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Abstract

Metazoan gene expression is controlled through the action of long stretches of noncoding

DNA that contain enhancers—shorter sequences responsible for controlling a single aspect

of a gene’s expression pattern. Models built on thermodynamics have shown how enhanc-

ers interpret protein concentration in order to determine specific levels of gene expression,

but the emergent regulatory logic of a complete regulatory locus shows qualitative and

quantitative differences from isolated enhancers. Such differences may arise from steric

competition limiting the quantity of DNA that can simultaneously influence the transcription

machinery. We incorporated this competition into a mechanistic model of gene regulation,

generated efficient algorithms for this computation, and applied it to the regulation of Dro-

sophila even-skipped (eve). This model finds the location of enhancers and identifies which

factors control the boundaries of eve expression. This model predicts a new enhancer that,

when assayed in vivo, drives expression in a non-eve pattern. Incorporation of chromatin

accessibility eliminates this inconsistency.

Introduction

Understanding how genetic function arises from the structural properties of genes is a funda-

mental problem of molecular genetics. With respect to the non-coding portions of genes, in

prokaryotes there is a clear relationship between chemical properties and genetic function. In

the lac operon, for example, there is a one-to-one mapping between the functional genetic unit

of the operator and the structural/chemical unit of the binding site for lac repressor [1]. This

level of understanding is absent in metazoan genes. The expression of many such genes is

under the control of cis-acting DNA sequence which can span tens [2] to hundreds of thou-

sands [3] of nucleotides. The central feature of such genes is the presence of enhancers, also

known as cis-regulatory modules (CRMs). These sequences, which typically span 500 to 1000
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base pairs (bp), recruit sequence-specific transcription factors to drive a subset of a gene’s full

expression pattern [4–8]. Although enhancers are ubiquitous, how they arise from the underly-

ing structure of genes remains obscure.

In this paper we address this problem by showing that under very general assumptions

about underlying chemical mechanisms, the physical limitation that only a subset of distally

bound transcription factors (TFs) can interact with the basal promoter complex at the same

time induces a modular structure on a genetic locus. We consider a well characterized locus in

Drosophila melanogaster known as even-skipped (eve). The enhancer structure of this gene has

been exceptionally well characterizeed experimentally [4–7], and quantitative chemical models

of the function of these enhancers are now well known [9–15].

The use of theoretical models in these studies is required because of the complexity of the

chemical mechanisms underlying gene regulation. Experimental assays permit the dissection

of a gene into its constituent parts and allow the properties of these parts to characterized in

isolation. Models allow us to assay whether or not well defined interactions of these compo-

nents give rise to the observed behavior of the intact system, and thus provide a minimal set of

mechanisms required for understanding the biological phenomenon at hand. Theoretical

models of whole loci have been constructed by assuming an underlying modular structure of

enhancers and reconstructing the whole locus expression pattern from a weighted sum of of

outputs of individual enhancers [16], but this does not address how this modular structure

arises from underlying chemical interactions. Moreover, the fact that most developmental

genes contain shadow enhancers [17–20] that behave nonadditively [21, 22] suggests that

important regulatory mechanisms exist at the level of an intact locus that are not seen in iso-

lated enhancers.

In this work, we construct a quantitative theory to explore the consequences of steric limita-

tions on the amount of transcription factors that can simultaneously interact with proximal

transcription complex. This form of enhancer competition is added to a previously existing

model of gene regulation [14, 15, 23]. When applied to the Drosophila eve locus, which drives

seven transverse stripes across the syncytial blastoderm, the model is able to fit the expression

pattern and discover the factors that form each stripe. Furthermore, the underlying enhancer

structure of the locus emerges from the internal structure of the model when it is fit to data,

without such structure being imposed in the assumptions of the model. The model also shows

the importance of chromatin accessibility in driving gene expression. Without consideration

of such accessibility, the model predicts a new enhancer in the eve locus that, when assayed in
vivo, drives expression in a non-eve pattern. Chromatin accessibility assays suggest that this

fragment is inaccessible in vivo [24, 25]. A model that incorporates this accessibility data does

not predict expression driven by this fragment within the intact locus.

Materials and methods

Model data inputs

Quantitative levels of evemRNA along the AP axis have previously been reported for three

lines in Drosophila Genetic Reference Panel (DGRP) [26] [27]. Data from L1 (RAL-437) at

time class T6 was used for this study and is reported in S1 File. This data corresponded well to

RNA data collected in 3D from CantonS [28]. Quanititative enhancer-reporter data was

obtained from Staller et al. [29]. Relative transcription levels along the AP axis were obtained

from the FlyEx database [30–33]. PWMs were derived from SELEX for factors Bcd, Hb, Kr,

and Gt [34], bacterial-one hybrid for Kni and Cad [35], and footprinted sites for Tll [36] and

Dst (http://line.bioinfolab.net/webgate/help/dxp.htm#D-stat-223). These PWMs have been

used in prior work [14, 15].

A sequence level model of an intact locus
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Sequence selection

The eve locus was taken from the D. mel assembly dm3 using coordinates 2R:5862089-

5875238. A fragment spanning these bases was reported to drive the early nuclear cycle 14

seven stripe pattern [2, 4]. Multiple enhancers have been reported for eve stripes 2 and 3. For

generation of S1 Fig we selected the enhancer with the greatest length for testing, as the longer

enhancer is more likely to contain all DNA which drives a particular stripe. For this figure, the

stripe 2 enhancer, sometimes called S2E, is the 800bp sequence spanning conserved blocks A

and B reported in [37] and has dm3 coordinates 2R:5865217-5866014. The stripe 3+7

enhancer is the restriction fragment identified in [4] and has dm3 coordinates 2R:5863006-

5863888. Both the stripe 4+6 enhancer and the stripe 5 enhancer were identified in [5]. These

have respective dm3 coordinates of 2R:5871404-5872203 and 2R:5874230-5875033.

For the remainder of the work we used the sequences reported in Staller et al. [29] as these

sequences can be directly compared quantitative to enhancer-reporter data from the same

work.

Data registration

All data in this work was registered against the transcription factor levels available in the FlyEx

database. The eve RNA was imaged together with Eve protein so that the protein channel

could be used for data registration. In order to use data from Staller et al. [29] nuclei in a 10%

DV strip along AP axis were registered to the FlyEx database using the eve RNA channel. All

data was registered using the BREReA [38, 39] software. We used the mean levels at each per-

cent embryo length for comparison to predicted reporter expression.

Parameter estimation

The model equations Eqs S1-S17 (in S1 Appendix), Eqs (1), (2) and (3) were implemented in

C++ code. Optimization of model parameters was performed by minimizing the sum of

squared differences (SSE) between the model and data using Lam-Delosme Simulated Anneal-

ing in serial [40–42]. Annealing parameters are given in S2 File. Below we describe the search

space and controls for accuracy and significance.

Search space. The search space for each parameter was explicitly set (S2 File) in terms of a

range for each parameter. These ranges were set to ensure that biologically relevant parameter

values could be achieved. A TF, a, will have 3 to 5 associated parameters depending on its bio-

logical function. The first of these, Aa (S3 in S1 Appendix), converts activities observed as fluo-

rescence and binding free energies obtained as PWM scores into chemical units. Intracellular

activities of proteins range from about 1 to 1000 nM, and allowing for similar uncertainty in

the affinities K, which always occur as products with v in the model equations (see S6 in S1

Appendix), we allow Aa a range of somewhat more than 6 orders of magnitude, from 10−6 to

4 × 100. The next parameter, λ, scales differences in binding score to differences in relative

affinity. Originally, values of 0.5 to 2 were proposed as a reasonable range for this parameter

[43], but some PWMs used in this work were generated using multiple rounds of SELEX,

which may under-represent low affinity binding sites. We extend the range of this parameter

to be from 0.5 to 5 to allow for the possibility of over-specified PWMs. The range of the bicoid

cooperativity ω was set to 1 to 1000. This corresponds to a ΔG of up to –7 kcal/mole, which is

fully compatible with observed ranges for λ repressor and Drosophila TFs [44, 45].

The efficiency of transcription factors EQ and EC in repression or coactivation respectively

always multiply the fractional occupancy f, and hence were fixed to their natural scale of 0 to 1.

In contrast, the activation efficiency EA also sets the scale of N and thus the steepness of pro-

moter response to activation. We allowed EA to vary from 0 to 25. At the high end of this range
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promoter response is sufficiently close to a step function that biologically undetectable changes

in TF concentrations can switch the promoter between on and off states. θ ranged from 5 to 25

because it is subtracted from N, and values smaller than 5 allow for substantial transcription in

absence of activation.

Optimization. Optimization was performed 20 times with κ [46] set to 1.6 × 10−4 and 80

times with κ set to 1.6 × 10−5, where smaller values of κ give more accurate results at the cost

of additional computational time. Each optimization run was started from a random set of ini-

tial parameter values.

In order to verify that our optimization procedure is able to find the global minimum we

require a scenario in which this global minimum is known. We construct such a test problem

by replacing the data with the output of the parameter set reported in the main text of this

work. In this case, there is a known global minimum at zero, where the learned parameters are

the parameters of the fit used to construct the test problem. When we repeated this procedure

80 times, the best resulting parameter sets had scores several orders of magnitude lower than

than those fit to data. The learned parameter sets were also well correlated with the parameter

set used to generate the test problem. Spearmen ρ was 0.963, 0.952, and 0.934 for the best three

fits respectively (Sheet “Fit Known Optimum” in S2 File). We obtained similar results when

this control was repeated for models incorporating chromatin state (Sheet “Fit Known Opti-

mum Chromatin” in S2 File).

The lowest scoring run (Model 12) in the initial set of 20 runs with κ = 1.6 × 10−4 was

selected for the analysis in this work. We verified optimiztion accuracy by performing 80 addi-

tional runs with κ = 1.6 × 10−5 and subjecting the best three of these to further analysis. These

runs had a 4% improvement in summed square error and gave parameter values that were well

correlated with Model 12, having Spearman ρ of 0.969, 0.969, and 0.924 respectively (S2 File,

sheet “Repeat”). These parameter sets did not differ significantly in their output or enhancer

prediction (S8 Fig). We also repeated this procedure for the model incorporating chromatin

state. Again, the best three fits had similar properties, owing to a very high correlation in the

achieved parameter sets, which had Spearman ρ of 0.958, 0.958 and 0.969 respectively (Sheet

“Repeat Chromatin” in S2 File). These did not differ significantly in their prediction of

enhancer location or output (S9 Fig).

Overfitting is generally a concern when the number of parameters exceeds the number of

data points. Here we are fitting 32 free parameters to 58 data points. Additionally, to confirm

that this model was not overfit we tested whether permuted data could be used to drive the

expression pattern. We permuted the non-coding sequence data and the best fits to this data

had scores that were three times worse than the best fits to the eve locus (S2 File). None of

these fits drove all of the six eve stripes that were in the modeled region.

Calculation of contribution to stripe borders

At every AP position, the marginal contribution to transcription rate with respect to a change

in each transcription factor concentration was calculated numerically by adding and subtract-

ing from the concentration of each factor and calculating the predicted change in transcription

rate while keeping all other parameters constant. Specifically, we estimate the quantity
@Ri
@½A�i

using numerical differentiation, where Ri is the predicted transcription rate at AP position i
and [A]i is the concentration of factor A at the same position. Where [A] is greater than 0 we

use a symmetric difference quotient
f ðxþhÞ� f ðx� hÞ

2h , otherwise we use Newton’s difference quotient
f ðxþhÞ� f ðxÞ

h . We used changes in concentration of orders of magnitude 101 to 10−11 to verify con-

vergence of this estimate (S7 Fig). To calculate the contribution of each transcription factor to
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a change in transcription rate between adjacent AP positions, we multiply
@Ri
@½A�i

by the amount

that the transcription factor is changing at that position4[A]i, given by
½A�i� 1þ½A�iþ1

2
.

Calculation of contribution to activation

To calculate the contribution of each factor towards the total transcription rate we first calcu-

late the number of transcriptional adaptors recruited to each sequence by each factor

Ni½m;mþa;a� ¼
P

k:ai¼ak
FkEAak Iðk;m;mþ aÞ. Next, we find the number of transcriptional adaptors

recruited to the TSS by each factor by taking time weighted sum Na = ∑i Ni[m, m+α;a] Ti. We

report the percent of adaptors recruited to the TSS by each factor 100(Na/max(Na)).

Generation of reporter constructs

Reporter constructs where generated using a pCaSpeR backbone (GeneBank X81644.1) con-

taining the promoter and first 22 amino acids of eve fused to LacZ, generated by Small et al.

[47]. An attB sequence was inserted into the multiple cloning site using the restriction enzyme

Xba1 for insertion in the AttP2 landing site on chromosome 3 [48]. The enhancer sequence

was extended by PCR primers containing overlap with this vector (S1 Appendix). The vector

was then digested by enzymes EcoR1 and Xho1 and the enhancer was inserted using Gibson

assembly [49]. The resulting vector was injected into flies of the genotype P{nos-phiC31\int.

NLS}X, P{CaryP}attP2 by Rainbow Transgenics. Quantitative data was collected from these

lines as previously described [50].

Identification of accessible chromatin

Accessible chromatin regions defined by FAIRE-seq data by McKay 2013 [25] were obtained

from GEO accession number GSE38727. Accessible chromatin regions defined by DNAse-seq

data were obtained from Li 2011 [24] and were translated to dm3 coordinates using the UCSC

genome browser LiftOver tool. Open chromatin regions were defined as the union of the two

datasets.

Results

Sequence level model without enhancer competition and eve expression

In previous work, we generated a model of gene regulation that computes transcription rate

from DNA sequence, transcription factor concentrations, and DNA-binding preferences in

the form of position weight matrices (PWMs) [9, 14, 15, 23, 51]. In this model, we first calcu-

late equilibrium transcription factor occupancy using thermodynamics. This calculation incor-

porates cooperative binding and repression through steric competition for binding. Second,

we calculate context dependent switching between repressing and activating states, known as

coactivation, wherein proteins activate only when bound in proximity to a bound coactivator.

Third, we calculate the repressive effects of short-range quenching. Fourth, we calculate the

number of transcriptional adaptors, proteins which interact with both DNA-bound transcrip-

tion factors (TFs) and the transcription machinery [8], recruited to an enhancer by a weighted

sum that represents the efficiency of adaptor recruitment for each activator. Finally, we treat

these adaptors as catalysts that reduce the energy barrier to transcription and describe this in

the form an a diffusion-limited Arrhenius rate law. For a complete description of these mecha-

nisms, see S1 Appendix.

To test the ability of this model to describe the regulation of an entire locus, we applied this

model to the even-skipped (eve) gene of Drosophila melanogaster. Confocal microscopy in
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melanogaster embryos has allowed quantification of both transcription factor levels and

mRNA levels at single nucleus resolution along the anterior-posterior axis [31, 32]. These data

amount to a set of quantitative single cell assays of transcription input and output in a native

tissue context, providing an extraordinarily precise testbed for theoretical models.

We attempted to model the whole locus behavior of eve by two methods. First, we trained

the above model on levels of evemRNA from 35.5% to 92.5% embryo length, encompassing

stripes 2 through 7, driven by 13,150 bp of eveDNA extending from 4730bp upstream to 8420

bp downstream of the transcription start site (TSS). This DNA is sufficient to drive the early

seven stripe pattern [2, 4]. The model was able to drive the desired pattern from the regulatory

sequence used (Panel A in S1 Fig), but when the parameters learned from this fit were con-

fronted with smaller segments of sequence corresponding to the enhancers for each of the six

stripes, none of the enhancers were predicted to drive expression (Panels B-E in S1 Fig). Simi-

larly, when we trained the model simultaneously on each individual enhancer driving its

respective stripe pattern, we are able to achieve good fits (Panels F-I in S1 Fig), but the parame-

ters obtained predict that the intact locus will drive saturating expression across the entire

embryo (Panel J in S1 Fig). No fits were able to simultaneously describe the the action of both

the intact locus and individual enhancers, leading us to conclude that at least one additional

regulatory mechanism emerges at the level the intact locus and is necessary to model its

behavior.

An enhancer competition model

One potential issue is the implicit assumption that factors bound to the entirety of modeled

DNA simultaneously influence a promoter. Instead, only a finite length of α bp of DNA can

simultaneously influence a gene’s promoter within a short timespan. We expect activators

bound to DNA on scales smaller than this length to synergistically activate transcription

through cooperative action on the basal transcription machinery, while activators separated by

larger scales will compete for promoter occupancy. There has been much focus on “minimal”

enhancers—the smallest segments that are able to recapitulate a pattern in vivo—but much

larger sequences may be able to influence a promoter. Indeed, we find that when the 480 bp

minimal stripe 2 element of eve (MSE2) is extended by 320 bp there is a five fold increase in

transcription rate (S2 Fig). This suggests that sequences of up to α = 1 kb are able to simulta-

neously influence a promoter, and we use this value for the rest of this work. However, the

final results were completely insensitive to setting α = 500 (S3 Fig and S2 File).

While we expect activators bound within a region smaller than 1kb to synergistically acti-

vate transcription, how disparate elements compete for access to a promoter is currently

unknown. Recently, it has been shown that transcription driven by Drosophila developmental

enhancers occurs in bursts [52] and that forced enhancer-promoter looping in murine cell

lines indicates that the frequency of bursts is determined by the frequency of interaction with a

promoter [53]. Collectively, this demonstrates that transcription rates can be controlled at the

level of burst size or burst frequency and these quantities correspond to the rate of transcrip-

tion induced by enhancer-promoter interactions and the frequency of such interactions

respectively. For tested Drosophila enhancers, these quantities are highly correlated [54]. Thus,

we propose that the frequency of enhancer-promoter interaction and the rate induced by such

interaction is proportional to the number of transcriptional activators bound to a DNA

segment.

Specifically, we imagine that, for any DNA segment bounded by base pairs [m, m + α],

where α, introduced above, represents the length of DNA that simultaneously influence the

promoter (the “window size”), that N[m, m+α] transcription adaptors are recruited (For
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calculation of N, see [14] and S1 Appendix). The rate of mRNA synthesis, R[m,m+α], driven

when the segment interacts with the promoter is given by a diffusion-limited Arrhenius rate

law

R½m;mþa� ¼
Rmax

1þ exp ðy � N½m;mþa�Þ
; ð1Þ

where we assume without loss of generality that a single bound coactivator lowers the Arrhe-

nius energy barrier, ΔA, to transcription initiation by one unit. The free parameter θ is the

total energy barrier which sets the rate of transcription in the absence of activation. The scale

of both N and θ are effectively set by the fit to data.

For a locus of length l, the fraction of time that any DNA segment [m, m + α] influences the

promoter is given by

T½m;mþa� ¼
bN½m;mþa�

1þ
Pl

n¼1� a
bN½n;nþa�

; ð2Þ

where the free parameter β determines how much individual bound adaptors increase the fre-

quency of interaction with the promoter. Note that the summation in the denominator is

taken over every base position in the locus. The total rate of transcription driven by the locus

is then given by the frequency-weighted sum of transcription due to each DNA segment

[m, m + α], so that

Rtotal ¼
Xl

m¼1� a

R½m;mþa�T½m;mþa�: ð3Þ

Again, the summation occurs over all possible α subsequences of the eve locus iterated in single

nucleotide increments. The half life of lacZ and evemRNA is short compared to the timescale

of changes in gene expression, so that

d½mRNA�
dt

/ ½mRNA�; ð4Þ

an observable quantity.

The calculation of transcription factor occupancy with full thermodynamics, which is used

to calculate N (See S1 Appendix), requires enumeration of all possible binding states. In previ-

ous work this was done using an explicit calculation on each configuration [14]. Such a calcu-

lation scales with 2n where n is the number of binding sites on a sequence. When performing

calculations on the entire locus, we identified 2920 binding sites with a log-odds score greater

than 0—the threshold used for calling binding sites in this work. Explicit calculation of 22920

states is computationally infeasible. For this work we developed a new algorithm that uses

dynamic programming. This new algorithm scales linearly with the number of binding sites

and can efficiently calculate transcription factor occupancy at a genomic scale. A full descrip-

tion of this algorithm is included in S1 Appendix.

Enhancer competition and eve expression

We trained the free parameters in the model given by Eqs S1-S17 (in S1 Appendix), Eqs (1),

(2) and (3) to the expression of the eve locus from 35.5% to 92.5% embryo length, using the

13kb sequence described previously. We omitted stripe 1 from this study because its anterior

border is controlled by transcription factors for which we do not have data. Additionally,
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anterior of stripe 1 the clean functional distinction between AP and dorsal-ventral (DV) pat-

terning breaks down, and data along a single axis is inadequate.

The model was able to achieve a good fit to the expression pattern of eve stripes 2-7 (Fig 1).

Specifically, the model was within two standard deviations of the data everywhere except at the

1-2 and 4-5 interstripes, and within one standard deviation of the data except at the two loca-

tions mentioned as well as at the peak of stripe 4, which is smaller than the data, and the mar-

gins of stripe 6, where the model produces a stripe displaced one nucleus to the posterior.

Interestingly, the lag in the position of stripe 6 is consistent with the lag observed from the

stripe 4+6 enhancer [29] indicating there may be reasons for the discrepancy between the

enhancer and locus that are outside the scope of this model.

Identification of eve enhancers

The de novo identification of enhancer locations and activity is a major goal of gene regulatory

models. We tested the ability of the model to identify known enhancers in two ways. First, we

used the trained model to simulate the activity of known enhancers of eve in silico (Fig 2) and

compared this to quantitative data on the expression driven by each enhancer [29]. Each is cor-

rectly predicted to drive expression of its corresponding stripes. Quantitatively, there are some

discrepancies. For the enhancer of stripe 3+7 we predict reduced output from stripe 7, which

is consistent with the initial reports on this enhancer [7], but not with quantitative data. We

predict poor anterior repression of stripe 7 when driven by the 3+7 enhancer. Additionally, we

observe weak expression from stripe 4 when driven by the 4+6 enhancer. Generally, the pre-

dicted expression patterns are narrower than observed patterns.

Similarly, we looked at expression contributions across the entire eve locus by looking at

the rate driven by every individual 1kb subsequence (Fig 3). We find that for stripes 2 through

6, the majority of activation is result of tightly clustered groups of sequences that have high

overlap with the locations of previously reported enhancers. While stripes 2 through 6 have

single clusters that drive their expression, we find that stripe 7 is driven not only by the stripe 3

+7 enhancer, but also by DNA that lies 5’ of the stripe 2 enhancer. Expression driven by parts

Fig 1. Model with enhancer competition trained on the eve locus. Observed mRNA levels (black line) are

shown together with model output (red line). One (dark grey shading) and two (light grey shading) standard

deviations about the mean of the data are shown. Data comes from 7 embryos for a total of 19 to 30 nuclei per

embryo position. The axes are labeled; percent egg length is measured from the anterior pole.

https://doi.org/10.1371/journal.pone.0180861.g001
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Fig 2. Predicted output of known eve enhancers. The trained model was used to predict the the

transcription rate driven by four previously reported enhancers of eve. For each enhancer the predicted output

was standardized such that 1 represents the maximum rate driven by that enhancer (red lines). The relative

mRNA driven by each enhancer (gray shading) was obtained from Staller et al. [29]. This data, also

standardized, is included for visual orientation within the embryo and levels are not commensurate with

predicted enhancer output.

https://doi.org/10.1371/journal.pone.0180861.g002

Fig 3. Expression contribution over space sequence and embryo length. We report a heat map of the

quantity R[m,m+α]T[m,m+α] (Eq (3)), which represents the amount each 1kb sequence, centered on base m + α/2

(x-axis), contributes towards total expression at each position in the embryo (y-axis). The color scale is

standardized to the range of the data. The x-axis is labeled with a map of the eve locus, displaying the

transcription start site and locations of previously identified enhancers (black rectangles).

https://doi.org/10.1371/journal.pone.0180861.g003
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of this region have previously been reported for constructs that contain varying lengths of

DNA 5’ of the stripe 2 enhancer [9, 29] and explains why deletions of the stripe 3+7 enhancer

lead to loss of stripe 3, but not stripe 7 [4].

Control of eve stripe domains

Three lines of evidence have been used to establish which factors control the boundaries of eve
expression domains—mutations in trans, mutations in cis, and regulatory models—carried out

in either the intact locus or enhancer-reporter constructs. In the best cases there is agreement

between these techniques, for example in Giant (Gt) null embryos the anterior border of stripe

2 expands when driven by both native eve [55] and by a reporter for the proximal 2.9kb of the

locus [56]. Similarly, there is a stripe 2 expansion when Gt binding sites were removed from

reporters for either the proximal 5.2kb of eve [57] or MSE2 [6]. Collectively, these experiments

provide strong evidence that Gt is responsible for forming the anterior boundary of eve stripe

2. Additionally, models of gene regulation have identified Gt as a key regulator of stripe 2 in

both the locus [16, 40] and enhancers [9, 15].

For other eve borders there is conflicting evidence. For instance, in Kruppel (Kr) null

embryos [55] the posterior of native eve stripe 2 expands, but the domain driven by MSE2

does not [6] indicating that other factors may contribute to this stripe border. Similarly, in

Knirps (Kni) null embryos or after deletion of Kni sites, the minimal stripe 3 enhancer (MSE3)

does not form a posterior border [7, 58], however stripe 3 forms normally in the intact locus

[4, 7, 55]. Finally, the anterior border of stripe 7 appears to be regulated by Kni [7, 58, 59]

when stripe 7 expression is driven by MSE3, or by Gt when expression is driven by the whole

locus [55] or by an eve 2+7 enhancer [9, 29].

In each of the above cases there are conflicting results from experiments where expression

is driven by separate enhancers compared to those in which it is driven by the intact locus. In

order to resolve these conflicts we identified the factors responsible for stripe boundaries in

both the locus and individual enhancers in a single, unified, model. Given a trained set of

model parameters, we are able to quantitatively decompose the change in [mRNA] in adjacent

nuclei into the effects due to the changes in concentration of each transcription factor in both

the locus (Fig 4B) and individual enhancers (Fig 5). Within the locus, in wild type D. melano-
gaster, we find that single transcriptional repressors are responsible for forming the boundaries

of each stripe (Fig 4B, summarized in Fig 4C). For the factors forming the borders of stripes 4

through 6, the model identifies the same factors (Figs 4B, 5C and 5D) that have been previously

identified through experiment [5, 59]. In agreement with previous literature [6, 40, 55–57], we

find that Gt sets the anterior border of stripe 2 and that Kr defines the posterior boundary of

that stripe in the intact locus. In contrast to the locus, we find that there is a significantly larger

contribution from declining Bicoid (Bcd) and Hunchback (Hb) levels on MSE2 (Fig 5A),

which potentially explains why expression driven by MSE2 does not shift to the posterior in Kr

null embryos [6].

Next we examined the regulation of stripes 3 and 7. We find that in the intact locus, stripe 3

has anterior and posterior borders set respectively by Hb and Kni in both the intact locus

(Fig 4B) and in the stripe 3+7 enhancer (Fig 5B). This result is consistent with previous reports

[7, 58, 59], but falls short of explaining how stripe 3 forms in Kni mutants [7, 55]. We do not

detect a contribution from Kr as suggested by a previous model [40]. For stripe 7 we find that

Gt sets the anterior border in the intact locus, but we also find that that Kni sets this border

when expression is driven by the stripe 3+7 enhancer. Similarly, we find that the posterior bor-

der of stripe 7 is primarily set by Tailless (Tll) repression when that stripe is driven by the
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Fig 4. Mechanisms of activation and repression in the locus. A: Cumulative line graph showing the

amount of eve mRNA attributable to each TF (y-axis) at each embryo position (x-axis). We calculated the

percent of transcriptional adaptors N that are recruited by each TF to the transcription machinery at each

embryo position (x-axis) and scaled total output by this value. For calculation, see Materials and Methods. B:

Cumulative line graph showing the change in [mRNA] caused by a change in concentration of each TF (y-

axis) at each embryo position (x-axis). The total sum gives the the change in [mRNA] at each embryo position.

Thus, factors which contribute to anterior borders give positive values and those that contribute to posterior

borders give negative values. For calculation, see Materials and Methods. C: A summary of the factors

responsible for each expression feature of eve as determined by A and B. Activators are indicated by arrows

and repressors by T-bars.

https://doi.org/10.1371/journal.pone.0180861.g004
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whole locus. but that the posterior border of stripe 7, when driven by the 3+7 enhancer, is set

by Hb.

These numerical results are reminiscent of a recent experimental result showing that the

locus and 3+7 enhancer respond differently to the ectopic expression of Hb driven by the snail
promoter [29]. Under ectopic expression of Hb, stripe 7 is lost when driven by the stripe 3+7

enhancer, however when driven by the intact locus, stripe 7 is not lost and expression expands

towards the anterior. Ectopic Hb leads to complex changes in the trans environment [60] and

specific levels of transcription factors are unknown, however we are able to simulate changes

in trans to test whether our model is consistent with these results. To this end, we set Hb levels

to a spatially uniform value (Fig 6B). We find that expression driven by the 3+7 enhancer is

lost (Fig 6H), but stripe 7 is not lost when driven by the entire eve locus (Fig 6E). We do not

observe the anterior expansion of stripe 7 when only Hb expression is changed, but ectopic

expression of Hb has pleiotropic effects which act to reduce levels of both Gt and Kni in the

posterior of the embryo [60]. A reduction in the level of Gt (Fig 6C) in addition to ectopic Hb

is sufficient to drive the anterior expansion of this stripe (Fig 6F).

Activation by hunchback and Stat92E

It has long been recognized that eve is activated by broadly distributed factors [6, 7, 40]. Our

model included three transcriptional activators: Bcd, Caudal (Cad), and Stat92E (Dst). Addi-

tionally, the repressor Hb is able to activate when bound near Bcd or Cad [14, 47, 61], a

Fig 5. Mechanisms of repression in enhancers. For four previously reported eve enhancers the predicted contribution of each TF to a

change in [mRNA], along the AP axis, was calculated as in Fig 4B and described in Materials and Methods.

https://doi.org/10.1371/journal.pone.0180861.g005
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phenomenon called coactivation. In order to determine which factors are responsible for acti-

vation we found the percent of adaptors recruited to the TSS by each transcriptional activator

(Fig 4A). We find that the majority of activation is driven by Stat92E, with a significant contri-

bution from Hb in the anterior and posterior portions. While we do not observe large direct

contribution from Bcd and Cad, these factors are responsible for the activating activity of Hb

through coactivation.

Behavior of a predicted cis-regulatory element

Our results indicate that most of the activation of stripe 7 is driven by a sequence upstream of

the stripe 2 enhancer, between that and the stripe 3+7 enhancer elements (Fig 3). We took a

900bp fragment, located between 3130 and 2230 bp upstream of the TSS and centered on this

region, and tested its ability to drive expression of lacZ in vivo. This sequence, which we call

the 3130 element, drives expression dorsally overlapping stripe 2 and stripes 5 through 7

(Fig 7A and 7C). This fragment drives stronger and more ventral expression within the

Fig 6. Predicted effects of ectopic Hb. A: The measured relative levels of Hb and Gt (y-axis) from 35.5% to 92.5% embryo length (x-axis)

[30–33]. B: Simulated relative levels of Hb and Gt. Hb is set to a spatially uniform value and Gt is unchanged from A. C: Simulated relative

levels of Hb and Gt. Hb is set to a spatially uniform value and Gt is reduced by 40%. D-F: Predicted relative [mRNA] levels (red lines) driven

by the eve locus under the TF levels indicated in A-C. Model output is standardized to the maximum rate driven by the locus in the wildtype

trans environment. Data for relative [mRNA] of eve (gray shading) is included for visual orientation within the embryo and levels are not

commensurate with predicted locus output. G-H: Predicted relative [mRNA] levels (red lines) driven by the eve Stripe 3+7 enhancer under

the TF levels indicated in A-C. Model output is standardized to the maximum rate driven by the enhancer in the wildtype trans environment.

Data for relative [mRNA] driven by the stripe 3+7 enhancer (gray shading) is included for visual orientation within the embryo and levels are

not commensurate with predicted enhancer output.

https://doi.org/10.1371/journal.pone.0180861.g006
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posterior interstripes than in the stripes themselves. Remarkably, this pattern is not observed

in reporter assays for larger sequences that contain the 3130 element [4].

Incorporation of chromatin state

It is possible that the assay for the 3130 element is not faithful to in vivo expression because

this fragment has been removed from its native chromatin state. Indeed, the 3130 element falls

into inaccessible chromatin when assayed using either DNAse-seq [24] or FAIRE-seq [25];

moreover models of binding trained with DNAse-seq and ChIP-seq data do not predict bind-

ing in this region [63]. In order to incorporate this information, we defined accessible nucleo-

tides to be those that are within accessible regions found using either DNAse-seq or FAIRE-

seq(Fig 8B). Then we retrained the model, this time only scanning for transcription factor

binding sites that were within accessible chromatin. After training, the best parameter set

Fig 7. Expression driven by a predicted enhancer. A 900bp sequence, located between 3130 and 2230 bp

upstream of the eve TSS, was placed upstream of a lacZ reporter. An embryo containing this construct at the

AttP2 site [48] was stained by FISH and immunostaining with antisense lacZ probe and α–Eve antibody [62]

respectively. The embryo was imaged in late nuclear cycle 14 with a 20x objective on a Zeiss 710 confocal

microscope. A: Eve (magenta) and lacZ (green) B: Eve in grayscale C: lacZ in grayscale.

https://doi.org/10.1371/journal.pone.0180861.g007
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Fig 8. Model output after masking inaccessible chromatin. We excluded transcription factor binding

within regions identified as inaccessible and retrained model parameters. A: Observed mRNA levels (gray

shading) are shown together with model output (red line) after inclusion of a chromatin mask. B: Heatmap of

the quantity quantity R[m,m+α]T[m,m+α] at each nucleotide and embryo position, representing the amount each

1kb sequence, centered at that nucleotide, contributes towards total expression. The identified regions of

inaccessible chromatin and locations of known enhancers are indicated on the x-axis. C: We tested the

relative output of the known eve enhancers in silico using the retrained model (red lines). The relative mRNA

driven by each enhancer (gray shading), is included for visual orientation within the embryo and levels are not

commensurate with predicted enhancer output.

https://doi.org/10.1371/journal.pone.0180861.g008
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generated an equally good fit to data as those that did not incorporate chromatin status

(Fig 8A). We no longer find expression driven by the 3130 element within the context of the

intact locus (Fig 8B), but this fragment is still predicted to drive expression when removed

from its native chromatin context (S4 Fig). The DNA regions that contribute to activation

overlap with their corresponding enhancers (Fig 8B), and when we simulated the activity of

known enhancers in silico each enhancer is still correctly predicted to drive expression of its

corresponding stripes (Fig 8C). The identified mechanisms of stripe border control (S5 Fig)

and predicted effects of ectopic Hb (S6 Fig) did not change after inclusion of chromatin acces-

sibility data.

Discussion

The central result of this paper is the demonstration that the enhancer structure of eve arises

because of competition between different regions of the proximal promoter for interaction

with the basal complex (Eq (2)). The competition described may reflect kinetic statistics of

interactions between distally bound adaptors and the basal complex. This competition differs

from steric competition for a binding site (cf Eq S4 in S1 Appendix) in that N[m,m+α], unlike qi
(Eq S6 in S1 Appendix), depends not only on thermodynamically described interactions of

TFs with the DNA but also on the protein-protein interactions which convert repressors into

activators by coactivation and quench activators (Eqs S14 and S16 in S1 Appendix).

Previously, the independent action of enhancers has been explained by quenching. This

short range repression mechanism allows expression to be driven by one enhancer while tran-

scriptional repressors bind to quenched enhancers only a few hundred nucleotides away [64].

This mechanism is indeed necessary to explain the action of eve enhancers, but if repression

occurs over short distances then low levels of bound activators over sufficiently long pieces of

DNA will eventually overcome repression. Some additional mechanism must exist to prevent

this domination of activation over repression. Short range repression, together with the com-

petition of activators for interaction with the basal complex is sufficient to explain the indepen-

dent action of eve enhancers in the context of the whole locus. Furthermore, such mechanisms

may explain the nonadditive effects observed for shadow enhancers [21, 22] which are now

known to be a common feature of developmentally important genes [17].

Advancements over previous work

One previous work has modeled the regulation of eve by its entire regulatory sequence [16].

These authors devised a two tiered model, in which the lower tier is a previously reported

enhancer model [12] which uses a thermodynamic picture of protein binding, and is capable

of modeling short range repression but not coactivation. The starting parameters of this lower

tier component are determined by fitting to a set of expression data from approximately 40

enhancers from 27 genes, excluding the one to be modeled. In the second tier of the model, a

collection of up to 5 DNA segments (“windows”) for each expression domain is constructed as

follows. Every possible DNA segment in the locus with starting points at 100 bp intervals and

lengths between 500 and 2500 bp is considered. For each expression domain or stripe the 5

segments that give the best pattern for that domain are chosen. A model of the whole locus is

then constructed from a weighted sum of the expression patterns driven by the segments cho-

sen, and then the first tier parameters are retrained while keeping the DNA segments and their

weights fixed. This cycle of training window weights and first tier parameters is continued

until the score ceases to improve.

The chief difference between the work reported here and that reported by Samee and Sinha

[16] is that those investigators started with the assumption that genes have an enhancer
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structure. This assumption had two consequences. First, the lower tier model of individual

enhancers [12], alluded to above, is the starting point and an integral component of the model

of the whole locus. The lower tier model was trained on expression data from isolated enhanc-

ers. Our previously reported models of isolated enhancers were not used to construct the

whole locus model reported here, nor was expression data driven by isolated enhancers used

for training.

Second, the second tier of the previously reported model assumes a one-to-one mapping

between contiguous segments of DNA and expression domains, a point that is integral to the

fitting procedure described above and the weighting of expression driven by DNA segments.

The weights were constant over the whole embryo and only assigned to the five segments of

DNA which best matched expression domains. In this work, the weighting is done not in

terms of expression domains in the embryo but rather in terms of activation on the distal pro-

moter. This is done in such a way that strongly activating distal promoter regions have stron-

ger interactions with the basal promoter. As a consequence, the relative contributions of

individual segments varies from cell to cell as the concentrations of TFs vary. This leads to

competition that extends to the interstripes, and may be a reason why expression in the inter-

stripes is higher in the previously reported work, extending to about three quarters of peak

stripe expression in the interstripe between stripes 2 and 3 (see Fig 4 in [16]). Moreover, in this

work the weighting by activation is always performed at single nucleotide resolution over the

whole locus (Eqs (2) and (3)) rather than being limited to five segments of DNA. Another dif-

ference between the models is with respect to coactivation, which we comment on below.

Although the different treatment of coactivation affects biological conclusions about eve, this

difference arises from prior work by both groups at the enhancer level [12, 14].

Transcriptional regulation of eve

A locus level understanding of gene regulation is complicated by the context dependent action

of transcription factors. It has previously been shown that ectopic expression of Hb leads to

the loss of eve stripe 7 when driven by the stripe 3+7 enhancer, but not when driven by the

locus [29]. Our model includes a coactivation mechanism, where locally bound Bcd and Cad

cause Hb to switch from repressor to activator [14, 47, 61]. This coactivation is required for

the activation of eve stripe 7 within the posterior Hb domain. In the model reported here,

higher spatially uniform levels of Hb expression, which presumably mimic the reported results

[29], repress the stripe 3+7 enhancer by providing additional quenching from Hb sites distant

from bound Cad (Fig 6H). However, the locus is still able to drive stripe 7 through the action

of DNA upstream of the stripe 2 enhancer. These results indicate that coactivation by Bcd and

Cad is sufficient to explain dual regulation by Hb. This mechanism was not treated by Samee

et al. [16].

We find that Dst has a major contribution towards the activation of eve. Evidence in favor

of this finding is afforded by the observations that stripe 3+7 expression is reduced by Dst

binding site mutations [58] and that eve RNA levels drop by a factor of greater than 6 in

embryos that lack maternal Dst [65]. Some ambiguity remains, however. Embryos lacking

maternal and zygotic Dst still express seven eve stripes when driven from the intact eve locus

[66], presumably at reduced levels. However, these embryos fail to drive stripe 3 from the prox-

imal 5.2kb of the eve promoter. In addition to highlighting another difference between frag-

ments driving reporter expression and the intact locus, these results indicate the likely

presence of other widespread activators. Possible candidates include Zelda [67], Trithorax-like

[68] and Dicheate [69, 70]. Of these, Zelda has reported to act through modification of chro-

matin state [71, 72], which we have treated directly. In this work we did not include these
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additional wide spread activators because their functional roles cannot be distinguished with-

out further experimental information. Such experimental information might take the form of

quantitative assays of eve expression in embryos lacking maternal and zygotic contributions of

each of these factors in various combinations. Alternatively, a defined synthetic promoter

could be built up by systematically adding binding sites for one such factor at a time.

We find that enhancers do not necessarily follow the same regulatory logic as the intact

locus. When a sub-sequence of the intact locus is placed into an enhancer-reporter assay it is

removed from the context of the locus. The enhancer may not contain all the sites or regula-

tory interactions present in extended sequence and thus will not follow the same logic as the

locus. In this work we identify a specific case with regards to the regulation of stripe 2. When

driven by MSE2, the posterior border of stripe 2 is more strongly regulated by Bcd and Hb

than when stripe 2 is driven by the intact locus, which explains the lack of posterior expansion

when Kr binding is disrupted [6]. This is consistent with previous reports on other enhancers.

For instance, in Kni– embryos the posterior of stripe 3 and the anterior border of stripe 6 are

abolished when expression is driven by MSE3, while these borders remain present when

driven by the intact locus [7, 55]. Additionally, for features whose regulation is distributed, as

in stripe 7, each CRM uses a separate set of factors to generate function. As such, changes to

the environment in trans will have different effects than observed on either element alone.

Consequences of enhancer competition

Competition for the basal complex has direct consequences for eve expression. The expression

patterns driven by individual enhancers are broader than than the same stripes driven by the

intact locus [29]. These broad expression domains driven by individual enhancers overlap at

the interstripes. If expression is additive at these positions, there will be poor repression in eve
interstripes. However, competing enhancers will drive expression at levels less than the sum of

the rates driven by either enhancer alone. Thus, enhancer competition is sufficient to explain

how sharp stripes are driven by broadly expressed enhancers.

Studies of how transcription rate varies with respect to the positioning and separation

between bound activators will be required to distinguish between different modes of enhancer

competition, additivity, or cooperativity. Specifically, the model proposed in this work suggests

that if two activators are bound adjacently, these activators will synergistically activate tran-

scription through cooperative action on the basal complex. If these activators are then sepa-

rated by increasing lengths of neutral DNA we expect that transcription rate will decline

linearly up to a distance of α (Eqs (1)–(3)), at which point there will be steric hindrance pre-

venting simultaneous interaction with the basal complex. If the rate does not decline, it implies

that sequences do not compete, and that instead intervening DNA can be looped out. Such

experiments could be performed by varying the relative positions and orientations of shadow

enhancers acting on a common promoter.

Latent enhancers

We identify a case in which a DNA fragment had regulatory activity in a reporter assay, but

not in the intact locus. Our model predicted the existence of a new regulatory element in the

eve locus, however when we tested the activity of this fragment in vivowe found that it drove

expression in an unexpected pattern that is not a subset of the expression pattern driven by the

eve locus. For that reason we conclude that this fragment is not active in the intact eve locus

and that placing it upstream of a reporter has revealed latent function. We hypothesized that

this fragment may lie within inaccessible chromatin. Indeed, when we only model binding

sites within accessible chromatin, we no longer predict expression driven by this fragment in
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the intact locus. This result highlights the importance of studying intact loci in addition to iso-

lated enhancers and indicates that incorporation of chromatin accessibility increases the accu-

racy and utility of regulatory models.

Calculation of fractional occupancy

Transcription factor occupancy is critical to the control of gene regulation, but this quantity

can be expensive to compute. As the length of DNA and the number of interacting bound

transcription factors increases, the number of configurations and hence the computation time

increases exponentially. Other groups have adopted dynamic programming approaches where

the computation time increases linearly with the number of sites, but they do not calculate the

occupancy of individual sites [12] or use some type of Gibbs sampler [10, 36, 63]. The algo-

rithm presented here computes pairwise cooperativity and scales linearly with the number of

binding sites. This algorithm has similar performance to one previously reported [73], but that

algorithm is incompatible with the pairwise cooperativity observed with Bcd. Our algorithm

allows thermodynamic models to be applied to genomic scale data with low thresholds for

transcription factor binding, and we believe it to be a potentially useful technical development.

Generalizability of this approach

Our analysis of eve depended on having the DNA sequence and chromatin accessibility of the

locus, expression data from the locus over a range of cell types comparable to what is seen in
vivo, a complete set of regulators (although as we discussed above, there is some ambiguity as

to the full set of activators), a set of PWMs for these regulators, an understanding of the extent

of the locus, and knowledge of the functional roles of the TFs used in the models. Overall,

most or all of this information is already available in numerous systems or can be obtained, at

least in principle, by high-throughput techniques. Entire genome sequences are now available

for a large number of organisms together with functional data including chromatin accessibil-

ity [74, 75] across numerous tissues and cell lines. Expression data could be achieved through

RNA-seq on a carefully curated set of cell lines, or alternatively from single-cell techniques on

more homogeneous tissues. The cells from which expression data is obtained must also be sub-

jected to transcriptome or proteome analysis to reveal the TFs present. The extent of the locus

can be obtained my mapping insulator elements [76] or using chromosome conformation

assays [77]. Curated sets of PWMs for TFs are readily available [78], and TF roles and interac-

tions can be inferred from data [79] or learned by comparing the model results of all possible

perturbations of functional roles [80]. While this list appears imposing, all of the assays men-

tioned are regularly performed and the challenge is to integrate them together in an effective

high-throughput approach. The study reported here provides a proof of concept for such

future investigations.

Supporting information

S1 Fig. Model fits without enhancer competition. A: The transcription model, given by Eqs

S1-S17 (in S1 Appendix) and Eq (3), was trained to the expression pattern of even-skipped. Per-

cent embryo length(x-axis) is measured from the anterior pole. The identity of each eve stripe

is indicated. The model (red line) is able to achieve good fits to data (black line). B-E: Using

the model shown in A, we predicted the [mRNA] driven by four enhancers that have previ-

ously been shown to drive each of the stripes (red lines). The identity of each sequence is

labeled. Sequence coordinates for each enhancer are reported in Materials and Methods. The

locus data that corresponds to each stripe is shown with black lines. F-I: We trained the model

to the four eve enhancers driving their respective portion of the locus pattern. This model
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output (red lines) achieves good fits to data (black lines). J: We used the model shown in F-I to

predict expression driven by the entire eve locus. Predicted output (red line); Data (black line).

(TIF)

S2 Fig. Rate driven by stripe 2 enhancers MSE2 and S2E. The 480 bp MSE2 fragment and

the 800bp S2E were placed upstream of lacZ and cloned into the AttP2 site in Drosophila.

Mean fluorescent in-situ hybridization (FISH) intensity at nuclear cycle 14 timepoint 6 is

reported with S2E in solid lines and MSE2 in dashed lines. 15 embryos containing S2E were

imaged, giving between 47 and 63 nuclei per AP position. 8 embryos containing MSE2 were

imaged, giving between 26 and 37 nuclei per AP position. Peak expression of S2E is 5.5 times

greater than that of MSE2, despite only containing 320 additional bases.

(TIF)

S3 Fig. Best model fit using 500bp window. A: the model output (red line) and data (gray

shading) for the best fit to data. B: Heatmap of the quantity quantity R[m,m+α]T[m,m+α] at each

nucleotide and embryo position, representing the amount each 1kb sequence, centered at that

nucleotide, contributes towards total expression. The locations of known enhancers are indi-

cated on the x-axis. C: We tested the relative output of the known eve enhancers in silico using

the retrained model (red lines). The relative mRNA driven by individual enhancers (gray shad-

ing), is included for visual orientation within the embryo and levels are not commensurate

with predicted enhancer output.

(TIF)

S4 Fig. Prediction of e3130 element in model with accessibility. The model was trained as

described in Fig 1, except binding sites were only called within regions of accessible chromatin.

We predicted the activity of the 3130 element in silico to test its activity outside of its native

chromatin context. The relative model output (red line) is plotted with evemRNA. The relative

mRNA driven by the locus (gray shading) is included for visual orientation within the embryo

and levels are not commensurate with predicted enhancer output.

(TIF)

S5 Fig. Mechanisms of repression in locus model with accessibility. The model was trained

as described in Fig 1, except binding sites were only called within regions of accessible chroma-

tin. Cumulative line graph showing the change in [mRNA] caused by a change in concentra-

tion of each TF (y-axis) at each embryo position (x-axis).

(TIF)

S6 Fig. Predicted effects of ectopic Hb in model with accessibility. The model was trained as

described in Fig 1, except binding sites were only called within regions of accessible chromatin.

A: The measured relative levels of Hb and Gt (y-axis) from 35.5% to 92.5% embryo length (x-

axis). B: Simulated relative levels of Hb and Gt. Hb is set to a spatially uniform value and Gt is

unchanged from A. C: Simulated relative levels of Hb and Gt. Hb is set to a spatially uniform

value and Gt is reduced by 40%. D-F: Predicted relative [mRNA] levels (red lines) driven by

the eve locus under the TF levels indicated in A-C. Model output is standardized to the maxi-

mum rate driven by the locus in the wildtype trans environment. Data for relative [mRNA] of

eve (gray shading) is included for visual orientation within the embryo and levels are not com-

mensurate with predicted locus output. G-H: Predicted relative [mRNA] levels (red lines)

driven by the eve Stripe 3+7 enhancer under the TF levels indicated in A-C. Model output is

standardized to the maximum rate driven by the enhancer in the wildtype trans environment.

Data for relative [mRNA] driven by the stripe 3+7 enhancer (gray shading) is included for

visual orientation within the embryo and levels are not commensurate with predicted
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enhancer output.

(TIF)

S7 Fig. Numerical partial derivative estimates. The partial derivative @R
½TF�

was estimated for

each modeled TF using the symmetric difference quotient
fðxþhÞ� fðx� hÞ

2h , at each position in the

embryo, where h is the change in fluorescence of the TF in question over adjacent nuclei. Esti-

mates are robust over values of h from 10−1 through 10−11.

(TIF)

S8 Fig. Best three model fits after repeating the optimization procedure. We repeated the

optimization procedure an additional 80 times. The best three model fits have similar predic-

tions to the model used to generate figures in the main text. We report predictions for the

three parameter sets with the lowest score. A-C: the model output (red line) and data (gray

shading) for the top three parameter sets respectively. D-F: Heatmap of the quantity quantity

R[m,m+α]T[m,m+α] at each nucleotide and embryo position, representing the amount each 1kb

sequence, centered at that nucleotide, contributes towards total expression. The locations of

known enhancers are indicated on the x-axis. G-I: We tested the relative output of the known

eve enhancers in silico using the retrained model (red lines). The relative mRNA driven by

individual enhancers (gray shading), is included for visual orientation within the embryo and

levels are not commensurate with predicted enhancer output.

(TIF)

S9 Fig. Best three model fits after repeating the optimization procedure. We repeated the

optimization procedure an additional 80 times for fits incorporating chromatin data. The best

three model fits have similar predictions to the model used to generate figures in the main text.

We report predictions for the three parameter sets with the lowest score. A-C: the model out-

put (red line) and data (gray shading) for the top three parameter sets respectively. D-F: Heat-

map of the quantity quantity R[m,m+α]T[m,m+α] at each nucleotide and embryo position,

representing the amount each 1kb sequence, centered at that nucleotide, contributes towards

total expression. The identified regions of inaccessible chromatin and locations of known

enhancers are indicated on the x-axis. G-I: We tested the relative output of the known eve
enhancers in silico using the retrained model (red lines). The relative mRNA driven by individ-

ual enhancers (gray shading), is included for visual orientation within the embryo and levels

are not commensurate with predicted enhancer output.

(TIF)

S1 File. Florescence levels and standard deviations for even-skippedmRNA at T6.

(XLS)

S2 File. Excel file contain all parameter sets and model scores, as well as parameter search

space.

(XLS)

S1 Appendix. Supplementary methods.

(PDF)
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