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Abstract

Heme oxygenase-1 (HO-1) has been implicated in cardiac dysfunction, oxidative stress, inflammation, apoptosis and
autophagy associated with heart failure, and atherosclerosis, in addition to its recognized role in metabolic syndrome
and diabetes. Numerous studies have presented contradictory findings about the role of HO-1 in diabetic
cardiomyopathy (DCM). In this study, we explored the role of HO-1 in myocardial dysfunction, myofibril structure,
oxidative stress, inflammation, apoptosis and autophagy using a streptozotocin (STZ)-induced diabetes model in
mice systemically overexpressing HO-1 (Tg-HO-1) or mutant HO-1 (Tg-mutHO-1). The diabetic mouse model was
induced by multiple peritoneal injections of STZ. Two months after injection, left ventricular (LV) function was
measured by echocardiography. In addition, molecular biomarkers related to oxidative stress, inflammation,
apoptosis and autophagy were evaluated using classical molecular biological/biochemical techniques. Mice with
DCM exhibited severe LV dysfunction, myofibril structure disarray, aberrant cardiac oxidative stress, inflammation,
apoptosis, autophagy and increased levels of HO-1. In addition, we determined that systemic overexpression of
HO-1 ameliorated left ventricular dysfunction, myofibril structure disarray, oxidative stress, inflammation, apoptosis
and autophagy in DCM mice. Furthermore, serine/threonine-specific protein kinase (Akt) and AMP-activated protein
kinase (AMPK) phosphorylation is normally inhibited in DCM, but overexpression of the HO-1 gene restored the
phosphorylation of these kinases to normal levels. In contrast, the functions of HO-1 in DCM were significantly
reversed by overexpression of mutant HO-1. This study underlines the unique roles of HO-1, including the inhibition
of oxidative stress, inflammation and apoptosis and the enhancement of autophagy, in the pathogenesis of DCM.
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Introduction and mediate tissue injury, leading to left ventricular (LV)
systolic and diastolic dysfunction. The mechanisms of DCM are

The epidemic of obesity and a sedentary lifestyle is projected multifaceted, involving modified action potential, Ca?* transient

to result in over 300 million people with diabetes mellitus by
2025 [1]. One of the major causes of increased morbidity and
mortality in patients with diabetes is cardiovascular
complications [2]. Different pathophysiological stimuli are
involved in the development of diabetic cardiomyopathy (DCM)
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and Ca* sensitivity of contractile elements [3-5], increased
oxidative stress [6-8], activation of various pro-inflammatory
and apoptotic signaling pathways [9-12], decreased autophagy
[13-15] and the accumulation of advanced glycation end
products [16,17] among many others.
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Numerous enzymes that contribute to myocardial injury have
been documented to be abnormally expressed in the diabetic
myocardium [8,18,19]. Heme oxygenase (HO)-1 is among
these enzymes that increase in patients with diabetes [20,21].
HO, the rate-limiting enzyme in heme degradation, catalyses
the oxidation of heme to generate several biologically active
molecules, such as carbon monoxide (CO), biliverdin, and
ferrous ion [22]. There are three isoforms in the HO family:
HO-1, HO-2, and HO-3. HO-2 is constitutively expressed in
most tissues. HO-3 has a similar protein structure to HO-2 but
with lower enzymatic activity and is less well characterized.
Whereas HO-1 is normally expressed at a low level in most
tissues except for the spleen, it is highly inducible in response
to a variety of stimuli (such as hydrogen peroxide, UV
irradiation, endotoxins, and hypoxia) to protect cells against
oxidative and inflammatory injury [23]. Numerous studies have
described a contradictory role for HO-1 in the cardiovascular
complications of diabetes. For example, HO-1 was shown to
ameliorate glucose-induced apoptosis of human microvessel
endothelial cells [24]. Up-regulation of HO-1 decreases oxidant
production and endothelial cell damage and shedding and may
attenuate vascular complications in diabetes [25]. Recently
Cao et al. demonstrated that induction of HO-1 by treatment
with cobalt-protoporphyrinlX (CoPP) improved both cardiac
function and coronary flow by blunting oxidative stress [26].
However, it was also reported that HO-1 induction under
hyperglycemic conditions may lead to oxidative DNA and
protein damage in human umbilical vein endothelial cells
(HUVECs) [27]. Another group has shown that diabetes-
induced oxidative stress in the heart is in part due to increased
HO-1 expression and activity, which may be mediated by an
increased level of redox-active iron [28]. Thus, the role of HO-1
in the cardiovascular complications of diabetes is still uncertain.

In the present study we sought to clarify the
pathophysiological functions of HO-1 in the development of
DCM using wild-type HO-1 or mutant HO-1 transgenic mice.
The results indicate that HO-1 activation is beneficial in
preventing cardiac dysfunction and myofibril structure disarray
by reducing cardiac oxidative stress, inflammation and
apoptosis and enhancing cardiac autophagy.

Materials and Methods

Animals and Ethics Statement

All animal experiments were approved by the Institutional
Animal Care and Use Committee of Harbin Medical University
(No. HMUIRB-2008-06). Mice housed under identical
conditions were allowed free access to a standard diet and tap
water with a 12 h light: 12 h dark cycle. Mice systemically
overexpressing HO-1 (Tg-HO-1) or mutant HO-1 (Tg-mutHO-1)
were generated by pronuclear microinjection of fertilised eggs
from C57BL/6 F1 parents with a transgenic construct
expressing the cDNA for mouse HO-1 and the Gly143 to His
(G143H) mutant of HO-1 under the control of the chicken B-
actin promoter [29]. Transgenic mice were identified using
analysis of tail DNA by PCR with a forward primer from the
chicken B-actin promoter (5-
GCCTTCTTCTTTTTCCTACAGCTC-3) and a reverse primer
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from the mouse HO-1 cDNA (5-
GGCATGCTGTCGGGCTGTGGAC-3’). Compared with wild-
type mice, the level of the HO-1 but not the HO-2 protein in the
hearts of Tg-HO-1 mice significantly increased by 5-fold [30]. In
Tg-mutHO-1 mice, the G143H mutant of HO-1 binds heme but
has no HO catalytic activity [31]. Male Tg-HO-1 and Tg-
mutHO-1 (8 weeks of age) and their non-transgenic male
littermates (Wt) were used.

Establishment of a Mouse Model of Experimental
Diabetes

Diabetes was induced in Tg-HO-1 (HO-1/DM), Tg-mutHO-1
(mutHO-1/DM) and Wt (Wt/DM) mice through consecutive
peritoneal injections of streptozotocin (STZ; 50 mg/kg per day)
for 5 days. After the last injection of STZ, the whole blood of all
mice was obtained from the tail vein, and the glucose level in
the blood was measured at random using the OneTouch Ultra
2 blood glucose monitoring system (LifeScan, Milpitas, CA).
Mice were considered diabetic and used for the study only if
they were hyperglycemic (>20 mmol/L) [32]. Citrate buffer-
treated mice were used as non-diabetic controls (Wt/Con;
blood glucose<12 mmol/L). None of the animals received
exogenous insulin. After the induction of diabetes for 2 months,
mice (n = 8-12 in each group) were sacrificed for the following
experiments.

Echocardiography Measurements

Two months after the induction of diabetes,
echocardiographic studies were performed under sedation with
pentobarbitone sodium (60 mg/kg of body weight i.p.), using an
echocardiography machine (8.5-MHz linear transducer;
EnVisor C, Philips Medical Systems). M-mode tracings derived
from the short axis of the LV were recorded to measure LV
end-diastolic diameter (LVEDD), end-systolic diameter
(LVESD), left ventricular ejection fraction (LVEF), heart rate
(HR) and cardiac output (CO). All measurements represent the
mean of 5 consecutive cardiac cycles. The values of LVESV,
LVEDV, LVEF and CO were calculated using computer
algorithms.

Blood Sample and Tissue Collection

After the assessment of LV performance, blood samples
were collected from the right ventricle and the serum was
separated. Serum total cholesterol (TC), triglycerides (TG) and
insulin were analyzed using enzymatic methods with an
automatic analyzer (JCA-BM8060, JEOL Ltd, Tokyo, Japan).
Hearts were excised, washed with phosphate-buffered saline
(PBS), and fixed in 10% formalin. Hearts were then
transversely cut close to the apex to visualize the left and right
ventricles. Four micron sections of the heart were prepared,
stained with hematoxylin and eosin (H&E), visualized by light
microscopy and photographed. For each sample, all available
fields (>30 fields) were measured, including the septum and the
right and left ventricles.

At a low temperature, a specimen removed from the left
ventricular myocardium with ophthalmic scissors was cut into a
1 mm tissue mass. Images were taken after fixation, soaking,
stepwise alcohol dehydration, displacement, embedding,
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polymerization, sectioning, and staining, and observed with an
electron microscope (JEM-2000EX TEM, Tokyo, Japan).
Random sections were taken and analyzed by two technicians
blinded to the treatments.

Quantitative Reverse Transcription PCR (qQRT-PCR)

Total RNA was isolated with an RNA extraction kit (Axygen,
CA, USA) according to the manufacturer's protocol, and the
concentration of total RNA was measured with a NanoDrop
2000c (Thermo, Fisher, MA, USA). RNA (1 ug) was converted
to cDNA using reverse transcriptase (Promega, Madison,
USA). RT-PCR was performed using SYBR Premix Ex Taq
(Takara Bio, Tokyo, Japan).

Western Blot Analysis

After rinsing with PBS, heart tissues or cells were lysed on
ice for 30 min in lysis buffer containing a protease inhibitor
cocktail (Roche, MD, USA). After centrifugation at 12000 g for
15 min, the supernatant was separated and stored at -80°C
until use. Protein concentration was determined using a BCA
protein assay kit (Applygen, Beijing, China). Extracted proteins
were separated by sodium dodecyl sulphate polyacrylamide gel
electrophoresis (SDS-PAGE), electrotransferred and
immobilised on a nitrocellulose membrane. The membrane was
blocked with 5% non-fat milk in PBS containing 0.1% Tween 20
(PBS-T) and incubated for 2 h. Membranes were probed with
antibodies against p-Akt, p-GSK3, p-AMPK, p53, Beclin-1,
LC3- Il (1:1000 dilution, Cell Signaling Technology, CA, USA)
or Bcl-2 (1:500 dilution, Santa Cruz Biotechnology, CA, USA).
After incubation with the appropriate secondary antibody, the
signal was detected using an Enzymatic Chemiluminescence
(ECL) kit (Applygen, Beijing, China), and band intensities for
each individual protein were quantified by densitometry,
corrected for background staining, and normalized to the signal
for GAPDH (1:4000 dilution, Cell Signaling Technology, CA,
USA). One of three independent experiments with consistent
results is shown.

TUNEL Staining

To analysis apoptosis, terminal deoxynucleotidyl transferase-
mediated dUTP nick end-labeling (TUNEL) assays were
performed on sectioned mid-LV samples using an In Situ
Apoptosis Detection Kit (Roche, MD, USA) according to the
manufacturer’s instructions. The apoptotic index (Al) = number
of TUNEL-positive myocytes / total number of myocytes
stained with DAPI from a total of 40 fields per heart (n=4).

Cell Culture

The rat embryonic heart—derived cell line H9c2 was obtained
from the cell bank of the Chinese Academy of Sciences
(Shanghai, China). The cells were identified by morphology
and immunohistochemistry of heavy-chain cardiac myosin and
alpha-cardiac actin. H9c2 cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum at 37°C in a humidified incubator containing
5% CO,, as described [33]. H9c2 cells stably transfected with
the human HO-1 recombinant plasmid or empty vector are

PLOS ONE | www.plosone.org

HO-1 Protection to Cardiac Function

referred to as H9c2/HO-1 or HI9c2/PC, respectively. Stably
transfected clones were obtained by G418 sulphate selection.
For the analysis of high-glucose treatment, cells were cultured
in DMEM containing 5.5 mM glucose (control group) or 25 mM
glucose (high glucose).

Measurement of Intracellular Reactive Oxygen Species
(ROS) Levels

The generation of ROS in the cells was evaluated using a
fluorometry assay with the intracellular oxidation of
dichlorodihydrofluorescein diacetate (DCFH-DA) (Beyotime
Institute of Biotechnology, Beijing, China). After exposure to
high-glucose environment for 48 h, H9c2 cells were trypsinized
and centrifuged. Cell pellets were incubated with DCFDA stain
(1:1000) at 37°C for 20 min in the dark. ROS levels were
measured using a flow cytometer (BD Biosciences, CA, USA)
and quantified by determining the mean of fluorescence for
each treatment. Three independent experiments were
conducted for each condition investigated, with typically 10,000
cells analyzed per experiment.

Malondialdehyde (MDA) Assay

The MDA levels in H9c2 cells were evaluated using an MDA
assay kit (Beyotime Institute of Biotechnology, Beijing, China).
H9c2 cells were incubated in a 60 mm plates for 24 h for
stabilization. After exposure to high glucose for 48 h, the levels
of MDA were measured according to the manufacturer's
instructions. The Levels of MDA in the experimental groups
were defined as a percentage compared with that of the
vehicle. Three independent experiments were conducted for
each condition investigated.

Annexin V-FITC and Propidium lodide Staining

H9c2 cells were plated in 60 mm plates. Following incubation
with the appropriate drugs, 1x10°% cells were collected by
centrifugation. Cells were resuspended in 500 pl of 1x Binding
Buffer with 5 pl of Annexin V-FITC and 10 pl of propidium
iodide and incubated at room temperature for 5 min in the dark.
Annexin V-FITC and propidium iodide-stained cells were
analyzed by flow cytometry. Three independent experiments
were conducted for each condition investigated, with typically
10,000 cells analyzed per experiment.

Statistical Analysis

The results are expressed as the means + SD. Statistical
analysis was performed using the Student 2-tailed t test or one-
way analysis of variance (ANOVA) and Dunnett’s post hoc test.
In all cases, P < 0.05 was considered significant. Statistical
analyses were performed using SPSS Software (Version 13.0).

Results

Characteristics of STZ-Induced Diabetes Mellitus in
Mice

The injection of STZ induced moderate to severe
hyperglycemic in three mouse genotypes including Tg-HO-1,
Tg-mutHO-1 and Wt mice, whereas the blood glucose in
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Table 1. Basic parameters of diabetic mouse.

HO-1 Protection to Cardiac Function

Basic Parameters Wt/Con (n=12) HO-1/Con (n=6)

MutHO-1/Con (n=6)

Wt/DM (n=12) HO-1/DM (n=6)  MutHO-1/DM (n=5)

Blood glucose(mmol/L) 7.6£0.3 6.410.2 7.30.3 22.8+1.1% 21.241.3% 23.8+0.9%
Water intake(ml/d) 6.120.2 8.3+0.4 7.3£0.5 18.3+0.9% 19.240.8% 18.4+1.0%
Food intake(g/d) 6.240.3 7.740.3 6.4+0.2 16.2+0.8% 16.8+0.5% 15.7+0.8%
Urine volume(ml/d) 1.120.08 0.8+0.05 0.9+0.04 10.2+0.4%* 9.3:0.3% 11.2£0.6*
Body mass(g) 30.4+1.5 31.3+2.1 30.6+1.8 20.1+1.3# 22.6+1.1% 19.43+1.1%#
Heats mass(g) 0.25+0.04 0.24+0.02 0.23+0.05 0.18+0.02# 0.18+0.03# 0.19+0.03#
Heart to body mass ratio(mg/g) 7.7+0.6 7.3:0.3 7.6+0.4 9.1x0.4% 7.95+0.5% 9.8+0.6*#
TC(mg/dl) 55.5+10.2 53.7+12.7 61.7+11.7 102.86+14.15% 97.72+11.3% 99.36+10.9%
TG(mg/dl) 52.4+12.2 50.5+10.4 57.8+11.9 91.32+8.32# 87.46+9.49% 98.21+8.19%
Insulin(ulU/ml) 43.55+2.23 38.31+1.84 44.32+1.57 25.95+1.91% 27.26+2.18% 24.3741.79%

TC, total cholesterol; TG, triglycerides. Values are presented as mean + SD, #p<0.05 vs Wt/Con, *p<0.05 vs Wt/DM.

doi: 10.1371/journal.pone.0075927.t001

Table 2. Left ventricular function evaluation by echocardiograpy.

Parameters Wt/Con (n=12) HO-1/Con (n=6) MutHO-1/Con (n=6) Wt/DM (n=11) HO-1/DM (n=6) MutHO-1/DM (n=5)
HR(beats/min) 599+13.2 587+17.8 593+12.8 55611.9 580+13.7 584+18.5
CO(ml/min) 1.67+0.05 1.71£0.07 1.69+0.09 1.4740.07 1.54+0.06 1.48+0.05
LVESV(ml) 1.6+0.2 1.8+0.5 2+0.5 2.23+0.3% 1.9+0.4*# 4.6+0.8*#
LVEDV(ml) 2.840.5 2.940.6 3.1£0.8 3.3:06* 3.29 +0.5% 3.30.8%

LVEF(%) 80+6.3 8245.7 7945.2 68+5.9% 79472 60+6.8%

HR, heart rate; CO, cardiac output; LVESV, left ventricular end-systolic volume; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction.

Values are presented as mean + SD, #p<0.05 vs Wt/Con, *p<0.05 vs Wt/DM.
doi: 10.1371/journal.pone.0075927.t002

nondiabetic mice was maintained at normal levels. As shown in
Table 1, compared with Wt/Con mice, food intake, water intake
and urine volume were significantly increased and body weight
was decreased in W/DM mice; furthermore, the ratio of heart
to body mass was clearly increased in Wt/DM mice. Serum
concentrations of TC and TG were higher and insulin was
lower in Wt/DM mice than in Wt/Con mice.

Cardiac Function, Pathology and Ultrastructural
Changes in Diabetes

The values of LVESV, LVEDV, LVEF, HR and CO were
evaluated by echocardiography two months after STZ injection.
Decreased LVEF and increased LVESV and LVEDV were
observed in W{/DM mice compared with Wt/Con mice as
shown in Table 2. HR and CO were lower in Wt/DM mice than
in Wt/Con mice. However, there was no significant difference
between the two groups (Table 2). Several studies have
reported that elevated expression of ANP and BNP are
sensitive indicators of cardiac dysfunction [34]. In agreement
with the previous studies, the expression of ANP and BNP
mRNA was increased in the diabetic myocardium (Figure 1B).
H&E staining and electron microscopy of the heart tissues
revealed significant mitochondrial disruption and myofibril
disarray in Wt/DM mice (Figure 1A). Beginning at 2-3 months
after the induction of diabetes, our results are similar to the
pattern of diastolic and systolic dysfunction in humans [35].
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Up-Regulation of HO-1 Expression in the Hearts of Mice
with Diabetes Mellitus

Cardiac HO-1 expression was notably increased in Wt/DM
mice compared with Wt/Con mice as shown in Figure 2(A, B).
In H9c2 cells, high glucose also induced a significantly
enhanced expression of HO-1 (Figure 2C, D).

Improved diabetes-induced LV dysfunction and myofibril
structure disarray in HO-1/DM mice.

To evaluate whether HO-1 mediated cardioprotective effects,
transgenic mice systemic overexpressing HO-1 were utilized in
the following study [14,15]. Compared with Wt/DM mice, the
heart to body mass ratio was decreased in HO-1/DM mice.
However, there were no differences in the food intake, water
intake, urine volume, TC, TG or insulin between Wt/DM and
HO-1/DM mice (Table 1). Moreover, in HO-1/DM mice, LVESV
was decreased, and LVEF was increased (Table 2). H&E
staining and electron microscopy revealed a greater
attenuation of the mitochondria disruption and myofibril
disarray than in Wt/DM mice (Figure 1A). Concurrently,
HO-1/DM mice showed significantly down-regulated expression
of ANP and BNP compared with Wt/DM mice (Figure 1B). Over
all, these results indicate that HO-1 improves diabetes-induced
LV dysfunction and myofibril structure disarray in diabetic mice.
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Wt/DM

HO-1/DM

mutlO-1/DM

HO-1 Protection to Cardiac Function

Relative ANP

Relative BNP?

Figure 1. Pathology of DCM. A. Gross morphology and electron micrographs of the heart of diabetic mice. a-d: longitudinal
sections of LV stained with hematoxylin and eosin (scale bar, 20um). e-h: electron micrographs of LV (scale bars, 5 pm).
B. qRT-PCR was performed to measure the levels of ANP and BNP mRNA expression in the myocardium in the various groups.

GAPDH was used as an internal loading control.

(n =5 in each group) Columns and errors bars represent the mean + SD. #p<0.071 vs. Wt/Con; *p<0.071 vs. Wt/DM.

doi: 10.1371/journal.pone.0075927.g001

Attenuated Diabetes-Induced Myocardial Oxidative
Stress and Inflammation in HO-1/DM Mice

We further investigated the underlying mechanism by which
HO-1 protected against diabetic cardiomyopathy. Increased
oxidative stress may result in the formation of cell-damaging
gene products, which then lead to various diabetic vascular
complications [36,37]. Our results indicated that the expression
of NADPH oxidase subunit p47phox (p47phox) and glutathione
peroxidase-3 (GPx3) mRNA was remarkably elevated in
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Wt/DM mice compared with Wt/Con mice. Overexpression of
HO-1 decreased the expression of p47phox and GPx3 mRNA
compared with Wt/DM mice (Figure 3 A c, d). These results
were in accordance with the presence of oxidative stress,
characterized by the accumulation of ROS and MDA in H9c2
cells under high glucose. ROS and MDA levels significantly
increased in H9c2 cells incubated with high glucose. However,
overexpression of HO-1 significantly decreased ROS and MDA
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Figure 2. Enhanced HO-1 expression in diabetic hearts. A,
B. After two months of established diabetes, mice were killed,
and left ventricles of the heart were excised. HO-1 levels in
samples were analyzed by qRT-PCR and western blot.
GAPDH was used as an internal loading control. (n = 5 in each
group).

C, D. After a 48 h incubation with high-glucose, HO-1
expression in H9c2 cells was analyzed by gqRT-PCR and
western blot. GAPDH was used as an internal loading control.
Columns and errors bars represent mean + SD. *** p<0.001 vs.
H9c2/Con; #p<0.01 vs. Wt/Con.

doi: 10.1371/journal.pone.0075927.g002

levels in H9c2 cells cultured in high-glucose conditions (Figure
3B, 3C).

Cardiac inflammation characterized by increased expression
of pro-inflammatory cytokines plays an important role in the
pathophysiology of DCM [12,38,39]. In the present study, LV
expression of interleukin-6 (IL-6) and tumor necrosis factor-a
(TNF-a) mRNA was notably increased in Wt/DM mice
compared with Wt/Con mice. Overexpression of HO-1
decreased the expression of IL-6 and TNF-a mRNA compared
with Wt/DM mice (Figure 3 A a, b).

Attenuation of Cardiac Apoptosis and Restoration of
Cardiac Autophagy in HO-1/DM Mice

Apoptosis is reported to play a critical role in DCM [40,41]. In
heart sections generated from HO-1/DM mice, we found that
the number of TUNEL-positive cells was significantly
decreased compared with those detected in W{/DM mice
(Figure 4A). In H9c2 cells, overexpression of HO-1 strongly
inhibited 25 mM glucose-induced apoptosis as assessed by
flow cytometry of AnnexinV-FITC and propidium iodide-stained
cells (Figure 4C). Immunoblotting revealed that the expression
of p53 was decreased and Bcl-2 was markedly increased in
HO-1/DM mice compared with Wt/DM mice (Figure 4B).
Furthermore, we tested the hypothesis that the anti-apoptotic
effect of HO-1 was mediated by activation of the Akt pathway.
Compared with Wt/Con, the phosphorylation of Akt and GSK-3
was decreased in Wt/DM mice. These changes were
attenuated in HO-1/DM mice, suggesting that the Akt pathway
may be involved in the crucial role of HO-1 in DCM (Figure 4D).
These results indicate that the cardio-protective effects of HO-1
may be mediated in part by the attenuation of cardiac
apoptosis via Akt activation in diabetic mice.
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A basal level of autophagy plays an important role in
protecting cardiomyocytes from hyperglycemic damage, and
the suppression of autophagy in diabetes contributes to the
development of cardiomyopathy [42]. To assess the role of
autophagy in DCM, we measured the expression of cardiac
LC3-Il and Beclin-1 after two months of diabetes. Remarkably,
the expression of cardiac LC3-Il and Beclin-1 was decreased in
Wt/DM mice compared with Wt/Con mice. Overexpression of
HO-1 abrogated the reduced LC3-ll and Beclin-1 expression in
diabetic hearts (Figure 5A). Furthermore, emerging evidence
demonstrated that AMPK may regulate autophagy in diabetic
cardiomyopathy [43]. Thus, we also examined phosphorylation
of AMPK in diabetic mice. As shown in Figure 5B, the
phosphorylation of AMPK was decreased in Wt/DM compared
with Wt/Con mice. Overexpression of HO-1 increased AMPK
induction, suggesting that the cardio-protective effect of HO-1
at least partially underlies the restoration of cardiac autophagy
via AMPK activation in diabetic mice.

Impairment of Cardiac Function, Promotion of Cardiac
Inflammation, Oxidative Stress and Apoptosis, and
Suppression of Autophagy in mutHO-1/DM Mice

To further investigate our hypothesis that HO-1 plays a
cardioprotective role in DCM, we generated Tg-mutHO-1 mice
in which Gly143 was mutated to His [13]. In mutHO-1/DM mice,
the heart to body mass ratio (Table 1) and LVESV (Table 2)
were increased compared with Wt/DM mice. Cardiac pathology
and ultrastructural changes were exacerbated (Figure 1A), and
the expression of ANP and BNP mRNA was significantly up-
regulated in mutHO-1/DM mice compared with the Wt/DM mice
(Figure 1B). Overexpression of mutant HO-1 markedly
increased the expression of IL-6, TNF-a, p47phox, and GPx3
mRNA in diabetic mice (Figure 3). In heart sections from
mutHO-1/DM mice, the number of TUNEL-positive cells was
significantly increased compared with Wt/DM mice (Figure 4A).
Immunoblotting showed that the expression of p53 was
increased and Bcl-2 was decreased in mutHO-1/DM mice.
Concurrently, phosphorylation of Akt but not GSK-3 was lower
in mutHO-1/DM mice than in WtDM mice (Figure 4D).
Molecular markers of autophagy in the hearts of mutHO-1/DM
mice were markedly decreased as indicated by LC3-Il and
Beclin-1 protein levels (Figure 5A). The phosphorylation of
AMPK was also decreased in mutHO-1/DM mice compared
with Wt/DM mice (Figure 5B).

Discussion

To our knowledge, the present study is the firsr to describe
that overexpression of HO-1 protects against cardiac
dysfunction and attenuates mitochondrial disruption and
myofibril disarray in DCM. The effect of HO-1 in DCM is
associated with the attenuation of myocardial oxidative stress,
inflammation and apoptosis and enhancement of autophagy
(Figure 6). In contrast, overexpression of mutant HO-1 is not
cardioprotective.

DCM is defined as the ventricular dysfunction that occurs in
diabetic patients independently of coronary artery disease or
hypertension [2,44]. Our results demonstrated that STZ
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Figure 3. Anti-inflammatory and anti-oxidant effects of HO-1 on cardiomyocytes in diabetic mice. A. LV expression of IL-6
(a), TNF-a (b), GPx3 (c), P47phox (d) mRNA in the respective groups. GAPDH was used as an internal loading control (n = 5 in
each group).

B, C. Quantification of ROS and MDA in HO-1 or empty vector (PC) transfected H9c2 cells under control and high-glucose culture
conditions for 48 h.

Columns and errors bars represent mean + SD. #p<0.01 vs. Wt/Con; *p<0.01 vs. Wt/DM; ** p<0.01 vs. PC/Con; ##p<0.01 vs. PC/
Glu.

doi: 10.1371/journal.pone.0075927.g003
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Figure 5. The protective effect of HO-1 on myocardial
autophagy in diabetic mice. A, B. Representative
immunoblot for Beclin-1, LC3-Il, p-AMPK and AMPK in the
myocardial tissues from the respective groups (above) and
densitometric quantification (below).

(n =5 in each group). Columns and errors bars represent mean
+ SD. #p<0.01 vs. Wt/Con; *p<0.01 vs. Wt/DM.

doi: 10.1371/journal.pone.0075927.9g005

injection successfully induced diabetes and DCM as indicated
by an increase in cardiac dysfunction and myocardial structure
changes. These cardiac abnormalities were improved by the
overexpression of HO-1 and were exacerbated by the
overexpression of mutant HO-1. These findings suggest that
HO-1 represent a realistic strategy for limiting the progression
of cardiac dysfunction associated with diabetes.

Accumulating evidence suggests that increased oxidative
stress coupled with the activation of various downstream pro-
inflammatory and apoptotic pathways plays a ivotal role in the
development of complex biochemical, mechanical and
structural alterations associated with DCM [2,45-47]. HO-1 is a
stress-response protein that activated under conditions of
increased oxidative stress [48,49]. Cao et al. reported that up-
regulating HO-1 improves cardiac and vascular dysfunction by
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Figure 6. Scheme for the possible mechanism for the
attenuation of diabetic cardiomyopathy by heme
oxygenase-1 (HO-1) overexpression.
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decreasing oxidative stress in hypertensive rats fed a high-fat
diet [50]. Furthermore, induction of HO-1 results in decreased
cardiac expression of superoxide and NOX-2, which may be
due to a decrease in the levels of NADPH oxidase [51].
Interestingly, utilizing tin protoporphyrin IX, a potent inhibitor of
the HO system, Farhangkhoee and colleagues demonstrated
that diabetes-induced oxidative stress in the heart is due to up-
regulation of HO expression and activity [27]. Most studies of
HO-1 utilise chemicals that induce or inhibit HO-1. Moreover,
numerous publications have shown marked adverse effects of
HO-1 by HO-1 inducers or inhibitors in various in vivo and in
vitro experimental models. Furthermore, treatment with an
HO-1 inducer or a recombinant adenovirus carrying the HO-1
gene causes more acute stress than transgenic mice
overexpressing HO-1. Thus, the results of acute stress might
be different from those of long-term transgenic overexpression.
We eliminated the interference from an inducer or inhibitor of
HO-1 by using Tg-HO-1 and Tg-mutHO-1 mice. Recent studies
have demonstrated that p47phox and GPx3, two antioxidant
enzymes, are increased in DCM in response to enhanced
oxidative stress [52,53]. Consistent with the above-mentioned
studies, our data showed that the expression of p47phox and
GPx3 mRNA was decreased in HO-1/DM mice and increased
in mutHO-1/DM mice compared with Wt/DM mice. In H9c2
cells, overexpression of HO-1 significantly decreased
myocardial ROS and MDA levels under high-glucose
conditions. Collectively these data show that HO-1 protects
against DCM at least partially by reducing oxidative stress.
Additionally, an increasing amount of experimental and
clinical evidence suggests that pro-inflammatory cytokines are
involved in the pathogenesis of heart dysfunction [54,55]. TNF-
a is an important factor in the development and progression of
heart failure [56,57]. IL-6 is involved in the development of
atherosclerosis, myocardial remodeling, and experimental and
clinical cardiac dysfunction [58,59]. The inflammatory cytokines
IL-6 and TNF-a, are known to promote LV dysfunction and play
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a pathogenic role in heart failure and DCM [51,53,60].
Moreover, HO-1 plays a critical protective role during the
development of inflammation in the cardiovascular system
[61,62]. Mougiakakos et al. observed that pharmacological
inhibition of HO-1 activity led to a significant reduction in the
ability of these cells to induce regulatory T cells [63]. Similarly it
has been reported that hepatic overexpression of HO-1 leads
to the induction of regulatory T cells that are responsible for
increased survival of liver allografts [64]. Orozco et al. also
reported that decreased or absent HO-1 expression in
peritoneal macrophages results in enhanced ROS formation
and increased inflammatory cytokines such as MCP-1, IL-6,
and the murine interleukin 8 homolog [65]. Our results from the
present study also agree with previous studies demonstrating
that the expression of IL-6 and TNF-a mRNA was decreased in
HO-1/DM mice and increased in mutHO-1/DM mice compared
with  WY/DM mice. Together these data suggest that the
decreased cardiac inflammation induced by HO-1 may lead to
protection from DCM.

Oxidative stress and inflammation stimulated apoptosis are
reported to play a critical role in DCM [39,40]. HO-1 induction in
the failing heart is an important cardioprotective adaptation that
opposes pathological LV remodeling, and this effect is
mediated by product-dependent inhibition of apoptosis [66].
Indeed, our results showed that the number of TUNEL-positive
cells was decreased in HO-1/DM mice and increased in
mutHO-1/DM mice compared with W{/DM mice. Furthermore,
the expression of p53 and Bcl-2 confirmed the results from
TUNEL staining. Moreover, in H9c2 cells, overexpression of
HO-1 significantly decreased the number of apoptotic cells that
were induced by high glucose. The Akt/GSK-3 pathways are
commonly involved in stress-induced apoptosis in vitro and in
vivo models [67-69]. In fact, the Akt pathway is activated during
hydrogen peroxide-induced apoptosis in H9c2 cells [70] and
mesenchymal stem cells [71] as well as in in vivo models of
DCM [51]. Accordingly, we demonstrated that the reduced
apoptosis in HO-1/DM mice was associated with significantly
increased phosphorylation of Akt and GSK-3. These changes
were reversed in mutHO-1/DM mice. Therefore, our findings
suggest that HO-1 protects against DCM in part by reducing
apoptosis, which is regulated by Akt activation.
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