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Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal
agents. The induced inflammatory response by these microorganisms can lead to multiple
organ system failure with devastating consequences. Recent studies have shown altered
expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs),
microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have
also been found to participate in the pathogenesis of multiple organ system failure through
different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among
lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21,
miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and
miR-218 are examples of miRNAs participating in these complications. Finally, tens of
circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and
circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the
current review, we describe the role of these three classes of noncoding RNAs in the
pathoetiology of sepsis-related complications.

Keywords: lncRNA, miRNA, sepsis, expression, biomarker
INTRODUCTION

Sepsis is a systemic inflammatory response to different infections, namely bacterial, viral, or fungal
agents. This condition is the principal source of mortality in intensive care units (1). These
infectious microorganisms can stimulate inflammatory reactions through induction of cytokines
release. These reactions lead to multiple organ system failure. Other factors that contribute in this
org December 2021 | Volume 12 | Article 7987131
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devastating condition during sepsis are systemic hypotension
and abnormal perfusion of the microcirculatory system (2). No
specific treatment modality has been suggested for prevention of
multiple organ system failure during sepsis (2). Thus,
identification of sepsis-related changes at cellular and
biochemical levels is important. Currently, there is no effective
pharmacological therapy for sepsis. Thus, early diagnosis,
resuscitation and instant administration of suitable antibiotics
are essential steps in decreasing the burden of this condition
{Thompson, 2019 #562}.

Lipopolysaccharide (LPS) as the main constituent of the cell
wall of Gram-negative bacteria has been found to stimulate
apoptotic pathways in tubular epithelial cells of kidney (3).
Moreover, it can prompt acute inflammatory responses
through activation of NF-kB during the course of acute kidney
injury (4). This molecular pathway is an important axis in
mediation of immune-related organ damage.

Recent studies have shown altered expressions of several
non-coding RNAs such as long non-coding RNAs (lncRNAs),
microRNAs (miRNAs) and circular RNAs (circRNAs) during
sepsis. These transcripts have also been found to participate in
the pathogenesis of multiple organ system failure through
different mechanisms. In the current review, we describe the
role of these three classes of noncoding RNAs in the
pathoetiology of sepsis-related complications.
LNCRNAS AND SEPSIS

LncRNAs are transcripts with sizes larger than 200
nucleotides. These transcripts regulate gene expression
through modulation of chromatin configuration, regulation
of splicing events, serving as decoys for other transcripts and
making structures for recruitment of regulatory proteins (5).
These transcripts participate in the regulation of immune
reactions and pathoetiology of several immune-related
disorders (6).

Experiments in animal model of acute lung injury have shown
down-regulation of TUG1 and induction of apoptosis and
inflammation. Up-regulation of TUG1 in these animals could
ameliorate sepsis-associated lung injury, apoptosis and
inflammatory reactions. TUG1 could also protect lung
microvascular endothelial cells from deteriorative effects of
LPS. In fact, TUG1 inhibits cell apoptosis and inflammatory
reactions in LPS-stimulated microvascular endothelial cells
through sponging miR-34b-5p and releasing GAB1 from its
inhibitory effects. Cumulatively, TUG1 ameliorates sepsis-
associated inflammation and apoptosis through miR-34b-5p/
GAB1 axis (7). Another study has demonstrated down-
regulation of TUG1 while up-regulation of miR-223 in the
plasma samples of sepsis patients. They have also reported a
negative correlation between expressions of TUG1 and miR-223
in sepsis patients. Besides, expression levels of TUG1 have been
negatively correlated with respiratory infection, serum
creatinine, white blood cell, C-reactive protein, APACHE II
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score, and SOFA score. Based on these results, TUG1 has been
suggested as a biomarker for prediction of course and prognosis
of sepsis (8). TUG1 has also been shown to interact with miR-
27a. Over-expression of TUG1 has resulted in down-regulation
of TNF-a, while up-regulation of miR-27a has enhanced
expression of TNF-a in cardiomyocytes. TNF-a and miR-27a
up-regulation could enhance LPS-induced apoptosis of
cardiomyocytes. On the other hand, TUG1 up-regulation has
exerted opposite effects (9).

MALAT1 is another lncRNA that affects immune responses
of rats with LPS-induced sepsis through influencing the miR-
146a/NF-kB P65 axis (10). Moreover, MALAT1 could increase
apoptosis skeletal muscle cells and sepsis-associated immune
responses through down-regulating BRCA1 levels via
recruitment of EZH2 (11). The miR-150-5p/NF-kB axis is
another axis that mediates the effects of MALAT1 in sepsis-
associated cardiac inflammation (12). In addition, the protective
effects of Ulinastatin against LPS-associated dysfunction of heart
microvascular endothelial cells have been shown to be exerted
through down-regulation of MALAT1 (13). Most notably,
MALAT1/miR-125a axis has been shown to discriminate sepsis
patients based on their severity of diseases, organ damage, levels
of inflammatory responses and mortality (14). Figure 1 depicts
function of MALAT1 in sepsis-related events.

NEAT1 is another lncRNA whose participation in the
pathophysiology of sepsis has been vastly investigated. This
lncRNA could promote inflammatory responses and aggravate
sepsis-associated hepatic damage through the Let-7a/TLR4 axis
(15). Moreover, NEAT1 can accelerate progression of sepsis via
miR-370-3p/TSP-1 axis (16). This lncRNA could also promote
LPS-induced inflammatory responses in macrophages through
regulation of miR-17-5p/TLR4 axis (17). NEAT1 silencing could
suppress immune responses during sepsis through miR‐125/
MCEMP1 axis (18). Figure 2 shows the function of NEAT1 in
sepsis-related events. Several other lncRNAs have also been
found to influence course of sepsis through modulation of
immune responses (Table 1).
miRNAs AND SEPSIS

miRNAs have sizes about 22 nucleotides and regulate
expression of genes through binding with different regions of
target mRNAs, particularly their 3’ UTR. They can either
degrade target mRNA or suppress its translation. Several
miRNAs have been found to influence course of sepsis.
Altered expression of these small-sized transcripts has been
reported in sepsis by numerous research groups. For instance,
plasma levels of miR-494-3p have been shown to be decreased
in sepsis patients compared with healthy controls in correlation
with up-regulation of TLR6. Expression level of miR-494-3p
has been decreased in LPS-induced RAW264.7 cells, parallel
with up-regulation of TLR6 and TNF-a. Forced over-expression
of miR-494-3p in RAW264.7 cells could reduce TNF-a level
and suppress translocation of NF-kB p65 to the nucleus.
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FIGURE 2 | Function of NEAT1 in sepsis-related events. Several other lncRNAs have also been found to influence course of sepsis through modulation of immune
responses (Table 1).
FIGURE 1 | Function of MALAT1 in sepsis-related events.
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TLR6 has been shown to be targeted by miR-494-3p.
Taken together, miR-494-3p could attenuate sepsis-associated
inflammatory responses through influencing expression of TLR6
(132). miR-218 is another miRNA which participates in the
pathoetiology of sepsis. This miRNA could reduce inflammatory
responses in the sepsis through decreasing expression of VOPP1
via JAK/STAT axis (133).

miR-122 is another important miRNA in the sepsis which has
superior diagnostic power compared with CRP and total
leucocytes count for distinguishing sepsis from wound
infection. miR-122 has also been found to be a prognostic
marker for sepsis, albeit with poor specificity and accuracy
values (134).

In the mice model of sepsis, decreased levels of miR-208a-5p
and increased levels of SOCS2 has been associated with enhanced
activity of SOD, while reduction in LDH and MDA activities.
Moreover, down-regulation of miR-208a-5p has been associated
with low levels TNF-a, IL-6, NF-kB p65 and HIF-1a in this
animal model. miR-208a-5p silencing could decrease the extent
of mitochondria swell ing, and inhibit apoptosis of
cardiomyocytes in animal model of sepsis. Taken together,
miR-208a-5p suppression has been suggested as a modality to
attenuate sepsis-related myocardial damage. This function is
mediated through NF-kB/HIF-1a axis (135).

miR-21 is another miRNA whose role in sepsis has been
investigated by several groups. Down-regulation of miR-21 has
been shown to inhibit inflammasome activation, ASC pyroptosome,
LPS-induced pyroptosis and septic shock in one study (136). On the
other hand, another study in animal models of sepsis has shown
that up-regulation of miR-21 reduced inflammation and apoptosis
(137). Similarly, bMSCs-derived exosomes have been shown to
reduce symptoms in septic mice and improve their survival rate
through up-regulation of miR-21 (138).

miR-328 is another miRNA which is dysregulated in sepsis
patients as well as animal models of sepsis. Serum levels of this
miRNA could properly differentiate sepsis from normal
conditions. Thus, miR-328 has been suggested as a diagnostic
biomarker for sepsis. Moreover, down-regulation of miR-328
could amend sepsis-related heart dysfunction and inflammatory
responses in this tissue (139). miR-452 is another miRNA with
diagnostic applications in sepsis. Notably, serum and urinary
levels of this miRNA have been suggested as possible markers for
early diagnosis of sepsis-associated acute kidney injury, since
expression of this miRNA has been higher in sepsis patients with
acute kidney injury compared with those without this condition
(140) (Table 2). Figure 3 depicts miRNAs that are down-
regulated in sepsis.
CircRNAs AND SEPSIS

CircRNAs are a recently appreciated group of non-coding RNAs
with enclosed circular configuration formed by covalent bonds
between two ends of linear transcripts. However, some of these
Frontiers in Immunology | www.frontiersin.org 4
transcripts have been shown to produce proteins. They mostly
exert regulatory functions in the transcriptome. Impact of
circRNAs in the sepsis has been assessed by several groups
(303). For instance, circC3P1 has been shown to attenuate
production of inflammatory cytokines and decrease cell
apoptosis in sepsis-associated acute lung injury via influencing
expression of miR‐21 (304).

A microarray-based has shown differential expression of
132 circRNAs between sepsis patients and healthy controls
among them have been hsa_c i rcRNA_104484 and
hsa_circRNA_104670 whose up-regulation in sepsis serum
exosomes has been verified been RT-PCR. Expression levels of
these two circRNAs have been suggested as diagnostic
biomarkers for sepsis (305).

CircVMA21 is another circRNA that has been shown to
ameliorate sepsis‐related acute kidney injury through
modulation of oxidative stress and inflammatory responses via
miR‐9‐3p/SMG1 axis (306). Circ_0114428/miR-495-3p/CRBN
axis is another molecular axis which is involved in the
pathoetiology of sepsis‐related acute kidney injury (307).
Moreover, expression levels of circPRKCI have been correlated
with sepsis risk, severity of sepsis and mortality during a period
of 28 days (308). Table 3 summarizes the role of circRNAs
in sepsis.
DISCUSSION

A vast body of literature points to the involvement of lncRNAs,
miRNAs and circRNAs in the pathoetiology of sepsis-related
complications. NEAT1, MALAT1, MEG3, THRIL, XIST,
CRNDE, ZFAS1, HULC, MIAT and TUG1 are among
lncRNAs with the strongest evidence for their participation in
this process. NEAT1 as the mostly assessed lncRNA in this
regard has been shown to act as a molecular sponge for let-7a,
let-7b-5p, miR-370-3p, miR-124, miR-125, miR-17-5p, miR-16-
5p, miR-93-5p, miR-370-3p, miR-144-3p, miR-944, miR495-3p,
miR-22-3p, miR-31-5p and miR-590-3p. Through sequestering
these miRNAs, NEAT1 can affect several molecular pathways in
the course of sepsis. It can enhance immune responses and the
related injury in target organs, thus participating in sepsis-related
multiple organ damage.

Similar to lncRNAs, circRNAs influence course of sepsis
mainly through acting as molecular sponges for miRNAs.
circC3P1/miR-21, circVMA21/miR-9, circVMA21/miR-199a-
5p , c i rc-PRKCI/miR-545, c i rcPRKCI/miR-106b-5p,
circDNMT3B/miR-20b-5p, circ_0114428/miR-495-3p,
circ_Ttc3/miR-148a, circPRKCI/miR-454, circ-Fryl/miR-490-
3p, c irc_0091702/miR-182, c ircTLK1/miR-106a-5p,
c i rcFADS2/miR-15a-5p , c i rc_0091702/miR-545-3p ,
hsa_circ_0068,888/miR-21-5p, circPTK2/miR-181c-5p, circ-
FANCA/miR-93-5p and circANKRD36/miR-330 are among
c i r cRNA/miRNA axes which are invo lved in the
pathophysiology of sepsis-related conditions.
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TABLE 1 | LncRNAs and Sepsis.

lncRNA Expression
Pattern

Clinical Samples/
Animal Model

Assessed
Cell Lines

Targets /
Regulators

Signaling
Pathways

Description Reference

TUG1 ↓ 35 ARDS patients
and 68 HCs, male
C57BL/6 mice

PMVECs ↑ miR-34b-
5p, GAB1 ↓

_ TUG1 reduces sepsis-induced pulmonary injury,
apoptosis and inflammation in ALI.

(7)

TUG1 ↓ 122 patients with
sepsis and 122 HCs

_ ↑ miR-223 _ Low levels of TUG1 was correlated with respiratory
infection. TUG1 expression was negatively
associated with Scr, WBC, SOFA score, and CRP
levels and 28‐day deaths, but positively associated
with albumin levels.

(8)

TUG1 ↓ _ HUVECs ↑ miR-27a-
3p, ↓ SLIT2

_ Up-regulation of TUG1 reduced apoptosis,
autophagy, and inflammatory response.

(19)

TUG1 ↓ 70 patients with
sepsis and 70 HCs

AC16 miR-27a, ↑
TNF-a

_ Up-regulation of TUG1 reduced apoptosis. (9)

MALAT1 ↑ rats with and without
LPS-induced sepsis

U937 ↓ miR-
146a, ↑
P65

↑ NF-kB
signaling
pathway

Downregulation of MALAT1 decreased the number
of TNF-a and iNOS positive cells.

(10)

MALAT1 ↑ BALB/c male mice HSMKMC
3500

↓ BRCA1,
EZH2

_ Downregulation of MALAT1 reduced inflammatory
responses, neutrophil migration, skeletal muscle cell
apoptosis, and AKT-1 phosphorylation.

(11)

MALAT1 ↑ _ H9c2 ↓ miR-150-
5p,

↑ NF-kB
signaling
pathway

Downregulation of MALAT1 reduced inflammatory
response and downregulated NF-kB signaling
pathway.

(12)

MALAT1 ↑ male SD rats CMVECs ↑ EZH2 _ MALAT1 significantly inhibited levels of EZH2 target
genes, DAB2IP and Brachyury. Up-regulation of
CRNDE increased permeability and apoptosis.
Ulinastatin suppressed levels of MALAT1 and EZH2.

(13)

MALAT1 ↑ 196 patients with
sepsis and 196 HCs,

_ ↓ miR‐125a _ MALAT1 expression was positively correlated with
APACHE II score, SOFA score, serum creatinine,
CRP, TNF‐a, IL‐1b, IL‐6, 28‐day deaths, and
negatively with albumin.

(14)

MALAT1 ↑ sepsis mice _ ↓ miR-23a,
↑ MCEMP1

_ Downregulation of MALAT1 suppressed expression
of MPO, IL-6, IL-10, TNF-a, and IL-1b, and reduced
inflammation.

(20)

MALAT1 ↑ male C57 mice ↑ p38 ↑ p38
MAPK/
p65 NF-
kB
signaling
pathway

Downregulation of MALAT1 reduced MPO and
inflammatory responses.

(21)

MALAT1 ↑ _ a lung injury
inflammatory
cell model

↓ miR-149,
↑ MyD88

↑ NF-kB
pathway

Downregulation of MALAT1 reduced the levels of
MyD88, TNF-a, IL-1b, and IL-6, and prevented the
NF-kB pathway.

(22)

MALAT1 ↑ CLP-induced septic
mice

HUVECs,
PAECs

↓ miR-150 ↑ NF-kB
pathway

Downregulation of MALAT1 reduced apoptosis, ER
stress and inflammation.

(23)

MALAT1 ↑ in ARDS
group

152 patients with
sepsis (41 ARDS and
111 Non-ARDS
patients)

_ _ _ MALAT1 expression was association with APACHE
II score, SOFA score, inflammatory factors levels,
and high mortality.

(24)

MALAT1 ↑ GEO dataset
(GSE3140), male
C57B6/L mice

HL-1 ↑ IL-6, ↑ ↑
TNF-a,
SAA3

_ Downregulation of MALAT1 Protected
Cardiomyocytes from LPS-induced Apoptosis.

(25)

MALAT1 ↑ 190 patients with
sepsis and 190 HCs

_ ↓ miR‐125b _ MALAT1 expression was associated with Scr, WBC,
CRP, PCT, TNF‐a, IL‐8, IL‐17, APACHE II score,
SOFA score, and 28‐day deaths.

(26)

MALAT1 ↑ 120 patients with
sepsis and 60 HCs

_ _ _ Expression of MALAT1 was found to be an
independent risk factor for sepsis, poor prognosis
and septic shock.

(27)

MALAT1 ↑ female C57BL/6 mice THP-1 ↓ miR-214,
↑ TLR5

_ Downregulation of MALAT1 attenuated the burn
injury and post-burn sepsis-induced inflammatory
reaction.

(28)

KCNQ1OT1 ↓ male SD rats H9c2 ↑ miR-192-
5p, ↓ XIAP

_ Up-regulation of KCNQ1OT1 ameliorated
proliferation and impeded apoptosis in sepsis-
induced myocardial injury.

(29)

(Continued)
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TABLE 1 | Continued

lncRNA Expression
Pattern

Clinical Samples/
Animal Model

Assessed
Cell Lines

Targets /
Regulators

Signaling
Pathways

Description Reference

CYTOR ↓ male SD rats H9c2 ↑ miR-24, ↓
XIAP

_ Up-regulation of CYTOR ameliorated viability and
inhibited apoptosis in sepsis-induced myocardial
injury.

(30)

lncRNA-5657 ↑ 15 patients with
sepsis-induced ARDS
and 15 non-septic
and non-ARDS
patients, SD rats

NR8383 ↑ Spns2 _ Downregulation of lncRNA-5657 7 prevented
sepsis-induced lung injury and LPS-induced
inflammation.

(31)

RMRP ↓ male C57BL/6 mice HL-1 ↑ miR-1-5p,
↓ HSPA4

↑ NF-kB
Pathway

Up-regulation of RMRP reduced LPS-induced
damage, apoptosis and mitochondrial damage and
LPS-induced sepsis.

(32)

NEAT1 ↑ 15 patients with
sepsis-induced liver
injury and 15 HCs

Kupffer,
Raw264.7

↓ Let-7a, ↑
TLR4

_ Downregulation of NEAT1 reduced expression of
inflammatory factors in sepsis-induced liver injury.

(15)

NEAT1 ↑ 25 Sepsis patients
and 25 HCs

RAW 264.7 ↓ miR-370-
3p, ↑ TSP-
1

_ Downregulation of NEAT1 prevented LPS-mediated
inflammation and apoptosis and ameliorated
proliferation.

(16)

NEAT1 ↑ male pathogen-free
C57BL/6 mice

_ ↓ miR-125,
↑ MCEMP1

_ Downregulation of NEAT1 suppressed inflammation
and T lymphocyte apoptosis.

(18)

NEAT1 ↑ 68 patients with
sepsis and 32 HCs

THP-1
macrophages

↓ miR-17-
5p, ↑ TLR4

_ Downregulation of NEAT1 prevented LPS-induced
inflammatory responses in macrophages.

(17)

NEAT1 ↑ mouse with sepsis-
induced lung injury

_ ↓ miR-16-
5p, ↑ BRD4

_ Downregulation of NEAT1 inhibited inflammation,
apoptosis, pulmonary edema, MPO activity,
pathological changes, promoted viability.

(33)

NEAT1 ↑ male C57 mice _ _ ↑ TLR2/
NF-kB
signaling
pathway

Downregulation of NEAT1 reduced LPS-induced
myocardial pathological injury, apoptosis, oxidative
stress, inflammatory responses.

(34)

NEAT1 ↑ male C57BL/6 mice A549 _ ↑ HMGB1/
RAGE
signaling

Downregulation of NEAT1 increased viability
attenuated LPS-induced apoptosis and suppressed
inflammation.

(35)

NEAT1 ↑ 30 patients with
sepsis and 30 HCs

HK-2 ↓ let-7b-5p,
TRAF6

_ Downregulation of NEAT1 increased proliferation
and inhibited apoptosis and inflammation.

(36)

NEAT1 ↑ _ RAW264.7 ↓ miR-
125a-5p, ↑
TRAF6, ↑
P-TAK1

_ Downregulation of NEAT1 decreased inflammation
by promoting macrophage M2 polarization.

(37)

NEAT1 ↑ _patients with sepsis HK2 ↓ miR-93-
5p, ↑
TXNIP

_ Downregulation of NEAT1 inhibited apoptosis,
inflammation and oxidative stress.

(38)

NEAT1 ↑ _ sepsis tissues
and ANCTs

AW 264.7
and HL-1

↓ miR-370-
3p, ↑ Irak2

_ Downregulation of NEAT1 ameliorated viability,
prevented apoptosis and the expression of
inflammatory cytokines.

(39)

NEAT1 ↑ _ HL-1 ↓ miR-144-
3p

NF-kB
signaling
pathway

Downregulation of NEAT1 ameliorated viability,
prevented apoptosis and inflammatory response in
LPS-induced myocardial cell injury.

(40)

NEAT1 ↑ 152 patients with
sepsis and 150

_ _ _ Up-regulation of NEAT1 was positively associated
with Acute Physiology and Chronic Health Evaluation
II score, inflammatory responses, while negatively
associated with IL-10.

(41)

NEAT1 ↑ C57BL/6 mice WI-38 ↓ miR-944,
↑ TRIM37

_ Downregulation of NEAT1 inhibited inflammatory
responses and apoptosis. Overexpression of
TRIM37 rescued influence of downregulation of
NEAT1 on cell s.

(42)

NEAT1 ↑ 59 patients with
sepsis, 52 patients
with noninfectious
SIRS, and 56 HCs

PBMCs _ _ Levels of NEAT1 could be considered as a good
predictor for the diagnosis of sepsis.

(43)

NEAT1 ↑ 127 patients with
sepsis and 50 HCs

_ ↑ Th1, ↑
Th17

_ Overexpression of NEAT1 was associated with
chronic health evaluation II score, CRP level, acute
physiology, and SOFA score.

(44)

(Continued)
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TABLE 1 | Continued

lncRNA Expression
Pattern

Clinical Samples/
Animal Model

Assessed
Cell Lines

Targets /
Regulators

Signaling
Pathways

Description Reference

NEAT1 ↑ male C57BL/6 mice RAW264.7 ↓ miR495-
3p,
↑STAT3, ↓
miR-211

↑ PI3K/
AKT
signaling

Overexpression of NEAT1 was associated with
inflammatory responses.

(45)

NEAT1 ↑ 102 patients with
sepsis and 100 HCs

_ ↓ miR‐125a _ High levels of NEAT1 was associated with SOFA
score, APACHE II score, 28‐day deaths, and high
ARDS risk.

(46)

NEAT1 ↑ Septic Mice _ ↑ NF-kB _ Downregulation of NEAT1 increased activity of nerve
cells and reduced apoptosis.

(47)

NEAT1 ↑ 82 patients with
sepsis and 82 HCs

_ ↓ miR-124 _ NEAT1 showed a good predictive value for
increased sepsis risk.
NEAT1 expression was positively associated with
disease severity, CRP, PCT, TNF-a, and IL-1b, 28-
day deaths.

(48)

NEAT1 ↑ 18 patients with
sepsis-induced AKI
and 18 HCs

HK-2 ↓ miR-22-
3p

↑ NF-kB
pathway

Downregulation of NEAT1 reduced levels of
autophagy factors and inflammatory responses.

(49)

NEAT1 ↑ _ RAW264.7 ↓ miR-31-
5p, ↑
POU2F1

_ Downregulation of NEAT1 reduced inflammatory
response and apoptosis, and increased proliferation.

(50)

NEAT1 ↑ 22 patients with
sepsis and 22 HCs,

H9c2 ↓ miR-590-
3p

NF-kB
signaling
pathway

Downregulation of NEAT1 reduced apoptosis and
inflammatory responses in LPS-induced sepsis.

(51)

H19 ↓ 69 patients with
sepsis and HCs, male
BALB/c mice

_ ↑ miR-874,
↓ AQP1

_ Downregulation of H19 contributed to inflammatory
responses. Up-regulation of H19 ameliorated the
impairment of sepsis companied myocardial
dysfunction.

(52)

H19 ↓ _ H9C2 ↑ miR-93-
5p, ↓
SORBS2

_ Up-regulation of H19 suppressed inflammatory
responses in sepsis-induced myocardial injury.

(53)

H19 ↓ 104 patients with
sepsis, and 92 HCs

_ _ _ Expression of H19 was negatively associated with
28-day deaths and inflammatory response markers.

(54)

CASC9 ↓ rats HSAECs ↑ miR-195-
5p, ↓ PDK4

_ Up-regulation of CASC9 promoted viability in sepsis-
induced
ALI.

(55)

LUADT1 ↓ 60 patients with
sepsis and 60 HCs

HCAECs miR-195, ↓
Pim-1

_ Up-regulation of LUADT1 reduced apoptosis. (56)

MIAT ↑ male SD rats NRK-52E ↓ miR-29a _ Up-regulation of MIAT promoted apoptosis in
sepsis-related kidney injury.

(57)

MIAT ↑ male BALB/c mice HL-1 ↓ miR-330-
5p, ↑
TRAF6

↑ NF-kB
signaling

Downregulation of MIAT restrained inflammation and
oxidative stress in Sepsis-Induced Cardiac Injury.

(58)

THRIL ↑ 66 patients with
sepsis and 66 HCs

HBEpCs ↓ miR-19a,
↑ TNF-a

_ Up-regulation of THRIL promoted apoptosis. (59)

THRIL ↑ C57BL/6 mice MPVECs ↓ miR-424,
↑ ROCK2

_ Downregulation of THRIL prevented inflammatory
responses, and apoptosis in septic-induced acute
lung injury.

(60)

THRIL ↑ in ARDS
group

32 sepsis patients
with ARDS and 77
without ARDS

_ _ _ THRIL independently predicted increased risk of
ARDS.
THRIL was positively associated with APACHE II
score, SOFA score, CRP, PCT, TNF-a, and IL-1b
levels, and mortality rates.

(61)

XIST ↓ male SD rats HSAECs,
HEK-293T

miR-16-5p _ Up-regulation of XIST increased viability and
inhibited inflammatory response and apoptosis in
sepsis-induced ALI.

(62)

XIST ↓ CLP-induced AKI
mice

HK-2,
TCMK-1

↑ miR-155-
5p, ↓
WWC1

_ Up-regulation of XIST decreased sepsis-induced
AKI.

(63)

XIST ↑ 30 patients and 10
HCs, male SD rats

Kupffer ↑ BRD4 _ Downregulation of XIST reduced inflammation,
oxidative stress, and apoptosis in sepsis-induced
acute liver injury.

(64)
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XIST ↑ GEO database:
GSE94717 ( 6
patients with sepsis-
induced AKI and 6
HCs)

MPC5 ↓ miR-15a-
5p, ↑ CUL3

_ Up-regulation of XIST enhanced apoptosis in sepsis-
induced AKI.

(65)

xist ↑ _ MCM ↓ PGC-1a,
↓ Tfam

_ Downregulation of xist inhibited apoptosis and
induced proliferation.

(66)

GAS5 ↓ 60 patients with
sepsis and 60 HCs

AC16 ↓ miR-214 _ Downregulation of GAS5 restrained apoptosis of
cardiomyocytes induced by LPS. GAS5 could
regulate miR-214 through methylation pathway.

(67)

CRNDE ↓ male specific-
pathogen-free Wistar
rats

_ ↑ miR-29a,
↓ SIRT1

↑ NF-kB/
PARP1
signaling

Up-regulation of CRNDE reduced apoptosis,
oxidative stress and inflammatory response.

(68)

CRNDE ↑ 136 patients with
sepsis and 151 HCs

THP-1 ↓ miR-
181a-5p, ↑
TLR4

_ Up-regulation of CRNDE was correlated with poorer
OS and was a significant predictor in patients with
sepsis. Downregulation of CRNDE reduced sepsis-
related inflammatory pathogenesis.

(69)

CRNDE ↑ male C57 mice _ ↑ p65 ↑ TLR3/
NF-kB
pathway

Downregulation of CRNDE reduced edema, necrosis
and apoptosis in sepsis-induced AKI.

(70)

CRNDE ↑ _ HK-2 ↓ miR-146a ↑ TLR4/
NF-kB
signaling
pathway

Up-regulation of CRNDE enhanced cell injuries,
inflammatory responses and apoptosis in sepsis-
induced AKI.

(71)

CRNDE ↓ rats HK-2,
HEK293

↑ miR-
181a-5p, ↓
PPARa

_ Downregulation of CRNDE increased the urea
nitrogen and serum creatinine, and reduced
proliferation and promoted apoptosis.

(72)

CRNDE ↓ male SD rats L02 ↑ miR-126-
5p, ↓
BCL2L2

_ Up-regulation of CRNDE increased
viability and repressed apoptosis in sepsis-induced
liver injury.

(73)

HOTAIR ↓ male SD rats HK-2 ↑ miR-34a,
↓ Bcl-2

_ Up-regulation of HOTAIR reduced apoptosis in
sepsis-induced AKI.

(74)

HULC ↑ 110 patients with
sepsis and 100 HCs

HMEC-1,
CRL-3243

↓ miR-128-
3p, ↑ RAC1

_ Downregulation of HULC restrained apoptosis and
inflammation, and protected HMEC-1 cells from
LPS-induced injury.

(75)

HULC ↑ 174 patients with
sepsis and 100 HCs

_ _ _ Expression of HULC was correlated with APACHE II,
SOFA score, and 28‐day deaths. It was also
positively associated with Scr, WBC, and CRP, but
negatively correlated with albumin.

(76)

HULC ↑ 56 patients with
sepsis and 56 HCs

HUVECs ↓ miR-204-
5p, ↑
TRPM7

_ Downregulation of HULC promoted viability and
reduced apoptosis, inflammatory responses and
oxidative stress.

(77)

HULC ↑ C57BL/6 mice HMECs ↑ IL6, ↑
ICAM1, ↑
VCAM1

_ Downregulation of HULC reduced levels of pro-
inflammatory factors.

(78)

TapSAKI ↑ SD rats HK-2 ↓ miR-22 ↑ TLR4/
NF-kB
pathway

Downregulation of TapSAKI decreased inflammatory
factors and renal function indicators, so decreased
kidney injury.

(79)

ITSN1‐2 ↑ 309 patients with
intensive care unit
(ICU)‐treated sepsis
and 300 HCs

_ _ _ High levels of ITSN1‐2 were correlated with elevated
disease severity, inflammation, and poor prognosis
in sepsis patients.

(80)

LincRNA-p21 ↑ sepsis-induced ALI
rat model

BEAS-2B c _ _ Downregulation of LincRNA-p21 restrained
apoptosis, inflammatory responses and oxidative
stress in sepsis-induced ALI.

(81)

TCONS_
00016233

↑ 15 patients with
septic AKI and non-
AKI, and 15 HCs,
C57BL/6J mice

HK-2 miR-22-3p,
↑ AIFM1

TLR4/
p38MAPK
axis.

Downregulation of TCONS_00016233 restrained
LPS-induced apoptosis.
Up-regulation of TCONS_00016233 induced LPS-
induced apoptosis and inflammatory responses.

(82)

UCA1 ↑ C57BL/6 mice HMECs ↑ IL6, ↑
ICAM1, ↑
VCAM1

_ Downregulation of UCA1 reduced inflammatory
responses.

(78)
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NR024118 ↓ 82 patients with
sepsis without MD,
35 patients with
sepsis and MD and
82 HCs

AC16 ↑ IL-6 NF-kB
signaling
pathway

Up-regulation of NR024118 reduced the secretion
of IL-6 and apoptosis, and improved LPS-induced
myocardial APD duration and cell injury.

(83)

MIR155HG ↑ 28 patients with
sepsis and 28 without
sepsis

HL-1, RAW
264.7

↓ miR-194-
5p, ↑
MEF2A

_ Downregulation of MIR155HG increased viability and
decreased apoptosis and inflammatory responses.

(84)

LUCAT1 ↑ GEO dataset:
GSE101639

H9C2 ↓ miR-
642a, ↑
ROCK1

_ Downregulation of LUCAT1 decreased inflammatory
responses.

(85)

SOX2OT ↑ male C57B6/L mice H9c2 ↑ SOX2 _ Downregulation of SOX2OT reduced mitochondrial
dysfunction in septic cardiomyopathy.
Overexpression of SOX2OT aggravated
mitochondrial dysfunction in septic cardiomyopathy

(86)

MEG3 ↑ male C57BL/6 mice TECs ↓ miR-18a-
3P

_ Downregulation of MEG3 reduced number of
pyroptotic cells, secretion of LDH, IL-1b, and IL-18,
and expression of GSDMD in LPS-induced AKI.

(87)

MEG3 ↑ 82 patients with
sepsis and 54 HCs

Human
primary renal
mixed
epithelial cells
, AC16

_ _ Patients with high levels of MEG3 showed higher
mortality rate, and downregulation of it inhibited
apoptosis induced by LPS.

(88)

MEG3 ↑ 112 patients with
sepsis and 100 HCs

_ _ _ High levels of MEG3 were associated with 28‐day
deaths and it was found to be a predictor of higher
ARDS risk.

(89)

MEG3 ↑ 219 patients with
sepsis and 219 HCs,
male C57BL/6 J mice

_ ↓ miR‐21 _ Lnc‐MEG3 expression was positively correlated with
cardiomyopathy, APACHE II score, SOFA score,
Scr, TNF‐a, IL‐1b, IL‐6, and IL‐17, 28‐day deaths,
while negatively correlated with albumin.

(90)

MEG3 ↓ male C57/BL mice Caco2 ↑ miR-129-
5p, ↓ SP-D

_ Overexpression of MEG3 reduced villus length and
apoptosis, inhibited intestinal injury and enhanced
proliferation.

(91)

GAS5 ↓ _ conditional
immortalized
podocyte line

↓ PTEN ↑ PI3K/
AKT
pathway

Downregulation of GAS5 elevated the Podocyte
Injury.

(92)

LINC00472 ↑ male SD rats THLE-3 ↓ miR-373-
3p, ↑
TRIM8

_ Downregulation of LINC00472 enhanced viability
and suppressed apoptosis.

(93)

HOTAIR ↑ male e C57B6/L mice HL-1 ↑ p-p65, ↑
NF-kB

NF-kB
pathway

Downregulation of HOTAIR restrained LPS-induced
myocardial dysfunction in septic mic. HOTAIR was
involved in p65 phosphorylation and NF-kB
activation, leading to 15 TNF-a production.

(94)

HOTAIR ↑ male SD rats HK-2 ↓ miR-22, ↑
HMGB1

_ Downregulation of HOTAIR reduced renal function
indicators (blood urea nitrogen and serum
creatinine).

(95)

Hotairm1 ↑ male C57BL/6 mice MDSCs ↑ S100A9
localization

_ Downregulation of Hotairm1 restrained the
suppressive functions of late sepsis Gr1+CD11b+
MDSCs. Hotairm1 Was involved in shuttling S100A9
protein to the nucleus.

(96)

NKILA ↑ _ HK2 ↓ miR-140-
5p, ↑
CLDN2

_ Downregulation of NKILA restrained apoptosis,
autophagy and inflammation and promoted viability
in sepsis-induced AKI.

(97)

HOXA‐AS2 ↓ 44 patients with
sepsis and 44 HCs,
adults clean Kunming
mice

HK‐2 ↑ miR‐
106b‐5p

↑ Wnt/b‐
catenin
and
NF‐kB
pathways

Up-regulation of HOXA‐AS2 increased viability and
repressed apoptosis and protect cells to resist LPS‐
induced damage in sepsis-induced AKI.

(98)

SNHG14 ↑ _ HK-2 miR-93,
↑IL-6R,
↑IRAK4

TLR4/NF-
kB
pathway,
↑ NF-kB

Up-regulation of SNHG14 promoted oxidative
stress, inflammation, and apoptosis.
TLR4/NF-kB pathway induced upregulation of
SNHG14.

(99)

(Continued)
Frontiers in Immunolo
gy | www.fro
ntiersin.org
 9
 December 2021 | Volume 12 | Art
icle 798713

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ghafouri-Fard et al. ncRNAs and Sepsis
TABLE 1 | Continued

lncRNA Expression
Pattern

Clinical Samples/
Animal Model

Assessed
Cell Lines

Targets /
Regulators

Signaling
Pathways

Description Reference

and
STAT3
signaling

lncRNA-CCL2 ↑ male C57BL/6 mice _ ↓ SIRT1 _ Expression of lncRNA-CCL2 was inhibited by SIRT1
through maintaining a more repressive chromatin
state in lncRNA-CCL2 locus.
Downregulation of SIRT1 induced inflammatory
response.

(100)

DLX6-AS1 ↑ patients with septic
AKI

HK-2 ↓ miR-223-
3p, ↑
NLRP3

_ Downregulation of DLX6-AS1 suppressed LPS-
induced cytotoxicity and pyroptosis.
Expression of DLX6-AS1 was positively correlated
with levels of creatinine in the serum of patients.

(101)

CASC2 ↓ _ patients with sepsis
and HCs

HK-2 ↑ miR-155 ↑ NF-kB
signaling
pathway

The levels of CASC2 were negatively correlated with
the severity of AKI.
CASC2 expression induced cell viability and inhibited
inflammatory response, apoptosis and oxidative
stress.

(102)

CASC2 ↓ patients with sepsis
and HCs

HPAEpiC ↑ miR-152-
3p, ↓ PDK4

_ Up-regulation of CASC2 increased viability and
restrained apoptosis, inflammatory and oxidative
damages.

(103)

ZFAS1 ↓ 202 patients with
sepsis and 200 HCs

_ _ _ Expression of ZFAS1
was negatively associated with APACHE II, level of
CRP, TNF-a, IL-6 and positively with IL-10.

(104)

ZFAS1 ↓ male SD rats H9C2 ↑ miR-34b-
5p, ↓ SIRT1

_ Up-regulation of ZFAS1 decreased inflammatory
responses and apoptosis.

(105)

ZFAS1 ↑ male C57BL/6 mice _ ↓ miR-590-
3p, SP1

AMPK/
mTOR
signaling

Downregulation of ZFAS1 reduced LPS-induced
pyroptosis and enhanced LPS-suppressed
autophagy in sepsis-induced cardiac dysfunction.

(106)

ZFAS1 ↓ 22 patients with SIMI
and 24 HCs, rats
treated by LPS

H9C2 ↑ miR-138–
5p, ↓
SESN2

_ Up-regulation of ZFAS1 attenuated myocardial injury
and inflammatory response.

(107)

Mirt2 ↓ male SD rats _ ↑ MiR-101 ↓ PI3K/
AKT
Signaling
Pathway

Up-regulation of Mirt2 inhibited inflammatory
responses and improved cardiac function.

(108)

Mirt2 ↓ 40 patients with
sepsis, 40 patients
with sepsis‐ALI, 40
HCs

HBEpCs ↓ miR‐1246 _ Up-regulation of Mirt2 inhibited LPS‐induced
inflammatory response, apoptosis, and promoted
miR‐1246 expression but reduced its gene
methylation.

(109)

TCONS_00016406 ↓ male C57BL/6 mice PTEC ↑ miR-687,
↓ PTEN

_ Up-regulation of lncRNA 6406 inhibited inflammatory
responses, apoptosis and oxidative stress in LPS-
induced AKI.

(110)

NORAD ↑ in NS
patients

88 patients with late-
onset NS and 86
patients with
pneumonia neonates

RAW264.7 ↓ miR-410-
3p

_ Expression of NORAD was closely correlated with
WBC, PCT, IL-6, IL-8, and TNF-a.

(111)

GAS5 ↑ _ THP-1 ↓ miR-23a-
3p, ↑ TLR4

_ Downregulation of GAS5 inhibited inflammation and
apoptosis.

(112)

lnc‐ANRIL ↑ 126 patients with
sepsis and 125 HCs

_ ↓ miR‐125a _ lnc‐ANRIL showed good predictive values for sepsis
risk.
lnc‐ANRIL was positively associated with CRP and
PCT levels, disease severity scale scores, and pro‐
inflammatory cytokine levels, 28‐day deaths in
sepsis patients,

(113)

PVT1 ↑ 109 patients with
sepsis and 100 HCs

_ _ _ PVT1 was found to be an independent risk factor for
sepsis ARDS. And PVT1 expression positively
associated with disease severity and 28-day deaths.

(114)

PVT1 ↑ _ THP-1 _ ↑ p38
MAPK
signaling
pathway

Downregulation of PVT1 reduced levels of IL-1b and
TNF-a mRNA and inhibited the p38 MAPK signaling
pathway,

(115)
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NF‐kB, PI3K/AKT, JAK/STAT and Wnt/b‐catenin pathways
are the most important pathways being regulated by lncRNAs,
circRNAs and miRNAs in the context of sepsis. These
transcripts, particularly miRNAs can be used as diagnostic or
prognostic markers in sepsis. Expression levels of these
regulatory transcripts might be used for diagnosis of organ
specific damages during the course of sepsis.

In general, the pathophysiology of sepsis is considered as an
initial hyperinflammatory phase (“cytokine storm”) followed by
Frontiers in Immunology | www.frontiersin.org 11
a protracted immunosuppressive phase. Since no data is available
about the differential expression of non-coding RNAs during
these two distinct phases, future studies are needed to evaluate
expression patterns of non-coding RNAs in these two phases. It
is possible that some of the non-coding RNAs that suppress the
immune response could be used as biomarkers to indicate the
immunoparalysis in sepsis.

From a therapeutic point of view, several in vitro and in vivo
studies have shown that up-regulation/silencing of circRNAs,
TABLE 1 | Continued
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Animal Model
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Targets /
Regulators

Signaling
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Description Reference

PVT1 ↑ sepsis model mice HK-2 ↓ miR-20a-
5p, ↑
NLRP3

_ Downregulation of PVT1 inhibited pyroptosis in
septic AKI.

(116)

PVT1 ↑ Mice model with
sepsis

_ ↓ miR-29a,
↑ HMGB1

_ Downregulation of PVT1 reduced LPS-induced
myocardial injury and alleviated M1 macrophage
polarization.

(117)

HOTAIR ↑ C57BL/6 mice Monocytes ↓ miR-211 _ Overexpression of HOTAIR suppressed proliferation
and promoted apoptosis.

(118)

HOTAIR ↑ LPS-induced septic
cardiomyopathy mice

H9C2 ↑ PDCD4,
Lin28

_ Downregulation of HOTAIR inhibited inflammatory
responses and apoptosis.

(119)

DILC ↓ 18 patients with
sepsis and 18 HCs

PBMCs,
THP-1

↑ IL-6 _ DILC suppressed the transcription of IL-6,
DILC decreased levels of STAT3, p-STAT3, TLR4,
TNF-a, CCL5, E-selectin and CXCR1.

(120)

RMRP ↑ C57BL/6 mice HK-2 ↓ miR-206,
↑ DDX5

_ Downregulation of RMRP inhibited inflammatory
response and apoptosis in sepsis-induced AKI.

(121)

GAS5 ↑ C57BL/6 mice _ ↓ miR-
449b, ↑
HMGB1

↑ HMGB1/
NF-kB
pathway

Downregulation of GAS5 inhibited pro-inflammatory
reaction and alleviated
myocardial injury.

(122)

TapSAKI ↑ _ HK-2 ↓ miR-205,
↑ IRF3

_ Downregulation of TapSAKI alleviated LPS-induced
damage.

(123)

SNHG16 ↑ male SD rats BEAS-2B ↓ miR-128-
3p, ↑
HMGB3

_ Downregulation of SNHG16 reduced the apoptosis
and inflammation in sepsis-induced ALI.

(124)

DANCR ↓ 20 patients with
sepsis-induced AKI
and 20 HCs

HK-2 ↑ miR-214,
↑ KLF6

_ Up-regulation of DANCR promoted viability and
suppressed cell apoptosis and inflammatory
responses.

(125)

CASC2 ↓ _ HK2,
HEK293

↑ miR-545-
3p to
regulate, ↓
PPARA

_ Up-regulation of CASC2 increased viability and
inhibited apoptosis, migration, epithelial-
mesenchymal transition and oxidative stress.

(126)

SNHG1 ↓ _ H9c2 ↑ miR-
181a-5p, ↓
XIAP

_ Up-regulation of SNHG1 increased viability and
inhibited inflammatory responses and oxidative
stress.

(127)

SNHG14 ↑ _patients with sepsis HK-2 ↓ miR-495-
3p, ↑
HIPK1

_ SNHG14 is upregulated in patients. SNHG14
prevented proliferation and autophagy and boosted
apoptosis and inflammatory responses.

(128)

Linc-KIAA1737–2 ↑ _ HK-2 ↓ MiR-27a-
3p

_ Downregulation of Linc-KIAA1737–2 reduced
apoptosis.

(129)

PlncRNA-1 ↓ 6 patients with septic
AKI and 6 HCs

NRK-52E ↓ BCL2 _ Up-regulation of PlncRNA-1 meliorated proliferation
and prevented apoptosis and autophagy.

(130)

CDKN2B-AS1 ↑ sepsis patients 47
and 55 HCs

BEAS-2B ↓ miR-140-
5p , ↑
TGFBR2

↑
TGFBR2/
smad3
pathway

Downregulation of CDKN2B-AS1 promoted viability
reduced apoptosis and inflammation.

(131)
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TABLE 2 | Lists the function of miRNAs in the course of sepsis.
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Cell Lines

Targets /
Regulators

Signaling
Pathways

Description Reference

miR-
15a-5p

↑ GEO database: GSE94717
(6 patients with sepsis-
induced AKI and 6 HCs)

MPC5 ↓ XIST, ↓
CUL3

_ Downregulation of miR-15a-5p reduced apoptosis in
sepsis-induced AKI.

(65)

miR-
494-3p

↓ _Patients with sepsis and
HCs

RAW264.7 ↑ TLR6 _ Upregulation of microRNA-494-3p reduced
inflammation, TNF-a level, and prevented nuclear
translocation of NF-kB p65.

(132)

miR-
218

↓ 53 Patients with sepsis and
20 HCs, septic mouse model

PBMCs ↑ VOPP1 ↑ JAK/STAT
pathway

Upregulation of microRNA-494-3p reduced
inflammation.

(133)

miR-
218

↓ male S SD rats RAW264.7 ↑ RUNX2 Up-regulation of miR-218 inhibited inflammatory
response.

(141)

miR-
122

↑ 25 patients with sepsis and
25 patients with local wound
infections as a control group

_ _ _ miR-122 showed higher AUC in comparison with
CRP and TLC which had 66.6% sensitivity, 50%
specificity, and 56.0% accuracy as a prognostic
biomarker for sepsis.

(134)

miR-
208a-
5p

↑ septic mouse model _ ↓ SOCS2 ↑NF-kB/
HIF-1a
pathway

Downregulation of miR-208a-5p decreased reduced
degree of mitochondria swelling, and inhibited
apoptosis.

(135)

miR-
328

↑ 110 Patients with sepsis
and 89 HCs, male SD rats

_ _ _ miR-328 expression was positively associated with
Scr, WBC, CRP, PTC, APACHE II score, and SOFA
score. miR-328 was found to be a good diagnostic
value for sepsis. Downregulation of miR-328 reduced
inflammatory response.

(139)

miR-
452

↑ 47 sepsis patients with AKI,
50 patients without AKI, and
10 HCs

BUMPT NF-KB _ Serum and urinary miR-452 could be a potential
biomarker for early detection of septic AKI. It was
upregulated in sepsis patients with AKI compared with
without AKI. miR-452 had high diagnostic value for AKI.

(140)

miR‐21 ↓ 219 Patients with sepsis
and 219 HCs

_ _ _ miR‐21 was found to be a good value in predicting
sepsis risk. miR‐21 expression was negatively correlated
with APACHE II, SOFA score, and 28‐day mortality risk.

(142)

miR‐
126

↑ 208 Patients with sepsis
and 210 HCs

_ _ _ miR‐126 expression was positively correlated with
APACHE II, serum creatinine, CRP, TNF‐a, IL‐6, IL‐8,
mortality rate, but negatively with IL‐10.

(143)

mir-
103

↓ 196 Patients with sepsis
and 196 HCs

_ _ _ mir-103 predicted high ARDS risk. Mir-103 and was
negatively associated with APACHE II score, SOFA
score, serum creatinine, CRP, TNF, IL- 1b, IL-6, IL-8,
28-day deaths, but positively correlated with albumin.

(144)

mir-
107

↓ 196 Patients with sepsis
and 196 HCs

_ _ _ mir-107 predicted high ARDS risk. mir-107 and was
negatively associated with APACHE II score, SOFA
score, serum creatinine, CRP, TNF, IL- 1b, IL-6, IL-8,
28-day deaths, but positively correlated with albumin

miR-
92a

↑ in sepsis-
induced
ARDS

53 sepsis patients (36
patients with sepsis-induced
ARDS)

HPMEC,
A549

_ ↓ Akt/mTOR
signaling
pathway

Downregulation of mir-92a reduced apoptosis and
inflammatory response, and enhanced migration

(145)

miR-98 ↓ male C57BL/6 mice _ ↑ HMGA2 ↑ NF-kB
pathway

Upregulation of miR-98 prevented HMGA2, NF-kB,
TNF-a, IL-6, Bcl-2 and augmented IL-10, Cleaved
caspase-3 and Bax expression, it reduced LVEDP,
CTn-I, BNP, ALT, AST, TBIL, LDH, and PaCO2 but
elevated +dp/dt max, -dp/dt max, pH and PaO2.

(146)

miR‐
125a

↑ 150 Patients with sepsis
and 150 HCs

_ _ _ miR‐125a expression was positively associated with
Scr, APACHE II score, SOFA score.

(147)

miR‐
125b

↑ 150 Patients with sepsis
and 150 HCs

_ _ _ miR‐125b was correlated with Scr, CRP, APACHE II
score, SOFA score, and chronic obstructive
pulmonary disease , and 28-day deaths.

miR-
199a

↑ male C57BL/6 mice _ ↓ SIRT1 _ Downregulation of miR-199a reduced apoptosis and
inflammatory response.

(148)

miR-
495

↓ 105 Patients with sepsis
and 100 HCs, rats

_ _ _ miR-495 was negatively correlated with Scr, WBC, CRP,
PCT, APACHE II score and SOFA score. CLP rats showed
worse LVSP, LVEDP, ±dp/dtmax, and exhibited an
increase in serum CTn-I, CK-MB, TNF-a, IL-6 and IL-1b.

(149)

miR-
106a

↑ 50 patients with sepsis and
30 HCs, clean Kunming
mice

TCMK-1 ↓ THBS2 _ Downregulation of miR-106a reduced apoptosis and
inflammatory response.

(150)
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miR‐
146a

_ male C57BL/6 mice MSCs IL‐1b – IL‐1b stimulation resulted in packaging miR‐146a into
exosomes. The exosomal miR‐146a was transferred to
macrophages, yielded to M2 polarization, and finally led
to high survival in septic mice.

(151)

miR-
574

↓ CLP-treated mice HBE ↑ C3 _ Upregulation of mir-574 increased viability, inhibited
apoptosis, and reduced sepsis-induced ERS.

(152)

miR-
195

_ wistar rats with sepsis _ TGF-b1/
Smads
signaling
pathway,

MicroRNA-195 could promote cardiac remodeling by
up-regulating the nanoantibiotics signaling pathway in
sepsis rats.

(153)

miR-
133a

↑ septic mouse model RAW264.7 ↓ SIRT1 _ Downregulation of miR-133a prevented inflammatory
response, sepsis-induced lung, liver and kidney injuries.

(154)

miR-
191-5p

↓ female Wistar rats _ ↑ OXSR1 ↑ p38
MAPK/NF-
kB signaling
pathway

Upregulation of miR-191-5p prevented inflammatory
response and apoptosis in

(155)

miR-
146a

↑ 180 patients with sepsis and
180 HCs

_ _ _ MiR-146a was of good value in predicting high sepsis
risk and 28-day mortality risk. MiR-146a was
positively associated with biochemical indices,
inflammatory cytokines, overall disease severity.

(156)

miR-
146b

↑ 180 patients with sepsis and
180 HCs

_ _ _ miR-146b was of good value in predicting high
sepsis risk and 28-day mortality risk. MiR-146a was
positively associated with biochemical indices,
inflammatory cytokines, and overall disease severity.
.

miR-
126

↓ 20 patients with sepsis and
30 patients with general
infection

_ _ _ miR-126 was negatively associated with the levels of
caspase-3, APACHE II score, and positively with 28-
day cumulative survival rate. AUC for predicting the
prognosis by miR-126 was 0.823.

(157)

miR-
223

_ C57BL/6 mice RAW264.7 _ _ Upregulation of mir-223 impelled M2 macrophage
through lower activity of glycolysis Pathway. the
Implementation of
miR-223 over-expressed macrophages with IL-4 pre-
conditioning alleviated sepsis severity.

(158)

miR-
146b

↓ septic mouse model HK-2 ↑ IRAK1 ↑ NF-kB
pathway

Treatment with hucMSC-Ex improved survival in mice
with sepsis by reducing levels of IRAK1, increasing of
miR-146b level, and inhibition of NF-kB activity.

(159)

miR-1-
3p

↑ male SD rats HUVECs ↓ SERP1 _ miR-1-3p decreased proliferation, and increased apoptosis,
and permeability and HUVECs membrane injury.

(160)

miR-25 ↓ 70 patients with sepsis and
30 patients with SIRS

_ _ _ Levels of miR-25 was negatively associated with the
severity of sepsis, SOFA score, CRP and PCT level, 28-
day deaths, and levels of oxidative stress indicators.

(161)

miR-
370-3p

↑ in SAE 12 patients with sepsis
without encephalopathy, 17
patients with SAE, 20
patients with severe uremia
and 12 HCs , male C57BL/6
mice

_ _ _ miR-370-3p was associated with TNF-a and
increased brain apoptosis in SAE mice.

(162)

miR-21 ↑ GEO database: GSE26440
(88 children with septic shock
and 26 HCs), C57BL/6 mice

_ ↓ A20, ↑
NLRP3

↑ NF-kB
pathway

Downregulation of miR-21 inhibited inflammasome
activation, ASC pyroptosome, LPS-induced
pyroptosis and septic shock.

(136)

miR-21 ↓ CLP mouse model _ ↑ PDCD4, ↑
PTEN

PDCD4/NF-
kB and
PTEN/AKT
pathways

rIPC protected kidneys from injury by miR-21. miR-
21 was transported from ischemic limbs to the
kidneys by exosomes.

(163)

miR-21 ↓ septic mouse model MTEC ↑ PDCD4 ↑ NF-kB
pathway

Upregulation of miR-21 reduced inflammation and
apoptosis.

(137)

miR-21 _ septic mice _ _ _ Hyperoside decreased miR-21 levels so reduced
inflammatory responses and increased viability.

(164)

miR-21 ↓ _ MSCs ↑ PDCD4 _ bMSCs-derived exosomes reduced symptoms in
septic mice and improved their survival rate through
miR-21 upregulation.

(138)
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miR-21 ↑ septic C57BL/6J mice _ ↓ PGE2,
↓ IL-10

_ Downregulation of miR-21 reduced bacterial growth,
systemic inflammation, organ damage, macrophage
glycolysis, and increased animal survival.

(165)

miR-
21-3p

↑ SD rats TECs ↓ AKT,
↓ CDK2,
↑ FOXO1

– miR-21-3p regulated lipid metabolism and increased
cell cycle arrest and apoptosis.

(166)

miR-34 ↑ male C57BL/6 mice (15
control group and 15 sepsis
model group)

_ ↓ KLF4 _ Plasma miR-34a was positively associated with SCr
and BUN.

(167)

miR-
483-5p

↑ CLP-treated mice PMVECs ↓ PIAS1 _ Downregulation of miR-483-5p reduced inflammation
and apoptosis and improved lung injury in mice with
sepsis-induced ALI.

(168)

miR-
181-5p

↓ CLP- treated mice _ ↑ HMGB1 _ Upregulation of miR-181-5p reduced inflammatory
response, and sepsis-induced renal and hepatic
dysfunction.

(169)

miR-
20a

_ SD rats _ _ _ miR-20a could deteriorated AKI via activating
autophagy in sepsis rats.

(170)

hsa-
miR-
92a-3p

↓ in sepsis-
induced
coagulopathy
group

116 patients with sepsis _ _ _ AUC of hsa-mir-92a-3p was 0.660. Levels of plasma
hsa-mir-92a-3p were related to plasma lipocalin-2
level, activated partial thromboplastin time, and
prothrombin activity.

(171)

miR-
93-5p

↓ septic mouse model HK2 ↑ KDM6B, ↓
H3K27me3

_ Extracellular vesicles containing miR-93-5p reduced
inflammation, apoptosis, multiple organ injury, and
vascular leakage in septic mice.

(172)

miR-
223

↓ 143 patients with sepsis and
44 HCs

_ _ _ Expression of miR-223 was negatively correlated with
SOFA scores and positively with survival rate.
Upregulation of miR-223 decreased apoptosis and
increased proliferation and G1/S transition.

(173)

miR-
34a

↑ male C57BL/6 mice _ ↓ SIRT1, ↓
ATG4B

_ Downregulation of miR-34a reduced inflammatory
response and pyroptosis, apoptosis and enhanced
autophagy.

(174)

miR-
30a

↑ septic rats _ ↓ SOCS-1 ↑ JAK/
STAT
signaling
pathway

Upregulation of miR-30a promoted apoptosis and
inhibited proliferation.

(175)

miR-
150-5p

↓ rat septic shock model H9C2 ↑ Akt2 _ Upregulation of miR-150-5p inhibited apoptosis. (176)

miR-
140

↓ SPF male BALB/c mice _ _ ↑ WNT
signaling
pathway

Upregulation of miR-140 inhibited apoptosis and
inflammation, skeletal muscle glycolysis and atrophy.

(177)

miR-
22-3p

↓ male SD rats HK-2 ↑ HMGB1, ↑
PTEN

_ Upregulation of miR-22-3p inhibited apoptosis and
inflammatory response

(178)

miR-
205-5b

↑ BALB/c mice RAW264.7 HMGB1 _ Down regulation of miR-205-5b increased HMGB1
expression in LPS-induced sepsis.

(179)

miR-
526b

↓ BALB/c mice HK2 ↑ ATG7 _ Upregulation of miR-526b increased viability by
inhibiting autophagy.

(180)

miR-
145a

↓ septic mouse model _ ↑ Fli-1 ↑ NF-kB
signaling

Upregulation of miR-526b reduced levels of
proinflammatory cytokines.

(181)

miR‐
125a

↑ 150 patients with sepsis and
150 HCs

_ _ _ AUC of miR‐125a: 0.749
miR‐125a was positively correlated with APACHE II
score and SOFA score.

(182)

miR‐
125b

↑ 150 patients with sepsis and
150 HCs

_ _ _ AUC of miR‐125b: 0.839
miR‐125b was positively correlated with APACHE II
score, SOFA score CRP, TNF‐a, IL‐6, IL‐17, IL‐23,
and 28‐day mortality risk.

miR-
122

↑ 108 patients with sepsis and
20 patients with infections
without sepsis as controls

_ _ _ AUC of miR-122: 0.760
miR-122 was found as independent prognostic factor
for 30-day mortality.

(183)

miR-
135a

↑ _patients with sepsis and
HCs, BALB/c mice

_ _ ↑ p38
MAPK/NF-
kB pathway

Upregulation of
miR-135a exacerbated inflammation and myocardial
dysfunction.

(184)

miR-
133a

↓ _ TCMK-1 ↑ BNIP3L ↑ NF-kB
pathway

Upregulation of miR-133a reduced inflammation and
apoptosis.

(185)
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miR-
223

_ male C57BL/6 mice _ _ _ In multiple models of experimental sepsis, miR-223
showed the complex role in the pathogenesis of
septic kidney injury.

(186)

miR-
155

↑ 44 patients with severe
sepsis, 102 patients with
sepsis, and 19 HCs

↑ ↑ ↑ AUC of miR-155: 0.782 (for predicting 30-day
mortality in ALI)

(187)

miR-
146a

↑ 44 patients with severe
sepsis, 102 patients with
sepsis, and 19 HCs

↑ ↑ ↑ AUC of miR-146a: 0.733
(for predicting 30-day mortality in ALI),
CC genotype of rs2910164 in miR-146a was
correlated with worse treatment result.

miR-
194

↑ _ H9c2 ↓ Slc7a5 ↑ Wnt/b-
catenin
pathway

Upregulation of
miR-194 increased apoptosis.

(188)

miR-
30a

↑ male C57BL/6 mice RAW 264.7 ↓ ADAR1, ↓
SOCS3

_ Upregulation of ADAR1 (a target of miR-30a) reduced
inflammation and organ damage.

(189)

miR-
27b

↓ male C57BL/6 mice BMMSCs ↑ JMJD3 ↑ NF-kB
signaling
pathway

Upregulation of miR-27b MSC-derived exosomes
reduced pro-inflammatory cytokines.

(190)

miR-
155

↑ BALB/c mice _ ↓ SOCS1 ↑ JAK/
STAT
signaling

Downregulation of miR-155 alleviated LPS-induced
mortality and liver injury

(191)

miR-
155

↓ C57BL/6 mice _ ↑ Arrb2 ↑ JNK
signaling
pathway

Upregulation of miR-155 ameliorated late sepsis
survival and its cardiac dysfunction, and reduced pro-
inflammatory responses.

(192)

miR-
155

↑ _patients with sepsis and
HCs, mouse septic shock
model

_ ↓ CD47 _ Downregulation of microRNA-155 reduced sepsis-
associated cardiovascular dysfunction and mortality.

(193)

miR-
155

↑ 60 patients with sepsis and
20 HCs

_ ↑ Foxp3 _ Expression of miR-155 was correlated with APACHEII
score, it was significantly higher in non-survival group.

(194)

miR-
155

↑ in sepsis
and ALI/
ARDS than
sepsis but no
ALI/ARDS

156 patients with sepsis (41
with ALI and 32 with ARDS)

_ _ _ AUC of miR-155: 0.87,
miR-155 was positively associated with IL-1b, TNF-a
levels, and ALI/ARDS score, but negatively with
PaO2/FiO2.

(195)

miR-
29c-3p

↑ 86 patients with sepsis and
85 HCs, male SD rats

_ _ _ AUC of miR-29c-3p: 0.872
miR-29c-3p expression was positively correlated with
APACHE II score, SOFA score, levels of CRP and
PCT.
miR-29c-3p was found to be an independent factor
in the occurrence of cardiac dysfunction.

(196)

miR-
125b

↓ 40 patients with sepsis and
HCs, female and male
C57BL/6 mice

_ ↓ PTEN, ↑
MyD88

_ PTEN increased miR125 production through
associating with the nuclear localization of Drosha-
Dgcr8.
Downregulation of PTEN resulted in cytokine
production, MyD88 abundance and mortality.

(197)

miR-
203b

↓ 40 patients with sepsis and
HCs, female and male
C57BL/6 mice

_ ↓ PTEN, ↑
MyD88

_ PTEN increased miR203b production through
associating with the nuclear localization of Drosha-
Dgcr8.
Downregulation of PTEN resulted in cytokine
production, MyD88 abundance and mortality.

miR-
146

↓ _ EA. hy926 _ ↑ NF-kB
signaling
pathway

Upregulation of reduced levels inflammatory
cytokines.

(198)

miR-
140-5p

↓ male SPF rats MLE-12 ↑ TLR4, ↑
MyD88

↑ NF-kB
signaling
pathway

Shikonin could alleviated sepsis- induced ALI by
increasing the levels of miRA-140-5p and decreasing
the levels of TLR4.

(199)

miR-
125b

↓ male C57BL/6 mice HUVECs ↑ ICAM-1, ↑
VCAM-1, ↑
TRAF6

↑ NF-kB
signaling
pathway

Upregulation of miR-125b alleviated
sepsis-induced cardiac dysfunction and ameliorated
survival.

(200)

miR-
494

↑ ARDS rat models _ _ ↓ Nrf2
signaling
pathway

Upregulation of miR-494 increased inflammatory
response, oxidative stress and ALI.

(201)
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miR-
146a

↓ male C57BL/6 mice H9C2, J774 ↑ IRAK,
↑ TRAF6

↑ NF-kB
signaling
pathway

Upregulation of miR-146 reduced levels of
inflammatory cytokines and sepsis-induced cardiac
dysfunction

(202)

miR-
223

_ 221 patients with sepsis and
75 HCs, male C57Bl/6 mice

_ _ _ Levels of serum miR-223 did not differ between
critically ill patients and HCs, but ICU patients with
APACHE-II score had moderately decreased
circulating miR-223.

(203)

miR-
300

↓ septic mouse model _ ↑ NAMPT ↓ AMPK/
mTOR
signaling
pathway

Upregulation of miR-300 increased autophagy, cell
cycle entry and reduced apoptosis and inflammatory
response.

(204)

miR-
126

↓ male C57BL/6 mice _ ↓ HSPA12B _ Upregulation of HSPA12B increased levels of miR-
126, upregulation of miR-126 reduced levels of
dhesion molecules and improved sepsis–induced
cardiac dysfunction.

(205)

miR-
10a

↓ 62 patients with sepsis and
20 HCs

_ ↑ MAP3K7 ↑ NF-kB
pathway

miR-10a expression was negatively association with
disease severity scores, levels of c-reactive protein,
procalcitonin, and 28-day death.

(206)

miR-
146a

↓ mice _ ↑ Notch1 ↑ NF-kB
signaling

Upregulation of miR-146a reduced inflammatory
responses of macrophages and protected mice from
organ damage

(207)

miR-
19a

↓ CLP mice RAW 264.7 ↑ Fn14 _ Upregulation of miR-19a reduced LPS-Induced
Tubular Damage, it was found to protected mice
from sepsis-induced AKI.

(208)

miR-
214

_ male Kunming mice _ _ _ Upregulation of miR-214 reduced apoptosis,
inflammatory response, myocardial injury, and
improved cardiac function in SIMI.

(209)

miR-
539-5p

↓ male C57BL/6 mice MPVECs ↑ ROCK1 _ Upregulation of miR-539-5p reduced apoptosis,
inflammatory response, sepsis-induced pulmonary
injury.

(210)

miR-
155

↑ 60 patients with sepsis and
30 HCs

_ _ _ miR-155 was positively correlated with a higher
SOFA score and a greater severity. AUC of miR-155
for 28-day survival was 0.763. miR-155 derived
immunosuppression through CD39(+) Tregs.

(211)

miR-
146a

↑ in sepsis
group
compared to
shame group

male BALB/C mice _ _ _ Up-regulation of miR-146a reduced levels of
inflammatory cytokine TNF-a and mitigated
inflammatory reaction and lung tissue injury in sepsis-
induced ALI.

(212)

miR-
7110-
5p

↑ 52 patients with pneumonia,
44 patients with sepsis and
21 HCs

_ _ _ The sensitivity and specificity of miR-7110-5p were
84.2 and 90.5% respectively. (sepsis vs HCs)

(213)

miR-
223-3p

↑ 52 patients with pneumonia,
44 patients with sepsis and
21 HCs

_ _ _ The sensitivity and specificity of miR-223-3p were
82.9 and 100% respectively. (sepsis vs HCs)

miR-
19a

↑ patients with sepsis B cells from
patients with
sepsis

CD22 _ Expression of CD22 initially increased but
subsequently reduced. Upregulation of miR-19a
resulted in an increased BCR signaling, while
overexpression of CD22 reduced the effect of miR-
19a and promoted its expression.

(214)

miR-
206

↑ 63 patients with sepsis, 30
patients with septic shock
and HCs

_ _ _ miR-206 was positively associated with SOFA sore
and APACHE-II score. It was observed an activated
partial thromboplastin time and notably longer
prothrombin time.

(215)

miR-
146a

↓ male C57BL/6 mice RAW264.7 _ ↑ NF-kB
signaling

Up-regulation of miR-146a reduced apoptosis,
inflammatory response, and weakened organ injury in
splenic macrophages.

(216)

miR-
19b-3p

↓ 103 patients with sepsis and
98 HCs

HUVECs _ _ Up-regulation of miR-19b-3p reduced inflammatory
response. miR-19b-3p was found to be an
independent prognostic factor for 28-day survival.

(217)

miR-
129-5p

↓ CLP mice MLE-12 ↑ HMGB1 _ Up-regulation of miR-129-5p reduced apoptosis,
inflammatory response, , lung wet/dry weight ratio,
and myeloperoxidase activity.

(218)
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miR-
23b

↓ 30 patients with sepsis and
30 HCs

THP-1 ↑ ADAM10 _ Up-regulation of miR-23b reduced apoptosis and
inflammatory response.

(219)

miR-
150

↓ 140 patients multiple trauma
and 10 HCs

MDSCs ↑ ARG1 _ Up-regulation of miR-150 reduced IL-6, TGF-b and
IL-10.

(220)

miR-
375

↓ _ patients with sepsis,
septic mice

MDSCs ↑ miR-21 ↑ JAK2/
STAT3
pathway

Up-regulation of miR-375 reduced the number of
sepsis Gr1+CD11b+ MDSCs in mice.

(221)

miR-31 ↑ male SD rats CACO-2 ↓ HMOX1 ↑ NF-kB/
HIF-1a
pathway

Downregulation of miR-31 reduced intestinal barrier
function, intestinal mucosal permeability, oxidative
damage and inflammation level.

(222)

miR-21
and
miR-
181b

↑ (in early
sepsis)
sustained (in
late sepsis)

male BALB/c mice MDSCs ↑ NFI-A _ Down regulation of miR-21 and miR-181b
decreased, immunosuppression, reprograming
myeloid cells, late-sepsis mortality, and improved
bacterial clearance.

(223)

miR-
150

↓ slightly 223 critically ill patients
(including 138 fulfilled sepsis
criteria) and 76 HCs

_ _ _ serum levels of miR-150 were associated with
hepatic or renal dysfunction. Low levels were
correlated with an unfavorable prognosis of patients.
serum levels of miR-150 were not suitable for
predicting of sepsis.

(224)

miR-
10a

↑ SD rats _ _ ↑ TGF-b1/
Smad
pathway

Up-regulation of miR-10a increased ROS, TNF-a, IL-
6, and MPO, and downregulation reduced sepsis-
induced liver injury.

(225)

miR-
145

↓ septic mice HUVECs ↑ TGFBR2,
↑ SMAD2, ↑
DNMT1

_ Up-regulation of miR-145 reduced LPS-induced
sepsis and improved the overall survival of septic
mice.

(226)

miR-
150

↓ 17 patients with sepsis and
32 HCs

_ _ _ Levels of miR-150 were negatively correlated with the
level of disease severity, TNF-a, IL-10, and IL-18.

(227)

miR‐
103a‐
3p

↑ 30 patients with sepsis and
30 HCs, male C57 BL/6
mice

AML12, LO2 ↓ FBXW7 _ Downregulation of miR‐103a‐3p reduced apoptosis,
and inflammatory response.

(228)

miR-
143

↑ 103 patients with sepsis, 95
patients with SIRS and 16
HCs

_ _ _ miR-143 was positively correlated with SOFA score
and APACHE II score in patients with sepsis. For
distinguishing between sepsis and SIRS, miR-143
showed a sensitivity of 78.6% and specificity of
91.6%.

(229)

miR-
145

↓ 33 patients with sepsis and
22 HCs, septic mice

BEAS-2B ↑ TGFBR2 _ Up-regulation of miR-145 reduced inflammatory
response and improved the overall survival of septic
mice.

(230)

miR-
150

↓ C57Blk/6J mice HPAECs ↑ Ang2 _ Downregulation of miR-150 damaged adherens
junctions reannealing after injury, which caused an
irreversible increase in vascular permeability. Up-
regulation of miR-150 reduced vascular injury and
mortality.

(231)

miR-
34b-3p

↓ CLP mice RMCs ↑ UBL4A ↑ NF-kB
signaling

Up-regulation of MiR-34b-3p reduced inflammatory
response and AKI in sepsis mice

(232)

miR-
21-3p

↑ _patients with sepsis,
C57BL/6 mice

_ ↓ SORBS2 _ Downregulation of miR-21-3p induced mitochondria
ultrastructural damage and autophagy in LPS-treated
mice. Levels of miR-21-3p increased in patients with
cardiac dysfunction than without cardiac dysfunction.

(233)

miR-
199a-
5p

↑ C57BL/6 mice HEK-293T ↓ SP-D ↑ NF-kB
signaling

Down regulation of miR-199a-5p reduced D-lactic
acid, DAO, FD-40, oxidative damage and
inflammation.

(234)

miR-17 ↓ mice BMSCs,
RAW264.7

↑ BDR4, ↑
EZH2, ↑
TRAIL

_ MiR-17 carried by BMSC-EVs reduced inflammation
and apoptosis.

(235)

miR-
125b

↑ 120 patients with sepsis and
120 HCs

_ _ _ AUC of miR-125b: 0.658
MiR-125b was positively associated with APACHE II
score, SOFA score, Scr, CRP, PCT, TNF-a, and IL-6
levels.
miR-125b Was found to be an independent risk
factor for mortality risk.

(236)
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miR-
30e

↓ septic rats _ ↑ FOSL2 ↑ JAK/STAT
signaling

Up-regulation of miR-30e increased proliferation and
reduced apoptosis.

(237)

miR-
20b-5p

↑ SD rats HEK-293T ↓
circDMNT3B

_ Downregulation of miR-20b-5p reduced level of d-
lactic acid, FD-40, MDA, diamine oxidase, IL-10, IL-6,
oxidative damage and inflammatory factors level.

(238)

miR-
146b

↓ CLP mice _ ↑ Notch1 _ Up-regulation of miR-146b reduced apoptosis and
inflammatory response.

(239)

miR-25 ↓ SD rats H9C2 ↑ PTEN, ↑
TLR4

↑ NF-kB
signaling

Up-regulation of miR-25 reduced apoptosis and
enhanced survival rate.

(240)

miR-21
and
miR-
181b

↑ septic mice MDSCs, Gr1
+CD11b
+ cells

↑ C/EBPb, ↑
Stat3

_ Stat3 and C/EBPb increased miR-21 and miR-181b
expression by binding to their promoters during
sepsis.

(241)

miR-
17-5p

↓ septic mice LPS-induced
macrophages

↑ TLR4 _ Sch B increased miR-17-5p expression and reduced
inflammation.

(242)

miR-
200a-
3p

↑ male C57BL/6J mice HBMECs ↑ NLRP3,
↓ Keap1,
↓ Nrf2,
↓ HO-1

_ Up-regulation of miR-200a-3p induced inflammatory
response in sepsis-induced brain injury.

(243)

miR-
26b

↓ 14 patients with sepsis and
7 patients with septic shock
and 21 HCs

MEG-01 ↑ SELP,
↓ Dicer1

_ Low levels of miR-26b was correlated with the
severity and mortality of sepsis.

(244)

miR-
96-5p

↓ _ RAW264.7 ↑ NAMPT ↑ NF-kB
pathway

Up-regulation of miR-96-5p reduced inflammatory
response.

(245)

miR-
27a

↑ septic mice _ _ ↑ NF-kB
pathway

Downregulation of miR-27a reduced inflammatory
response and promoted survival of septic mice.

(246)

miR-
21a-3p

↑ specific pathogen-free SD
rats

NRK52E ↑ Ago2, ↑
Nrp-1

_ miR-21a-3p was found to be internalized by TECs via
Nrp-1 and Ago2.

(247)

miR-
574-5p

↑ 118 patients with sepsis _ _ _ miR-574-5p was associated with the death of sepsis
patients.

(248)

miR-
181b

↓ 26 patients with sepsis, 36
patients with sepsis plus
sepsis/ARDS and 16 HCs,
male C57BL/6 mice

THP-1,
HUVECs

↑ importin-
a3

↑ NF-kB
signaling
pathway

Up-regulation of miR-181b reduced mortality rate,
inflammation response, LPS-induced EC activation,
leukocyte accumulation.

(249)

miR-
182-5p

↑ pneumonia mice models _ _ _ Downregulation of miR-182-5p reduced apoptosis,
inflammation response and promoted viability and
proliferation.

(250)

miR-
195

↑ C57BL/6 mice endothelial
cells

↓ BCL-2, ↓
Sirt1, ↓ Pim-
1

_ Downregulation of miR-182-5p reduced apoptosis,
and improved survival.

(251)

miR-
205

↓ male SD rats _ _ ↑ HMGB1-
PTEN
signaling
pathway

Up-regulation of miR-205 reduced apoptosis and
renal injury.

(252)

miR-
21-3p

↑ in AKI
group

49 patients with sepsis-
induced AKI and 93 sepsis
patients with non-AKI

_ ↑ Scr,
↑ Cys-C,
↑ KIM-1

_ Levels of miR-21-3p was positively associated with
Scr, Cys-C, and KIM-1 in the AKI group.

(253)

miR-
181a-
2-3p

↓ GSE46955 data set, CLP
mouse model

TCMK-1 ↑ GJB2 _ Up-regulation of miR-181a-2-3p reduced apoptosis
and inflammatory response.

(254)

miR-21 ↓ female Wistar rats HK-2 ↑ PTEN, ↓
PI3K, ↓ AKT

_ Up-regulation of miR-21 suppressed apoptosis and
kidney injury.

(255)

miR-
146a

↓ female ICR mice Raw264.7 ↑ JMJD3,
NF-kB p65

_ GSKJ4 reduced inflammatory response by increasing
miR-146a levels.
Transcription of miR-146a was negatively regulated
by JMJD3 through epigenetic mechanism.

(256)

miR-
294

_ _ RAW264.7 TREM-1 _ miR-294 reduced TNF-a and IL-6 secretion. (257)

miR-
128-3p

↑ CLP mouse model TCMK-1 ↓ NRP1 _ Up-regulation of miR-128-3p promoted apoptosis
and inflammatory response and reduced viability.

(258)
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miRNA Pattern of
Expression

Clinical Samples/Animal
Model

Assessed
Cell Lines

Targets /
Regulators

Signaling
Pathways

Description Reference

miR-
146a

↓ _ H9C2 ↓ ErbB4,
↑ TRAF6,
↑ IRAK1

_ Up-regulation of miR-146a reduced apoptosis and
inflammatory response and promoted viability.

(259)

miR-
511

↑ in S mice C57BL/6J (B) mice, SPRET/
Ei (S) mice,

_ Low protein
expression
of TNFR1 in
S mice

_ miR-511 was induced by glucocorticoids. miR-511
inhibited endotoxemia and experimental hepatitis.

(260)

miR-
376b

↓ in sepsis
with AKI
group

20 Patients with sepsis with
AKI, 20 patients with sepsis
without AKI and 10 HCs,
male C57BL/6 mice

BUMPT NF-kB,
NFKBIZ

_ miR-376b inhibited NF-kB inhibitor z (NFKBIZ)
expression and NF-kB inhibited miR-376b expression
so they created a negative feedback loop.

(261)

miR-
155

↑ female BALB/c mice _ _ _ DXM treatment
suppressed the expression of miRNA-155.

(262)

miR-
133a

↑ 223 patients with sepsis and
76 HCs, C57Bl/6 mice

_ _ _ High levels of miR-133a was correlated with disease
severity, inflammatory response, bacterial infection,
and organ failure and predicted an unfavorable
outcome of patients.

(263)

miR-
203

↓ clean grade Kunming mice HEK-293T ↑ VNN1 ↓ AKT
signaling
pathway

Up-regulation of miR-203 reduced apoptosis,
inflammatory response, MDA, ALT, and AST in lung
tissues, PMN and PAM levels in BALF and increased
SOD activity.

(264)

miR-
223

↑ 187 patients with sepsis and
186 HCs

_ _ _ AUC for miR-223: 0.754,
Plasma miR-223 was associated with disease
severity and inflammatory factor levels. miR-223 was
found to predict sepsis risk independently.

(265)

miR-
146a

↓ patients with sepsis and
HCs

Human
primary T
cells

↑ PRKCϵ _ Reduced levels of miR-146a contributes to the
pathogenesis of sepsis.

(266)

miR-
146-a

↓ 55 patients with sepsis and
60 HCs

_ _ _ AUC for miR-146-a: 0.803
Serum levels of miR-146-a was negatively correlated
with C-reactive protein, pro-calcitonin, IL-6 and TNF-
a.

(267)

miR-
34a

↑ CLP-induced suckling rats U937 _ ↑ STAT3
pathway

Up-regulation of miR-34a promoted iNOS secretion
from pulmonary macrophages.

(268)

hsa-
miR-
346

↓ _ RAW264.7 ↑ lncRNA
MALAT1, ↑
SMAD3

_ Up-regulation of hsa-miR-346 promoted proliferation. (269)

miR-
214

↓ male Kunming mice _ ↑ PTEN ↓ AKT/
mTOR
pathway

Up-regulation of miR-214 reduced oxidative stress
and autophagy, so ameliorated CLP-induced AKI.

(270)

miR-
27a

↑ LPS induced sepsis mice
model

H9C2 ↓ rhTNFR:
Fc, ↓ Nrf2

_ rhTNFR:Fc elevated viability and reduced apoptosis
by increasing Nrf2 levels and reducing miR-27a
levels.

(271)

miR-
150

↓ in non-
survival group

48 patients with septic
shock (23 survival patients
and 25 non-survival
patients)

_ _ _ MiR-150 level was positively associated with cardiac
index and negatively with EVLWI and PVPI.

(272)

miR-
148a-
3p

↑ male adult wild-type mice
and myeloid-specific RBP-J-
deficient mice

RAW264.7 _ Notch
signaling
and NF-kB
pathway

Up-regulation of miR-148a-3p increased
proinflammatory cytokines and decreased protective
effect of EVs in LPS induced sepsis.

(273)

miR-
218-5p

↑ male ICR mice GMCs ↓ HO-1 _ miR-218-5p was reduced in honokiol-treated septic
mice, so the survival rate was increased.

(274)

miR-
425-5p

↓ C57BL/6 mice hepatocytes ↑ RIP1 _ Up-regulation of miR-425-5p reduced inflammatory
response and sepsis-related liver damage.

(275)

miR-
122

↑ in CA group 168 patients with sepsis (CA
group and CN group)

_ _ _ Serum levels of miR-122 were associated with APTT
ratios, FIB and antithrombin III levels.

(275)

miR-
101-3p

↑ 27 patients with SIC and 15
HCs, male SD rats

H9C2 ↓ DUSP1 ↑ MAPK
p38 and
NF-kB
pathways.

Downregulation of reduced apoptosis and
inflammatory response.

(276)
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miRNA Pattern of
Expression

Clinical Samples/Animal
Model

Assessed
Cell Lines

Targets /
Regulators

Signaling
Pathways

Description Reference

miR-
124

↓ mouse model of ALI _ ↑ MAPK14 ↑ MAPK
signaling
pathway

Up-regulation of miR-124 reduced apoptosis and
inflammatory response and promoted proliferation.

(277)

miR-
942-5p

↓ _ HK-2 ↑ FOXO3 _ Up-regulation of miR-942-5p reduced apoptosis and
inflammatory response and promoted viability.

(278)

miR-
23a-5p

↑ SD rats NR8383 _ _ _ (279)

miR-
1298-
5p

↑ _ BEAS-2B ↓ SOCS6,
↑ STAT3

_ Up-regulation of miR-1298-5p induced cell
permeability and inflammatory response and reduced
proliferation.

(280)

miR-
290-5p

↓ male C57BL/6J mice MPC5 ↑ CCL-2 _ Propofol increased levels of miR-290-5p and
decreased CCL-2 and inflammatory response.

(281)

miR-
146a

↓ C57BL/6 mice BMDMs _ _ Rg6 increased IL-10 and miR-146a levels so inhibited
inflammatory responses.

(282)

miR-
223

_ C57BL/6 mice MSCs Sema3A,
Stat3

_ WT-exosomes encased high miR-223 levels induced
cardio-protection in sepsis.

(283)

miR-
608

_ _ U937,
HEK293T

ELANE _ miR-608 played an important role in
posttranscriptional regulation of ELANE expression
and upregulation of miR-608 reduced inflammation.

(284)

miR-
124

↓ BALB/c and C57BL/6 mice RAW264.7 ↓ a7nAChR,
↑ STAT3

_ miR-124 was found to be a critical mediator for the
cholinergic anti-inflammatory effect.

(285)

miR-
26b

↑ in AKI
group

155 patients with sepsis (68
AKI and 87 non-AKI ) and
57 patients with non-
infectious SIRS

_ _ _ Urinary miR-26b levels showed an elevated mortality
rate and was correlated with the severity of the
disease.

(286)

miR-
146a

_ Rat model of SAKI _ _ _ DEX pretreatment could increase the expression level
of miR-146a and reduce oxidative stress and
inflammatory responses.

(287)

miR-
29a

↑ in AKI
group

74 patients with AKI and 41
without AKI

_ _ _ AUC for miR-29a: 0.82
miR-29a was found to be an independent risk factor
for mortality in the septic patients.

(288)

miR-
10a-5p

↑ in AKI
group

74 patients with AKI and 41
without AKI

_ _ _ AUC for miR-10a-5p: 0.75
miR-10a-5p was found to be an independent risk
factor for mortality in the septic patients.

miR-
155

↑ septic mice NCM460 _ ↑ NF-kB
signaling

Up-regulation of miR-155 increased
hyperpermeability to FITC-dextran, TNF-a and IL-6
levels, and decreased ZO-1 and Occludin expression.

(289)

miR-
155

↑ male C57BL/6 mice Raw264.7,
THP-1

_ ↑ PI3K/AKT
signalling
pathways

Curcumin inhibited inflammatory responses and miR-
155 expression.

(290)

miR-
497

↑ in
myocardial
injury group

148 patients with sepsis (58
myocardial injury group and
90 non-myocardial injury
group)

_ _ _ Plasma miRNA-497 was correlated with cTnI in
patients with myocardial injury.

(291)

miR-
497-5p

↑ GEO database, male
C57BL/6 mice

BEAS-2B ↓ IL2RB _ Downregulation of miR-497-5p reduced apoptosis
and inflammatory responses.

(292)

miR-
30a

↓ _ monocytes ↑ STAT1, ↑
MD-2

_ miR-30a could inhibit STAT1-MD-2 in monocytes of
sepsis.

(293)

miR-
150

↓ C57BL/6 mice HUVECs ↑ NF-kB1 _ miR-150 increased survival in patients and inhibited
apoptosis and inflammatory responses.

(294)

miR-
146a

_ _ THP-1 RBM4,
Ago2, p38

_ Up-regulation of miR-146a inhibited p38 activation
and increased Ago2-RBM4 protein interaction, so
reduced inflammatory responses.

(295)

miR-
146a

_ C57BL/6 mice HEK293TN,
J774.1

_ _ Up-regulation of miR-146a reduced morphine
mediated hyper-inflammation.

(296)

miR-
27a

↓ septic mice _ ↑ TAB3 ↑ NF-kB
signaling
pathway

Paclitaxel pretreatment increased miR-27a levels, so
decreased inflammatory responses.

(297)

miR-
146a

↓ in septic
patients than
SIRS and
HCs groups

50 patients with sepsis, 30
patients with SIRS and 20
HCs

_ _ _ AUC for miR-146a: 0.858 (298)

(Continued)
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miRNA Pattern of
Expression

Clinical Samples/Animal
Model

Assessed
Cell Lines

Targets /
Regulators

Signaling
Pathways

Description Reference

miR-
223

↓ in septic
patients than
SIRS and
HCs groups

50 patients with sepsis, 30
patients with SIRS and 20
HCs

_ _ _ AUC for miR-223: 0.804

miR-
339-5p

↓ septic mice RAW264.7 ↑ HMGB1, ↑
IKK-b

_ Paeonol could reduce inflammatory responses by
upregulating miR-339-5p expression.

(299)

miR-
99b

↑ male C57BL/6 J mice RAW264.7 ↓ MFG-E8 _ Spherical nucleic acid increased migration by
inhibiting miR-99b.

(300)

miR-
215-5p

↓ _ H9c2 ↑ LRRFIP1,
↑ ILF3

_ miR-215-5p reduced inflammatory responses. (301)

miR-
15a

↑ in sepsis
and SIRS
than HCs

166 patients with sepsis, 32
patients with SIRS, and 24
HCs

_ _ _ miR-15a could distinguish sepsis/SIRS from HCs. (302)

miR-16 ↑ in sepsis
and SIRS
than HCs

166 patients with sepsis, 32
patients with SIRS, and 24
HCs

_ _ _ miR-16 could distinguish sepsis/SIRS from HCs.
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miRNAs and Sepsis. AKI, Acute kidney injury; HCs, healthy controls; AUC, significant higher area under curve; CRP, C-reactive protein; TLC, total leucocytes count; SD,
Sprague-Dawley; SOFA, sequential organ failure assessment; Scr, serum creatinine; WBC, white blood cell; PCT, procalcitonin; APACHE, physiology and chronic health
evaluation; CLP, cecal ligation and puncture; ERS, endoplasmic reticulum stress; AUC, area under the ROC curve; SAE, sepsis-associated encephalopathy; BUN, blood urine
nitrogen; rIPC, remote ischemic preconditioning; SPF, specific pathogen-free; GEO, Gene Expression Omnibus; SIMI, sepsis-induced myocardial injury; Tregs, regulatory T-
cells; Sch B, Schisandrin B; DXM, dexamethasone; MDA, malondialdehyde; ALT, aminotransferase; AST, aspartate aminotransferase; PAM; pulmonary alveolar macrophages;
PMN, polymorphonuclear neutrophils; BALF, bronchoalveolar lavage fluid; SOD, superoxide dismutase; CA, coagulation abnormal; CN, coagulation normal; APTT, serum
activated partial thromboplastin time; FIB, fibrinogen; SIC, sepsis-induced cardiomyopathy; SIRS, systemic inflammatory response syndrome; DEX, dexmedetomidine; SAKI,
sepsis-induced acute kidney injury).
FIGURE 3 | Down-regulated miRNAs in sepsis.
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TABLE 3 | CircRNAs and Sepsis.

circRNA Pattern of
Expression

Clinical
Samples/

Animal Model

Assessed Cell
Lines

Targets /
Regulators

Signaling
Pathways

Description Reference

circC3P1 ↓ male C57BL/6
mice

MPVECs ↑ miR-21 _ Upregulation of circC3P1 reduced pulmonary
injury, inflammatory responses and apoptosis.

(304)

hsa_circRNA_104484 ↑ 25 patients
with sepsis
and 22 HCs

_ _ _ Hsa_circRNA_104484 showed the potential to be
used as diagnostic marker for sepsis.

(305)

hsa_circRNA_104670 ↑ 25 patients
with sepsis
and 22 HCs

_ _ _ Hsa_circRNA_104670 showed the potential to be
used as diagnostic marker for sepsis.

circVMA21 ↓ CLP rats HK-2, WI-38 ↑ miR-9-39, ↓
SMG1

– CircVMA21 reduced apoptosis, inflammatory
responses and oxidative stress.

(306)

circ-PRKCI ↓ 121 patients
with sepsis
and 60 HCs

_ ↑ miR-545 _ Low levels of circ-PRKCI were correlated with
sepsis risk, clinical disease severity and 28-day
mortality risk.

(308)

circDNMT3B ↓ male SD rats Caco2 ↑ miR-20b-5p,
↓ SOD

_ Downregulation of circDNMT3B decreased cell
survival and increased apoptosis, inflammatory
responses and oxidative damage.

(238)

circ_0114428 ↑ _ HK2 ↓ miR-495-3p,
↑ CRBN

_ Downregulation of circ_0114428 decreased
apoptosis, inflammatory responses, oxidative
stress, and ER stress.

(307)

circ_0001105 ↓ septic rats _ ↑ YAP1 _ Up-regulation of circ_0001105 decreased
apoptosis, inflammatory responses and oxidative
damage .

(309)

circ_Ttc3 ↓ CLP rats _ ↑ miR-148a, ↓
Rcan2

_ Up-regulation of circ_Ttc3 decreased
inflammatory responses and oxidative stress in
AKI rats.

(310)

circPRKCI ↓ patients with
sepsis and
HCs

HK2 ↑ miR-545, ↓
ZEB2

NF-kB
pathway

Up-regulation of circPRKCI reduced LPS-induced
cell injury and inflammatory responses.

(311)

circ_0003420 ↑ _patients with
sepsis and
HCs

Kupffer cells ↓ NPAS4 _ Up-regulation of circ_0003420 increased
apoptosis, inflammatory responses and
decreased proliferation.

(312)

circ-Fryl ↑ in ADSC
exosomes

septic mouse
model

ADSCs, LPS-
induced AEC
damage model

miR-490-3p, ↑
SIRT3 in ADSC
exosomes

SIRT3/
AMPK
signaling

Up-regulation of circ-Fryl increased autophagy
and decreased apoptosis and inflammatory
responses.

(313)

circ_0091702 ↓ _ HK2 ↑ miR-182, ↓
PDE7A

_ Up-regulation of circ_0091702 reduced LPS-
induced cell injury.

(314)

circVMA21 ↓ _ THP-1 ↑ miR-199a-5p,
↓ NRP1

_ Up-regulation of circVMA21 reduced apoptosis,
inflammatory responses and oxidative stress.

(315)

circTLK1 ↑ wistar rats HK-2, 293T ↓ miR-106a-5p,
↑ HMGB1

_ Downregulation of circTLK1 reduced apoptosis,
inflammatory responses and oxidative stress.

(316)

circFADS2 ↑ 50 patients
with sepsis
and 50 HCs

HBEpCs ↓ mature miR-
15a-5p

_ Up-regulation of circFADS2 reduced miR-15a-5p
overexpression-induced apoptosis.

(317)

circ_0091702 ↓ _ HK2 ↑ miR-545-3p,
↓ THBS2.

_ Up-regulation of circ_0091702 reduced LPS-
induced HK2 cell injury.

(318)

hsa_circ_0068,888 ↓ _ HK-2 ↑ miR-21-5p _ Up-regulation of hsa_circ_0068,888 reduced
inflammatory response and oxidative stress and
increased viability.

(319)

circPTK2 ↑ C57BL/6 mice BV2 microglia ↓ miR-181c-5p,
↑ HMGB1

_ Downregulation of circPTK2 reduced apoptosis,
inflammatory responses.

(320)

circ-FANCA ↑ 19 patients
with sepsis
and 19 HCs

HK2 ↓ miR-93-5p, ↑
OXSR1

_ Downregulation of circ-FANCA reduced
apoptosis, inflammatory responses and oxidative
stress and increased proliferation.

(321)

circANKRD36 ↑ 60 patients
with sepsis-
induced ARDS

RAW264.7 ↓ miR-330, ↑
ROCK1

_ Downregulation of circANKRD36 reduced viability
and migration and alleviated inflammatory
responses.

(322)

circPRKCI ↓ _ HK2 ↑ miR-106b-5p,
↓ GAB1

_ Up-regulation of circPRKCI reduced apoptosis,
inflammatory responses and oxidative stress and
increased viability.

(323)
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lncRNAs and miRNAs can ameliorate the pathologic events in
the target organs, particularly heart and kidney during sepsis.
Yet, this field is still in its infancy needing verification in
additional animal models and cell lines. Moreover, since sepsis
is an emergency situation, any therapeutic option should be
verified in terms of bioavailability, efficiency and instant
amelioration of pathological events.

Since the pathoetiology of sepsis-related complications is not
completely understood, high throughput sequencing strategies
focusing on different classes of non-coding as well coding RNAs
Frontiers in Immunology | www.frontiersin.org 23
are necessary to find the complicated networks between these
transcripts in the context of sepsis.
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