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Abstract
Best practices are currently being developed for the acquisition and processing of resting-state magnetic resonance imaging
data used to estimate brain functional organization—or “functional connectivity.” Standards have been proposed based
on test–retest reliability, but open questions remain. These include how amount of data per subject influences whole-brain
reliability, the influence of increasing runs versus sessions, the spatial distribution of reliability, the reliability
of multivariate methods, and, crucially, how reliability maps onto prediction of behavior. We collected a dataset of
12 extensively sampled individuals (144min data each across 2 identically configured scanners) to assess test–retest
reliability of whole-brain connectivity within the generalizability theory framework. We used Human Connectome Project
data to replicate these analyses and relate reliability to behavioral prediction. Overall, the historical 5-min scan produced
poor reliability averaged across connections. Increasing the number of sessions was more beneficial than increasing runs.
Reliability was lowest for subcortical connections and highest for within-network cortical connections. Multivariate
reliability was greater than univariate. Finally, reliability could not be used to improve prediction; these findings are among
the first to underscore this distinction for functional connectivity. A comprehensive understanding of test–retest reliability,
including its limitations, supports the development of best practices in the field.
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Introduction
The cornerstones of scientific progress are reliability, reproducibil-
ity, and validity. These concepts provide complementary facets
for understanding the accuracy of a measure: reliability and
reproducibility refer to the consistency of a measure across

repeated tests and/or varying conditions, and validity refers to
the association of a measure with a predefined measure of
“ground truth” (Cronbach 1988; Open Science Collaboration 2015).
Unfortunately, many scientists argue that biomedical research is
in the midst of a sort of “crisis of reproducibility” (Baker 2016; cf.
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Begley and Ellis 2012; Pashler and Wagenmakers 2012; Open
Science Collaboration 2015). Accordingly, the field of neuroimag-
ing has begun to compile best practices to increase reliability,
reproducibility, and validity (Nichols et al. 2017; Poldrack et al.
2017). A fundamental measure increasingly used to inform these
best practices is “test–retest reliability,” intended to reflect intrin-
sic stability over repeated tests.

Given the promise of resting-state functional connectivity as a
research and clinical tool (Smith 2012), characterizing its test–
retest reliability is an active line of research and has resulted in
estimates of test–retest reliability ranging from poor to good
(Shehzad et al. 2009; Van Dijk et al. 2010; Anderson et al. 2011;
Birn et al. 2013; Shou et al. 2013; Laumann et al. 2015; Noble et al.
2016; Shah et al. 2016; Tomasi et al. 2016; O’Connor et al. 2017;
Pannunzi et al. 2017). Some of these conflicting results are due to
differences in measures of test–retest reliability (Birn et al. 2013;
Laumann et al. 2015) and the selection of regions used for con-
nectivity analyses (Anderson et al. 2011; Shah et al. 2016). This
variability across studies has given rise to widely varying recom-
mendations regarding the amount of data needed for the reliable
measurement of functional connectivity. As such, understanding
how much data is needed to achieve different levels of test–retest
reliability for different connections across the whole brain
remains an open question. A whole-brain scope is relevant to
exploratory or data-driven research where anatomical constraints
are not established a priori. Furthermore, mounting evidence sug-
gests that there is rich anatomical variability in test–retest reli-
ability across the brain (Shehzad et al. 2009; Birn et al. 2013;
Laumann et al. 2015; Noble et al. 2016; Shah et al. 2016; Tomasi
et al. 2016; O’Connor et al. 2017). Additionally, novel methods are
being developed that treat connectivity as a multivariate object
(as opposed to univariate analyses operating at the level of single
connections, or “edges”; Shirer et al. 2012; Smith et al. 2015; La
Rosa et al. 2016; Shen et al. 2017) or incorporate test–retest reli-
ability into various analyses (Strother et al. 2004; Shou et al. 2014;
Mueller et al. 2015; Shirer et al. 2015). However, there is a lack of
work investigating test–retest reliability using multivariate frame-
works or associating test–retest reliability of any single connec-
tion with measures of its behavior utility (i.e., its association with
or ability to predict behavior).

Here, we used the generalizability theory framework (Webb
and Shavelson 2005) to investigate the test–retest reliability of
whole-brain resting-state functional connectivity. The matrix
connectivity approach employed here represents a generalization
of classical seed connectivity (Finn et al. 2014), allowing us to
examine the connectivity amongst 268 seed regions spanning the
whole brain. To assess test–retest reliability, we collected a state-
of-the-art high spatial and temporal resolution dataset from 12
subjects scanned over four 36-min sessions, each session about a
week apart, on 2 separate but harmonized scanners. Finally, we
replicated a portion of the test–retest reliability results and related
each connection’s test–retest reliability to its utility in predicting
behavior using the Human Connectome Project (HCP) 900
Subjects Data Release (Van Essen et al. 2013). In the following, we
investigate the influence on test–retest reliability of increasing
runs and sessions, the spatial distribution of reliable edges, multi-
variate test–retest reliability and discriminability, and, crucially,
how test–retest reliability relates to the prediction of behavior.

Methods
Test–Retest Cohort

In total, 12 healthy subjects between the ages of 27 and 56
(mean = 40, standard deviation [SD] = 11) (6 males and 6

females) were recruited. Exclusion criteria included history of
psychiatric illness or any magnetic resonance imaging (MRI)
contraindications. All subjects gave informed consent and were
compensated for their participation.

Data were acquired on 2 identically configured Siemens 3T
Tim Trio scanners at Yale University using a 32-channel head
coil. After the localizer, high-resolution T1-weighted 3D anatomi-
cal scans were acquired using a magnetization prepared rapid
gradient echo (MPRAGE) sequence (208 contiguous slices acquired
in the sagittal plane, TR = 2400ms, TE = 1.18ms, flip angle=8°,
thickness=1mm, in-plane resolution=1mm × 1mm, matrix size
= 256 × 256). Next, T1-weighted 3D anatomical scans were
acquired using a fast low angle shot (FLASH) sequence (75 contig-
uous slices acquired in the axial plane, TR = 440ms, TE = 2.61ms,
flip angle=70°, thickness=2mm, in-plane resolution=2mm × 2
mm, matrix size = 256 × 256). Next, functional images were
acquired in the same slice locations as the axial T1-weighted data
using a multiband echo-planar imaging (EPI) pulse sequence (75
contiguous slices acquired in the axial plane, TR = 1000ms, TE =
30ms, flip angle=55°, thickness=2mm, in-plane resolution = 2 mm
× 2mm, matrix size = 110 × 110).

Each subject underwent scans over 4 sessions approxi-
mately 1 week apart (mean inter-scan interval=9.4 days, SD =
5.3 days), with all 4 scans completed within a maximum period
of 1.5 months. Each subject was scanned using the 2 scanners;
2 sessions used “Scanner A”, and the other 2 sessions used
“Scanner B.” The order of visits to scanners was counterba-
lanced across subjects, and visits to a single scanner were not
necessarily consecutive (e.g., all visit orders were allowed). Six
functional runs were collected at each session; a single 6-min
run of resting-state functional data consisted of 360 continuous
EPI functional volumes. Altogether, 144min of data was col-
lected for each subject (4 sessions/subject × 6 runs/session ×
6min/run), as shown in Figure 1. Subjects were instructed to
remain still in the scanner with their eyes open, keeping their
gaze on a fixation cross.

Human Connectome Project Cohort

The Human Connectome Project (HCP) 900 Subjects Data Release
(Van Essen et al. 2013) was used to assess behavioral utility in a
much larger set of subjects. The full dataset contains 877 indivi-
duals; this dataset was narrowed by restricting analysis only to
individuals who had resting-state data from all 4 scans (n = 823/
877), low motion (mean frame-to-frame displacement [mFFD]
<0.1mm; n = 610/823), and behavioral records of fluid intelli-
gence (gF; n = 606/610). Thus, behavioral predictions were made
from a final cohort of 606 subjects.

Image Analysis

Test–Retest Preprocessing
All analyses were performed using BioImage Suite (Joshi et al.
2011) unless otherwise noted. Functional images were motion-
corrected using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/software/
spm5/). The data were then iteratively smoothed to an equiva-
lent smoothness of a 2.5mm Gaussian kernel in order to ensure
uniform smoothness across the dataset (Friedman et al. 2006;
Scheinost et al. 2014). White matter and CSF were defined on a
MNI-space template brain and eroded in order to minimize
inclusion of grey matter in the mask. The template was then
warped to subject space using a series of transformations
described in the next section. This ensured that mainly grey
matter voxels were used in subsequent analyses. The following
noise covariates were regressed from the data: linear, quadratic,
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and cubic drift, a 24-parameter model of motion (Satterthwaite
et al. 2013), mean cerebrospinal fluid signal, mean white matter
signal, and mean global signal. Finally, data were temporally
smoothed with a zero mean unit variance Gaussian filter (cutoff
frequency=0.19Hz).

Test–Retest Common Space Registration
In order to warp single subject results into MNI space, a series
of linear and nonlinear transformations were estimated using
BioImage Suite. Anatomical data were first skull-stripped using
FSL (Smith 2002). Functional data for each subject, scanner, and
session were linearly registered to the corresponding FLASH
images. FLASH images were then linearly registered to MPRAGE
images. Next, an average MPRAGE image for each subject was
created by linearly registering and averaging all 4 anatomical
images (from 2 scanner × 2 sessions) for each subject. These
average MPRAGE images were used for an iterative nonlinear
registration to MNI space. The use of the average anatomical
images and a single nonlinear registration for each subject
ensures that any potential anatomical distortions due to the
different scanners does not introduce a systematic bias into the
registration. The average MPRAGE images were nonlinearly reg-
istered to an evolving group average template in MNI space as
described previously (Scheinost et al. 2017). All transformation
pairs were calculated independently and then combined into a

single transform that warps single participant results into com-
mon space. From this, all subjects’ images can be transformed
into common space using a single transformation, which
reduces interpolation error.

HCP Preprocessing
Starting with the minimally preprocessed HCP data (Glasser
et al. 2013), further preprocessing steps were performed using
BioImage Suite. These included regressing 24 motion para-
meters, regressing the mean time courses of the white matter
and CSF as well as the global signal, removing the linear trend,
and low-pass filtering as described for the test–retest cohort.

Matrix Connectivity
Regions were delineated according to a 268-node whole-brain
grey matter atlas (Shen et al. 2013). This atlas, defined in an
independent dataset, provides a parcellation of the whole gray
matter (including subcortex) into 268 contiguous, functionally
coherent regions. These 268 nodes have been also grouped into
10 functionally coherent “networks” (cf. Finn et al. 2015) using
the same parcellation procedure, and by anatomy into 10 “ana-
tomical regions.” Note that the subcortical-cerebellar network
(previously Network 4 in Finn et al. 2015) is further divided here
into 3 networks: cerebellar, subcortical, and limbic.

For each scan, the average timecourse within each region was
obtained, and the Pearson’s correlation between the mean time
courses of each pair of regions was calculated. These correlation
values provided the edge strengths for a 268 × 268 symmetric cor-
relation matrix for each combination of subject, session, and run.
These correlations were converted to z-scores using a Fisher
transformation, providing a “connectivity matrix” for each combi-
nation of subject, session, and run. This connectivity matrix is
analogous to a conventional seed connectivity analysis wherein a
volumetric region of interest is defined and correlations are calcu-
lated between that region and all whole-brain grey matter voxels,
except that other regions are used instead of voxels. Therefore,
the connectivity matrix represents a set of regions (“nodes”) and
connections between each pair of regions (“edges”).

Test–Retest Reliability Analyses in the Test–Retest
Cohort

Univariate Test–Retest Reliability
The generalizability theory (G theory) framework was used to
assess test–retest reliability. G theory is a generalization of classi-
cal test theory that allows the inclusion of more than one facet
of measurement, or source of error (Webb and Shavelson 2005;
Webb et al. 2006). G theory has been previously used to assess
the test–retest reliability of multisite functional connectivity
(Forsyth et al. 2014; Gee et al. 2015; Noble et al. 2016). The first
step is a generalizability study (G-study), which involves estimat-
ing variance components for all factors: the “object” of measure-
ment (here, people), “facets” of measurement (here, sessions and
runs), and their interactions. The residual contains variance due
to both the 3-way interaction and residual error.

A 3-way ANOVA model was used to estimate variance due
to all factors modeled as random—to maximize generalizability
—using the Matlab OLS-based function “anovan.” Negative vari-
ance components were small in magnitude and therefore set to
0, as previously described (Shavelson et al. 1993). The model
of variance is as follows, with subscripts representing factors
p = person, s = session, r = run, and e = residual:

Figure 1. Study design. A total of 12 subjects were each scanned at 4 sessions (2

scanners × 2 days), with each session comprising six 6-min runs for a total of

36min of data per session. All scans were acquired with subjects at rest with

eyes open. Connectivity matrices were obtained independently for each run.
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These variance components can then be used to estimate
test–retest reliability. For this study, we calculated “absolute
reliability,” which is measured by the dependability coefficient
(D-coefficient, Φ) and reflects the absolute agreement of mea-
surements. The D-coefficient is a form of the intraclass correla-
tion coefficient (ICC; Shrout and Fleiss 1979), which is based on
the ratio of variance due to the object of measurement versus
sources of error (akin to an F-statistic). For the univariate case,
D-coefficients (ΦUV) were calculated for each edge x as follows:
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where, σ …i
2 represents a variance component associated with

factor i or an interaction between facets, ′ni represents the
number of conditions of facet i used for an average measure-
ment (discussed in the next paragraph), and the factors are,
again, p (person), s (session), and r (run). Note that the treat-
ment of facets as possibly similar across subjects yet randomly
selected from a larger population makes this D-coefficient of
the form ICC(2,1) (cf. Webb et al. 2006). To summarize all edges,
the mean and SD of the D-coefficient across all edges is pre-
sented. D-coefficients (like most ICC coefficients) range from 0
to 1, and can be interpreted as follows: <0.4 poor; 0.4–0.59 fair;
0.60–0.74 good; > 0.74 excellent (Cicchetti and Sparrow 1981).

This formulation enables the construction of a decision
study (D-study), which provides information about what com-
bination of measurements from each facet of measurement
yields the desired level of test–retest reliability. To build a D-
study matrix, D-coefficients are re-calculated with ′ni allowed to
vary as free parameters. Increasing ′ni in the calculation of the
D-coefficients is akin to assessing the test–retest reliability of
connectivity matrices averaged over multiple sessions or runs,
for example, how test–retest reliability increases with the addi-
tion of more data from either sessions or runs. Therefore, test–
retest reliability obtained from ′ =n 1s and ′ =n 1r is the pro-
jected test–retest reliability of a connectivity matrix obtained
from a single 6-min run (6min total), whereas test–retest reli-
ability obtained from ′ =n 2s and ′ =n 4r is the projected test–
retest reliability of a connectivity matrix obtained from the
average of matrices over 2 sessions of four 6-min runs of data
(48min total). After calculating test–retest reliability across all
edges, test–retest reliability was then summarized by taking
the mean within (1) nodes, (2) networks, and (3) anatomical
regions. Using the univariate D-study results, the minimum
scan duration required to obtain different mean levels of test–
retest reliability was calculated.

To facilitate comparisons with previous studies, test–retest
reliability was also assessed within the context of classical test
theory. In brief, 2 versions of the ICC were calculated: (1) a coeffi-
cient describing short-term (intrasession) test–retest reliability,
and (2) a coefficient describing long-term (intersession) test–retest
reliability. Details can be found in the Supplementary Methods.

Region and Motion Influences on Univariate Test–Retest Reliability
The extent to which test–retest reliability was associated with
node size (voxel-wise volume) and location was explored via
Matlab’s “fitlm.” Three models were constructed: (1) test–retest
reliability ~ node size, (2) test–retest reliability ~ location, and
(3) test–retest reliability ~ node size + location. Location was
coded as a binary variable (1 = cortex, 0 = subcortex). The fits of

both single-predictor models (1 or 2) were compared against
the dual-predictor model (3) via F-test.

The influence of motion on test–retest reliability was inves-
tigated by comparing test–retest reliability estimated in lower
and higher motion groups. To estimate motion, mFFD was cal-
culated for each subject as the average FFD across all runs and
sessions. A threshold of mFFD = 0.1 was chosen to separate
subjects into higher and lower motion groups, based on the
mean FFD across medium motion adults in Power et al. (2014;
see Fig. S1). Test–retest reliability was then calculated sepa-
rately for both groups.

Multivariate Analyses
Two multivariate analyses were performed: (1) whole-brain
multivariate test–retest reliability, using a method derived from
the image intraclass correlation coefficient (I2C2; Shou et al.
2013), and (2) whole-brain discriminability, using 2 discrimina-
tion procedures related to the “fingerprinting” approach (Finn
et al. 2015). All 35 778 unique edges in the 268-node atlas were
used for these analyses.

Multivariate Test–Retest Reliability
For multivariate test–retest reliability, a single test–retest reli-
ability coefficient was calculated by summing variance compo-
nents over all edges, as described by Shou et al. (2013):
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where, as above, σ …i
2 represents the variance component associ-

ated with factor i or an interaction between factors, ′ni repre-
sents the number of levels in facet i, and factors are p (person),
s (session), and r (run). In accordance with Shou et al. (2013),
the I2C2 approach represents a multivariate image measure-
ment error model because these combined variance compo-
nents reflect the true overall image variance, in contrast with
the univariate ICC which reflects a univariate (marginal) mea-
surement error model. Scan durations required for each level of
test–retest reliability were then calculated as in the univariate
analysis.

Multivariate Discriminability
The fingerprinting approach (Finn et al. 2015) is a complemen-
tary method of assessing the reproducibility of functional con-
nectivity. We used 2 related discrimination approaches to
determine whether subjects could be identified (using the fin-
gerprinting procedure) or separated (using a new, related proce-
dure). Accordingly, 2 summary statistics were calculated: the
identification success rate (ISR) and the perfect separability rate
(PSR). Summary statistics were calculated 6 times to assess the
effect of different amounts of data, each time adding a 6-min
run before re-calculating the connectivity matrix (e.g., for 6, 12,
18, 24, 30, and 36min). Runs were added sequentially (i.e., in
the order acquired) to reflect real-world conditions.

The ISR measures whether scans from the same subject can
be accurately selected from a set of all scans. Each of the 48
scans (12 subjects × 4 sessions = 48 scans) served as a reference
once. For each reference scan, the maximum correlation
between the reference scan matrix and all other 47 scan matri-
ces was selected. If the selected matrix belonged to the same
subject as the reference matrix, the identification for that scan
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was coded as a success. After repeating this procedure for all
scans, the ISR was then calculated as follows:
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where p = person and s = session. Each successful identification
can be compared with the probability of choosing one of 3 cor-
rect scans out of 47 total scans at random.

The PSR is more challenging than the ISR; it describes
whether all within-subject correlations exceeded all between-
subject correlations for each scan. Again, each of the 48 scans
were used as reference. For each reference scan, if all 3 correla-
tions between the reference and other within-subject scan
matrices exceeded all 44 correlations between the reference
and between-subject scan matrices—that is, the reference sub-
ject did not once look more like another subject than him/her-
self—then the separation for the reference scan was recorded
as a success. The PSR was calculated as follows:
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where, p = person and s = session. Each perfect separation for a
scan can be compared with the probability of the minimum of
3 randomly chosen integers exceeding the maximum of 47 ran-
domly chosen integers.

Mean correlations within and between subjects for the
above procedures are also presented. Note that correlations
will always exceed ICC (Müller and Büttner 1994); therefore, a
perfect Pearson’s correlation can occur in the absence of identi-
cal measurements, but identical measurements must always
be accompanied by a high correlation.

Estimating Scanner and Day Effects in the Test–Retest
Cohort

We investigated the effect of acquiring test–retest data using
identical scanners at a single site. This step is needed to deter-
mine whether it is appropriate to collapse scanner and day fac-
tors into a single session factor, which was done in the above
analyses in order to estimate the presence of a session effect. A
model including person, scanner, day, run, and all interactions
was created to assess the presence of scanner and day effects,
with subscripts representing factors p = person, s = scanner, d
= day, r = run, and e = residual:

σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ

( ) = + + + + + + + + +

+ + + + +

X

.

psd p s d r ps pd pr sd sr rd

psd psr pdr sdr prsd e

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2
,

2

These variance components were then compared with the
variance components obtained with the model including per-
son, session, run, and all interactions.

Next, we estimated whether person, scanner, and day fac-
tors were associated with significant variance across different
numbers of runs, as described previously (Noble et al. 2016). We
first assessed for the effect of each factor (via ANOVA), then
assessed for the effect of each individual level within each fac-
tor (via GLM). For each number of runs, a connectivity matrix
was re-calculated over that number of runs. Then the regres-
sion estimation procedure was repeated using that number of
runs. Run was not explicitly included in either model due to
the potential for inflation of estimates of significance resulting
from the within-factor repeated-measures nature of the data.

Effects due to each factor were assessed as follows. The con-
tribution of all factors to the variability in connectivity was esti-
mated using a 3-way ANOVA with all factors modeled as
random effects, as above, except without the interactions. This
ensures more accurate estimates for the denominator of the F-
test. The model is as follows, with subscripts representing p =
person, s = session, d = day, and e = residual:

σ σ σ σ σ( ) = + + +X .psd p s d e
2 2 2 2 2

Next, the F-test statistic was used to assess whether each
factor was associated with significant variability in connectiv-
ity. Finally, correction via estimation of the false discovery rate
(FDR) was performed separately for each factor using “mafdr”
in Matlab (Storey 2002).

Next, effects due to each individual person, scanner, and
day were assessed using a general linear model (GLM). Each of
the 3 factors (person, scanner, and day) was modeled sepa-
rately, so that 3 GLMs—1 per factor—were constructed for each
edge or voxel and fit using the Matlab function “glmfit.” Since
the aims of this analysis are exploratory, GLMs were indepen-
dently estimated to facilitate interpretation of the direct effects
(Hayes 2013). The results of this analysis show whether any of
the measures are significantly different from the group mean
as a function of these factors. While the inclusion of the level
of interest in the grand mean can decrease the power of this
test, this setup is useful for comparing the effects of each level
to one another because each is compared with a common refer-
ence. As above, FDR correction was performed separately for
each level of each factor.

Test–Retest Reliability Analysis in the HCP Cohort

For the HCP cohort, we performed univariate and multivariate
test–retest reliability analyses similar to those used in the test–
retest cohort. The following model was used to estimate vari-
ance components, with subscripts representing p = person, s =
session, and e = residual:

σ σ σ σ( ) = + +X .psd p s ps e
2 2 2

,
2

The 2 runs acquired in the same day for the HCP cohort
were acquired with different phase encodings, which could
artificially increase within-session variance and confound test–
retest reliability. As such, connectivity matrices for the right-
left and left-right phase encoding acquired on the same day
(i.e., REST2_LR and REST2_RL) were averaged together and no
run factor was included in the test–retest reliability analysis.
Thus, test–retest reliability estimated with ′ =n 1s is the pro-
jected test–retest reliability from a 30-min session.

Behavioral Analysis Using Connectome-Based
Predictive Modeling in the HCP Cohort

We then explored the association between an edge’s test–retest
reliability and its behavioral utility in the HCP cohort, using
Connectome-based Predictive Modeling (CPM; Shen et al. 2017) to
define useful edges. CPM is a data-driven protocol for developing
predictive models of brain-behavior relationships from connec-
tomes using leave-one-subject-out cross-validation. Full details
of the CPM protocols are provided elsewhere (Shen et al. 2017).
Briefly, CPM is composed of (1) selecting edges that are signifi-
cantly correlated with behavior (P < 0.05), (2) summing those
edge strengths into a single-subject summary score, (3) building
a linear model to predict behavior based on the single-subject
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summary scores, and (4) testing this predictive model in novel
subjects. Fluid intelligence scores (gF) obtained via the Raven
Progressive Matrices (“pmat” variable in HCP dataset) were used
as the behavioral measure, and connectivity matrices were aver-
aged over both days (60min of data in total). Our final predictive
model was only composed of edges that appeared in every round
of cross-validation (cf. Rosenberg et al. 2015).

Results
Test–Retest Reliability of Univariate Functional
Connectivity

Overall Test–Retest Reliability of Individual Edges
For a single, 6-min session, test–retest reliability across all edges
was found to be poor (ΦUV = 0.18 ± 0.13). This is mainly due to the
large contribution of the residual (65.8%) relative to the other vari-
ance components, including subject (18.3%; Supplementary
Table 1). This large residual indicates that all scans in the dataset
are unique in a way that is not explained by the specified factors.
All other variance components were relatively small (<2%) except
the person by session interaction (12.0%), suggesting that subjects
differ in how they progress through sessions.

To assess the influence of quantity of data on test–retest
reliability, a Decision Study map was created by estimating
test–retest reliability for different combinations of numbers of
sessions and runs (Fig. 2). The Decision Study map is asymmet-
ric across the diagonal, indicating that increasing the number
of sessions boosts test–retest reliability more than increasing
the number of runs within a session. As such, fair test–retest
reliability could not be obtained within a single session, even

using the maximum amount of data acquired, 36min (ΦUV =
0.39 ± 0.21). In contrast, using the minimal amount of data
(6min), it is possible to achieve fair test–retest reliability in 4
sessions (ΦUV = 40 ± 21; 24min in total). Good test–retest reli-
ability can be obtained with a minimum of 3 sessions, requiring
35min of data per session (ΦUV = 0.60 ± 0.23; 105min in total).
However, excellent test–retest reliability cannot be obtained
even using all data acquired (144min total; ΦUV = 0.65 ± 0.23).

Test–Retest Reliability of Edges Summarized by Nodes and
Networks
Although test–retest reliability over all edges was poor at a sin-
gle session even using the full scan duration (36min), edges
associated with certain nodes showed fair or good mean test–
retest reliability (Φ = 0.4–0.6; Fig. 3a). Edges associated with cor-
tical nodes (Φctx = 0.20 ± 0.05) were more reliable than those
associated with subcortical nodes (Φsubctx = 0.12 ± 0.04). More
reliable cortical nodes attained fair test–retest reliability with
less data per subject (Fig. 3b). These differences are attributed
to a combination of node size (sizectx = 5211 ± 1854 voxels;
sizesubctx = 3408 ± 1116 voxels) and location (cortex or subcor-
tex), since both were found to uniquely contribute to test–retest
reliability when both were simultaneously included as predic-
tors (βsize = 0.67, P < 0.0001; βlocation = 0.15, P < 0.001). This model
explained significantly more variance than either single-
predictor model (Supplementary Fig. 1).

Edges associated with different large-scale functional net-
works exhibited different levels of test–retest reliability (Fig. 4a,
Supplementary Fig. 2a). Networks with more reliable edges
required less data per subject to obtain a fair level of test–retest
reliability (Fig. 4b, Supplementary Fig. 2b). For cortical networks,
within-network test–retest reliability (values on the diagonal in
Fig. 4a) was greater than between-network test–retest reliability
(values off the diagonal in Fig. 4a). For all networks, test–retest
reliability increased with more data per subject. Results organized
by anatomical region are also included (Supplementary Fig. 3).

Test–retest reliability estimated via classical test theory was
also found to be poor with a similar spatial distribution; test–
retest reliability and associated variance components for classi-
cal test theory can be found in Supplementary Figure 4.

Influence of Motion on Univariate Test–Retest Reliability
Average motion for each subject ranged between 0.0374 and 0.1818
mm mFFD (mean = 0.0993mm, SD = 0.0506mm; Supplementary
Table 2). Overall, both higher and lower motion groups showed
similar mean test–retest reliability. Test–retest reliability was
found to be ΦUV = 0.15 ± 0.12 for the higher motion group (mFFD
> 0.1mm; n = 5) and ΦUV = 0.15 ± 0.13 for the lower motion group
(mFFD < 0.1mm; n = 7). In both cases, test–retest reliability was
estimated to be lower than that obtained using the entire cohort.
The spatial distribution of test–retest reliability was also found to
be similar across higher and lower motion groups, with higher
test–retest reliability of within-network compared with between-
network edges (Supplementary Fig. 5). However, this spatial pat-
tern was more pronounced in the lower motion group compared
with the higher motion group.

Multivariate Test–Retest Reliability and Discriminability
of Functional Connectivity

Multivariate Test–Retest Reliability
The D-study for multivariate test–retest reliability in shown in
Figure 5. For a single session with 6min of data, multivariate

Figure 2. Effect of number of sessions and scan duration on mean test–retest

reliability over all edges. A Decision Study was performed to estimate absolute

reliability (Φ) as a function of scan duration (min) and number of sessions.

Brighter colors correspond to higher levels of test–retest reliability, and results

are categorized as follows: poor < 0.4, fair = 0.4–0.59, good = 0.6–0.74, excel-

lent≥0.74 (Cicchetti and Sparrow 1981). The asymmetry across the diagonal

indicates that test–retest reliability improves more quickly with increasing

number of sessions than with increasing scan durations. Accordingly, for a sin-

gle session, even with 36min of data, only poor test–retest reliability is

obtained. However, fair test–retest reliability can be obtained with only 24min

of data collected over 4 sessions of 6min each. Good test–retest reliability

requires 96–108min of data divided over 3–4 sessions. Excellent test–retest reli-

ability cannot be achieved using the maximum amount of data collected (4 ses-

sions × 36min, or 2.4 h in total).
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test–retest reliability was greater than univariate test–retest reli-
ability (ΦMV = 0.23, ΦUV = 0.19 ± 0.13). As for univariate test–retest
reliability, the D-study map is asymmetric across the diagonal.
Fair test–retest reliability (ΦMV≥0.4) was obtained within a single
session using 18 or more min of data. Using the minimum
amount of data per session (6min), 3 sessions were required to
achieve fair test–retest reliability (18min in total). Good test–
retest reliability was obtained with a minimum of 2 sessions,
requiring 23min of data per session (46min in total). The mini-
mum amount of data per session required to attain good test–
retest reliability is 9min, requiring 4 sessions (36min in total).
Excellent test–retest reliability was obtained with 4 sessions of
22min of data (88min in total). Not only is less data required to
achieve higher test–retest reliability for multivariate, compared
with univariate, measures, but there is a greater rate of change
in test–retest reliability with increasing amounts of data.

Multivariate Discriminability
The correlations between all sessions of all subjects were calcu-
lated (Supplementary Fig. 6) and used in 2 measures of between-
subject discrimination. Overall, subjects were found to be unique,
but not perfectly so (Table 1, Supplementary Fig. 7a). With 6min
of data, the ISR was 98% (only a single session was misidentified)
and reached the maximum of 100% with ≥12min of data, which
corresponded with poor univariate and multivariate test–retest
reliability. The PSR, which requires all within-subject correlations
to exceed all between-subject correlations, was lower. PSR was
71% when using 6min of data and 90% when using 36min of
data. Correlations between the reference session and the session
with the maximum similarity increased from r = 0.59 using 6min

of data to r = 0.82 using 36min of data. As the amount of data per
subject increased, the worst within-subject correlation increased
at a greater rate than the best between-subject correlation
(Supplementary Fig. 7b), which underlies the improvement in dis-
crimination with increasing data.

Day and Scanner Effects

Variance was estimated for a model including scanner and day
(Supplementary Fig. 8a). No main effects of scanner or day were
found for any amount of data (except at 36min, where a single
edge showed a scanner effect). In other words, subject connectiv-
ity does not appear to systematically increase or decrease from
the first scanner to the second or the first day to the second. In
contrast, many edges were influenced by person with 6min of
data (~80% edges by factor, ~5% edges by level), and the number
of affected edges increased with larger amounts of within-session
data (at 36min, 100% edges by factor, 25% edges by level;
Supplementary Fig. 8b). For correspondence with the session
effect, see Supplementary Results. Finally, mean matrix correla-
tions were high within-person across scanners and days (rmin =
0.75 ± 0.07 rmax = 0.80 ± 0.06; Supplementary Fig. 8c). Altogether,
these results suggest minimal systematic session or scanner
effects and support pooling data across sessions or scanners, in
the case of harmonized scanners.

Replication of Test–Retest Reliability in the HCP Cohort

With 30min of data, univariate test–retest reliability was
largely similar in the HCP cohort compared with the TRT cohort

Figure 3. Spatial distribution of test–retest reliability, organized by node. (a) Mean test–retest reliability (Φ) of connectivity at each node. For each node, the mean test–

retest reliability of all edges associated with that node was calculated for a single session with a 36-min scan duration. Brighter colors correspond to higher levels of

test–retest reliability, and results are categorized as follows: poor < 0.4, fair = 0.4–0.59, good = 0.6–0.74, excellent≥0.74 (Cicchetti and Sparrow 1981). Cortical nodes

exhibited greater test–retest reliability than noncortical nodes. (b) Minimum scan duration needed to achieve mean fair test–retest reliability at each node for a single

session. Brighter colors correspond to shorter scan durations, and are scaled differently than for (a). Cortical nodes became reliable at shorter scan durations than

noncortical nodes.
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(ΦUV-HCP,30min = 0.28 ± 0.15; ΦUV-TRT,30min = 0.37 ± 0.20). Test–
retest reliability (ΦUV) was correlated between the 2 cohorts at
the single edge level (rUV = 0.57, P < 0.0001; Supplementary
Fig. 9a). Between cohorts, mean reliabilities were almost

perfectly correlated at the network level (rnetwork = 0.94, P <
0.0001; Supplementary Fig. 9b) and were highly correlated at
the node- and anatomical region-levels (rnode = 0.79, P < 0.0001;
ranat.region = 0.91, P < 0.0001). Multivariate test–retest reliability

Figure 4. (a) Spatial distribution of test–retest reliability, summarized by network. For each pair of networks, the mean test–retest reliability (Φ) of all edges between

those networks was calculated for a single session with variable scan duration (as noted in figures, scan duration=6, 12, 18, 24, 30, and 36min). The frontoparietal,

medial frontal, and secondary visual networks showed the highest test–retest reliability. Brighter colors correspond to higher levels of test–retest reliability, and

results are categorized as follows: poor < 0.4, fair = 0.4–0.59, good = 0.6–0.74, excellent≥0.74 (Cicchetti and Sparrow 1981). (b) Minimum scan duration needed to

achieve mean fair, good, and excellent test–retest reliability, summarized by network. For each pair of networks, the mean test–retest reliability of all edges between

those networks was calculated (Φ) for a single session with variable scan duration (scan duration=6, 12, 18, 24, 30, and 36min), as above. The minimum scan duration

resulting in mean fair, good, and excellent test–retest reliability for that network pair was then determined. Only within-network frontoparietal connectivity reached

good test–retest reliability in a single session. No network pair reached excellent test–retest reliability. Subcortical regions never reached fair test–retest reliability.

Brighter colors correspond with shorter scan durations. MF, medial frontal; FP, frontoparietal; DMN, default mode; Mot, Motor; VI, visual I; VII, visual II; VAs, visual

association; Lim, limbic; BG, basal ganglia (including thalamus and striatum); CBL, cerebellum.
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was slightly lower for the HCP compared with the TRT cohort
(ΦMV-HCP,30min = 0.33; ΦMV-TRT,30min = 0.48).

Association Between Test–Retest Reliability
and Behavioral Utility

The model obtained from the CPM analysis significantly pre-
dicted gF (correlation between predicted and observed value,
r = 0.22, P < 0.0001; Supplementary Fig. 10a). Edges used to pre-
dict gF were associated with both cortical and subcortical
regions. The difference between test–retest reliability (ΦUV) of
predictive and nonpredictive edges exhibited a small effect size
(Cohen’s d = 0.14; Fig. 6). Similarly, using all edges, the associa-
tion between the test–retest reliability of an edge and its

behavioral relevance (i.e., magnitude of its correlation with gF)
was found to be small (r = 0.05), with test–retest reliability
accounting for less than 1% of the variance in behavioral rele-
vance of edges (Fig. 7). Finally, we repeated our CPM analysis
after removing the least reliable edges (or the most reliable
edges) from the analysis in an iterative fashion, increasing the
number of edges removed at each iteration by 3200 (9% of all
edges; Fig. 8; see Supplementary Fig. 10b for additional results
from positive and negative predictive networks). Prediction per-
formance remained mainly stable when removing edges in
either direction (reliable or unreliable). The influence of removing
edges in either direction was inconsistent, with performance
never increasing by more than +0.025 from performance with all
edges included. Altogether, these results illustrate a dissociation
between an edge’s test–retest reliability and its utility in predict-
ing behavior.

Discussion
As studies continue to suggest the promise of resting-state
functional connectivity, full characterization of its reliability is
necessary. To add to previous studies of the test–retest reli-
ability of resting-state functional connectivity, we investigated
the influence of the amount of data per subject on test–retest
reliability, characterized the whole-brain spatial distribution of
test–retest reliability, compared univariate and multivariate
measures of test–retest reliability, and explored the associa-
tion between test–retest reliability and behavioral prediction.
Overall, our results suggest that the historical 5-min resting-
state scan is associated with poor average test–retest reliability
of whole-brain connectivity, and support ongoing efforts to
collect more data per subject (Laumann et al. 2015). While
test–retest reliability averaged over all edges was poor, this
was mainly due to the lower test–retest reliability of noncorti-
cal edges. Within-network connectivity was the most reliable,
consistent with previous studies (Shehzad et al. 2009; Birn
et al. 2013; O’Connor et al. 2017). Multivariate test–retest reli-
ability was substantially greater than univariate test–retest
reliability, indicating that the connectivity matrix, or connec-
tome, as a whole contains more stable information than any
particular edge. Finally, we found that an edge’s test–retest
reliability was not meaningfully correlated with that edge’s
contribution to behavioral prediction and that removing the
least and most reliable edges did not substantially change pre-
diction performance. These findings are among the first to
underscore the distinction between reliability and utility,

Figure 5. Effect of number of sessions and scan duration on multivariate test–

retest reliability of the connectivity matrix. A Decision Study was performed to

estimate multivariate absolute test–retest reliability (Φ) as a function of scan dura-

tion (min) and number of sessions. Brighter colors correspond to higher levels of

test–retest reliability, and results are categorized as follows: poor < 0.4, fair =

0.4–0.59, good = 0.6–0.74, excellent≥0.74 (Cicchetti and Sparrow 1981). The asym-

metry across the diagonal indicates that test–retest reliability improves more

quickly with increasing number of sessions than with increasing scan durations.

Accordingly, fair test–retest reliability can be obtained with less total data if data

is acquired with multiple sessions than if only a single session is used. Unlike in

the univariate case, mean fair test–retest reliability can be achieved in a single

session and mean excellent test–retest reliability can be achieved using the maxi-

mum amount of data collected (4 sessions × 36min).

Table 1 Multivariate discriminability increases with scan duration

6min 12min 18min 24min 30min 36min

Discriminability
ISR 98% 100% 100% 100% 100% 100%
PSR 71% 73% 79% 91% 90% 90%
Mean correlations
Match 0.5938 0.7101 0.7615 0.792 0.8105 0.8191
Within-sub 0.5512 0.6643 0.7152 0.7477 0.7683 0.7791
Between-sub 0.3828 0.4644 0.502 0.5265 0.5424 0.551
Worst within 0.5036 0.617 0.6679 0.7041 0.723 0.7348
Best between 0.4686 0.5501 0.594 0.6133 0.6272 0.6353

Two discriminability measures were used here: the identification success rate (ISR) and the perfect separability rate (PSR). The ISR measures whether matrices from

the same subject can be accurately chosen from a set of all other 47 scan matrices. The PSR measures whether, for each reference scan, all 3 within-subject correla-

tions exceed all 44 between-subject correlations. The following metrics are reported for each scan duration from 6 to 36min: ISR, PSR, mean match correlation, mean

within-subject correlation, mean worst (lowest) within-subject correlation, and mean best (highest) between-subject correlation.
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suggesting that the most reliable edges are not necessarily the
most informative edges, and vice versa.

Support for More Resting-State Functional Connectivity
Data per Subject

Our results suggest that a relatively large amount of data per
subject (>36min) is needed to reach good test–retest reliability

of functional connectivity using both univariate and multivari-
ate test–retest reliability metrics. This concurs with prior evi-
dence that 5–10min of data may not result in reliable
functional connectivity (Shou et al. 2013) and that reproducibil-
ity improves with more data (Anderson et al. 2011; Birn et al.
2013), even up to 90min (Laumann et al. 2015)—but may seem
in conflict with other recent studies suggesting that about
10min of data is sufficient to generate a stable measurement of

Figure 6. Difference in test–retest reliability between edges predictive and not predictive of gF. Edges categorized as predictive of gF are those included in predictive

networks for every fold of the cross-validation; the distribution of predictive edges is shown at left. Tukey boxplots show median (red line), data between first and

third quartile (edges of box), and suspected outliers (whiskers and red crosses; beyond 1.5 inter-quartile range [IQR]).

Figure 7. Edge-wise relationship between test–retest reliability and behavioral relevance. Behavioral relevance refers to the correlation between that edge’s strength

and fluid intelligence (gF) across all subjects (abs(r)). For the plot of the spatial distribution of behavioral relevance (top left), warmer colors are more positively corre-

lated with behavior, and cooler colors are more negatively correlated with behavior. For the plot of test–retest reliability (bottom left), brighter colors are more reliable.

For the scatterplot (right), each point represents a single edge. Here, behavioral relevance is the absolute value of behavioral relevance to facilitate finding effects

related to magnitude of relevance.
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connectivity (Shehzad et al. 2009; Van Dijk et al. 2010; Birn et al.
2013; Choe et al. 2015; Tomasi et al. 2016). These contradictions
arise primarily from differences in data summarization strate-
gies and measures of similarity. For example, while Shehzad
et al. (2009) report moderate to high test–retest reliability with
less than 10min of data, this result is specific to a subset of
within-network data, and they too detail poor test–retest reli-
ability over all edges (ICC < 0.4 from Table 1 in Shehzad et al.
2009). These results are consistent with the overall poor test–
retest reliability we report in Figure 1 and the fair to good
within-network test–retest reliability we report in Figure 4a.
Crucially, several reports have determined the amount of
needed connectivity data (ranging from 6 to 12min) by showing
limited gains in reproducibility with increasing the amount of
data (Van Dijk et al. 2010; Birn et al. 2013; Tomasi et al. 2016).
While a plateau in test–retest reliability serves as a practical
measure for maximizing the tradeoff between test–retest reli-
ability and the amount of data collected, it is not an endorse-
ment of good test–retest reliability. The latter studies still show
poor between-session test–retest reliability across all scan
durations (ICC < 0.4 in Fig. 7 from Tomasi et al. 2016, and in
Fig. 3a from Birn et al. 2013) and do not in themselves support
high test–retest reliability of average whole-brain connectivity
using approximately 10min of data.

Within-Network Cortical Edges are Most Reliable;
Subcortical Edges are Least Reliable

While subsets of nodes have been used to demonstrate the spa-
tial distribution of test–retest reliability (Shehzad et al. 2009;
Shah et al. 2016) or to summarize the average influence of scan
duration on connectivity (Birn et al. 2013; Shah et al. 2016), to
our knowledge, the spatial distribution of edge-wise test–retest
reliability from a whole-brain atlas and its association with
scan duration have not been previously shown.

Connectivity was most reliable within networks defined a
priori, particularly the frontoparietal and default mode net-
works. The frontoparietal network has been shown to underlie

individual differences (Finn et al. 2015; Gordon et al. 2016), the
default mode network has served as the bread and butter of
much functional connectivity research (Broyd et al. 2009;
Whitfield-Gabrieli and Ford 2012; Raichle 2015), and altered
connectivity in these networks has been linked to a variety of
neuropsychiatric disorders (Uddin and Menon 2009; Öngür
et al. 2010; Whitfield-Gabrieli and Ford 2012; Baker et al. 2014;
Di Martino et al. 2014; Northoff 2014; Abbott et al. 2015; Alonso-
Solís et al. 2015; Kaiser et al. 2015). Therefore, that connectivity
within frontoparietal, default mode, and the other canonical
networks was more reliable is encouraging, suggesting that
these networks may be reliable targets in studies of normal
cognition and disorders.

Still, a few caveats bear mentioning. Test–retest reliability
results were variable at the level of individual edges, meaning
that unreliable edges will be found within reliable networks
and vice versa. Furthermore, anatomy may play a role in these
findings, for example, frontoparietal anatomy in particular has
been found to vary across subjects (Hill et al. 2010).

In contrast, connectivity between noncortical regions was
the least reliable, as previously suggested (Shah et al. 2016).
This is likely due in part to the smaller size of subcortical
nodes, since node size was found to be correlated with test–
retest reliability. However, subcortical location was found to
independently contribute to test–retest reliability in addition to
node size; this may be due to other factors such as unique
activity, proximity to non-neuronal sources (e.g., susceptibility
variations associated with breathing [Raj et al. 2001], cerebro-
spinal fluid), or lower central SNR with highly parallel array
coils (Wiggins et al. 2009).

The Connectome as a Whole is More Reliable than
Individual Edges

Our multivariate results imply that the connectivity matrix in its
entirety holds more reliable information than simply the sum of
its parts. Similarly, recent work has demonstrated the relative
unreliability of edges compared with whole-brain connectivity fin-
gerprinting (Pannunzi et al. 2017). We interpret these findings as
highlighting the potential of multivariate methods—such as the
CPM approach used here (Shen et al. 2017), or related approaches
(Shirer et al. 2012; Smith et al. 2015; La Rosa et al. 2016)—when
analyzing connectivity data, instead of univariate comparison of
single edges. This is loosely analogous to the classic comparison
between task-based activation and multivoxel pattern analysis
(MVPA) where each variable contributes unequally and uniquely
to the final measure (Norman et al. 2006).

Data can be Pooled Across Well-Harmonized Scanners
and Sessions

We found no main effect of scanner or day when scanners are
identically configured and harmonized, suggesting that it is
acceptable to pool data across different scanning sessions and har-
monized scanners. Pooling data across different scanning sessions
may enable the acquisition of large amounts of data per subject in
populations that cannot tolerate longer scanning sessions. For
example, children and elderly subjects could be scanned in multi-
ple shorter sessions, and then data can be pooled across sessions.

People are Highly Variable Across Runs and Sessions

In contrast, the non-negligible person-by-session interaction
suggests that each subject varied substantially across sessions.

Figure 8. Influence of reliable and unreliable edges on prediction of fluid intelli-

gence. An increasing number of unreliable edges are removed toward the right

of the x-axis, and an increasing number of reliable edges are removed toward

the left. Removal of unreliable edges starts with all edges showing Φ = 0, then

removing in intervals of 3200; removal of reliable edges also occurs in incre-

ments of 3200 (+1 for the first interval). The removal of 2/3 of all edges (23 852

edges removed) are marked with vertical lines; changes in performance greater

than 0.025 from performance with all edges are marked with horizontal lines.
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Other work has shown similar indications of greater between-
than within-session variance, often in the form of smaller
intersession compared with intrasession test–retest reliability
(Shehzad et al. 2009; Birn et al. 2013; Pannunzi et al. 2017).
Similarly, data from different tasks completed within the same
session were found to be more similar than different sessions
(O’Connor et al. 2017). The present work, coupled with the work
of others, suggests a possibility that repeated measurements
across sessions rather than runs may result in a more stable
trait measurement of an individual. Although this high inter-
session variability may reflect meaningful individual variation,
it may also increase the likelihood of finding an effect by
chance, especially for studies with repeated measures (e.g.,
pre-/post-treatment studies). Additionally, the large residual
(50–60%)—which has also been found in previous task-based
and resting-state fMRI (Forsyth et al. 2014; Gee et al. 2015;
Noble et al. 2016)—suggests the presence of substantial individ-
ual variability across all runs and sessions. This may be from
either random or structured sources unaccounted for here.
Parsing the contribution of real, brain-derived dynamics under-
lying variability at shorter timescales remains a challenge
(Hutchison et al. 2013; Tagliazucchi and Laufs 2014; Hindriks
et al. 2016; Laumann et al. 2016). It is possible that the mental
states of individuals change from measurement to measure-
ment—that, according to that ancient adage attributed to
Heraclitus, “You can’t stand in the same river twice.”

The Most Reliable Data is not Necessarily the Most
Useful Data

Potentially our most important result is that higher test–retest
reliability is not meaningfully associated with higher data utility.
We observed high discriminability in the absence of good test–
retest reliability, suggesting that meaningful information unique
to each individual can be captured by data with relatively low
test–retest reliability. Similarly, we showed that an edge’s test–
retest reliability does not account for its usefulness in predicting
behavior. Since the test–retest reliability of a measure establishes
the upper limit of its predictive validity (Carmines and Zeller
1979), it is tempting to incorporate test–retest reliability informa-
tion into analytical procedures to improve utility (Strother et al.
2004; Shou et al. 2014; Mueller et al. 2015; Shirer et al. 2015).
However, this may not ultimately facilitate the development of
predictive biomarkers of behavior. While it is possible that such
procedures can support utility for specific behavioral traits or in
under specific conditions, benefits must be determined on a case-
by-case basis. Others have also shown a disconnect between the
processing procedures that optimize for test–retest reliability ver-
sus those that optimize for prediction of behavioral traits
(Strother et al. 2004; Shirer et al. 2015). Altogether, these results
suggest that optimizing data acquisition and analysis only with
respect to test–retest reliability, while ignoring other metrics
closer to utility, may not provide the most meaningful results.

Limitations

The statistical models used here are designed to maximize gener-
alizability to a healthy, post-adolescent population. Generalizability
to different populations is less certain, as others have demon-
strated (Somandepalli et al. 2015). Additionally, differences in
acquisition and processing procedures also impact test–retest reli-
ability (Zuo et al. 2013; Aurich et al. 2015; Shirer et al. 2015; Varikuti
et al. 2017). For example, increasing the temporal resolution of the
data has also been shown to increase test–retest reliability

(Birn et al. 2013; Zuo and Xing 2014; Shah et al. 2016). Notably,
global signal regression has heterogeneous effects on test–retest
reliability of functional connectivity (Shirer et al. 2015; Varikuti
et al. 2017), complicated by the high test–retest reliability of
motion itself (Zuo and Xing 2014). This study is therefore most
relevant to others using this common denoising technique (cf.
Power et al. 2015 for a more complete discussion of motion
denoising methods). Finally, test–retest reliability may be related
in different ways to other models and measures of behavior.
While these considerations are not expected to impact the gener-
alizability of the central conclusions presented here—namely,
that test–retest reliability improves with more data and can be
distinct from the utility of the data—it is important to try to parse
the effects of population, acquisition, processing, and analysis on
characterizing test–retest reliability (cf. Poldrack et al. 2017).

Conclusion
In conclusion, this work helps to address some problems in char-
acterizing the test–retest reliability of resting-state functional con-
nectivity. Our results support the need for more data per subject
to improve test–retest reliability and shows the spatial distribu-
tion of test–retest reliability of connectivity spanning the whole
brain. Significantly, our results are among the first to highlight
the increase in test–retest reliability when treating the connectiv-
ity matrix as a multivariate object and the dissociation between
test–retest reliability and behavioral utility. As standards for the
acquisition and analysis of functional connectivity data continue
to be developed (Nichols et al. 2017), these results provide impor-
tant considerations for establishing best practices in the field.

Supplementary Material
Supplementary data is available at Cerebral Cortex online.
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