathways, including B cell receptor signaling pathway, chemokine signaling 
pathway, FC gamma mediated phagocytosis, and T cell receptor signaling pathway, showed differential enrichment between the two 
molecular subtypes. More importantly, immune cell infiltration, immunescore and immune checkpoint molecule expression were 
significantly higher in C2 than C1, which demonstrated a strong immune activity of C2 and revealed the effect of necroptosis on 
immune heterogeneity of subtypes. Immunological activity of C2 was lower than C1 as the TIDE score, T cell dysfunction score, and T 

Fig. 8. Survival prediction of CRC by risk model in various cohorts, including (A) training cohort, (B) validation cohort, and (C) complete cohort of 
TCGA-COAD, (D) GSE39582, (E) GSE38832, (F) GSE33113, (G) GSE14333, (H) GSE17538 cohorts. 

M. Li et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e26781

11

cell exclusion score were all significantly higher in C2 than C1, suggesting the possibility of immune escape in C2. We speculated that 
immune escape may be an important reason to explain the less active response of C2 to ICB therapy. 

We also predicted patients’ drug sensitivity to chemotherapy and observed that C2 cluster was more sensitive to these common 
chemotherapy drugs. Cisplatin and Imatinib (STI571) has also been used for CRC treatment [45–47]. In vitro study, we found that 
Sunitinib drug eluting beads and Dasatinib could effectively inhibit the growth of human CRC cells [48,49]. Saracatinib is the first 
inhibitor of Src family kinase used for treating human tumors [50] and Cyclopamine is an inhibitor for Hedgehog signaling [51]. 
Hence, as C2 cluster may not benefit from immunotherapy, these selected drugs with specific targets of action might be alternatives for 
C2 cluster treatment. 

The risk model in this study was established using 8 genes (CXCL11, GPR137B, GZMA, RAB38, TNFRSF17, UPP1, XAF1 and XCL1), 
each of which has been previously studied in cancers. The relationship between CXCL11 and CRC is controversial. According to Cao 
et al., CXCL11 is positively correlated with cytotoxic genes including GZMA and immunosuppressive molecules, which can promote 
anti-tumor immunity and benefit patients with CRC [52]. A research of Liu et al. showed that in colon cancer, CXCL11 is secreted by 
overexpressed RBP-J κ to upregulate the expression of TGF-β 1 in tumor-associated macrophages, thus promoting the metastasis of 

Fig. 9. Prognostic analysis of pan-cancer based on risk model.  

M. Li et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e26781

12

colon cancer cells [53]. Additionally, chemotherapy drug Oxaliplatin suppresses CRC development through inhibiting CXCL11 
secreted by tumor-associated fibroblasts and CXCR3/PI3K/AKT pathway. This study proposed that the opposite functions on CXCL11 
may be resulted from CRC heterogeneity. Both GPR137 and RAB38 can promote the malignant progression of bladder cancer and 
pancreatic cancer [54–57]. High expression of TNFRSF17 could prolong the OS time of patients with CC and this also indicates a higher 
sensitivity to immunotherapy [58]. According to previous studies, UPP1 is a tumor suppressor gene of CRC and the direct target of 
piR-1245 [59]. The role of XAF1 in gastrointestinal cancer has been widely studied, and it mediates apoptosis of colon cancer cells 
through ERK1/2 pathway [60]. In metastatic CRC, XAF1 could facilitate metastasis through VCP-RNF114-JUP axis [61]. As a che-
mokine, the transcript of XCL1 in tumor is related to a higher OS rate [62]. These studies highlight the potential of these genes as 
therapeutic targets for cancer. However, a better evaluation of CRC prognosis demands an overall consideration of all these genes from 
a “multi-molecular” point of view. In this study, the risk stratification model developed by integrating the 8 genes could predict 
patients’ prognosis in multiple independent CRC cohorts and had a significant effect on the OS prediction in 31 types of cancers. 
Moreover, the 8-gene signature also showed a significantly better effect on evaluating prognosis and immunotherapy response than 
TIDE in two ICB treatment cohorts. 

Limitations in this study should be equally noticed. Firstly, the retrospective nature of our research demands further validation of 
the established molecular subtype and the prognostic model in prospective cohorts. Secondly, the possible functions of the hub 
necroptosis-related genes requires basic and clinical experiments to explore their actions in CRC development. 

5. Conclusion 

Using the prognostic necroptosis score-related genes, we defined molecular subtypes of CRC patients with different prognosis, 
immune activity and sensitivity to immunotherapy and chemotherapy/targeted drugs. Also, a risk stratification model showing a 
strong predictive efficiency for estimating prognostic outcomes and immunotherapy benefit was developed. Collectively, the current 
molecular subtype and prognostic model for CRC could be used to assist clinicians in deciding clinical intervention strategies and 
precise therapy for patients suffering from CRC. 

Ethics declarations 

Informed consent was not required for this study. 

Funding 

This research was supported by Technology Planning Program of Health Commission of Jiangxi Province, China (202312275). 

Fig. 10. The value of risk model in predicting prognosis and immunotherapy response in immunotherapy cohorts. A: In the IMvigor210 cohort that 
receiving PD-L1 blocking therapy, the sample survival curve and ROC curve obtained by risk score were used. B: In the IMvigor210 cohort receiving 
PD-L1 blocking therapy, the sample survival curve and ROC curve obtained by TIDE were used. C: Risk score and TIDE predict the area under the 
ROC curve of immunotherapy response in the IMvigor210 cohort receiving PD-L1 blocking therapy. D: The Kaplan-Meier curve and ROC curves 
predicted by risk score to OS in the GSE135222 cohort receiving anti-PD1 therapy. E: TIDE predicts survival Kaplan-Meier curve and ROC curves in 
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