
OR I G I N A L A R T I C L E

Metagenome association study of the gut microbiome
revealed biomarkers linked to chemotherapy outcomes
in locally advanced and advanced lung cancer
Zhe Zhao, Kailun Fei, Hua Bai, Zhijie Wang, Jianchun Duan & Jie Wang

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China

Keywords
Antineoplastic agents; gastrointestinal
microbiome; lung neoplasms; metagenomics.

Correspondence
Jie Wang, Department of Medical Oncology,
National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and
Peking Union Medical College, 17 Pan-jia-yuan
S Ln, Chaoyang District, Beijing 100021,
China.
Tel: +86 10 8778 8027
Fax: +86 10 8778 8027
Email: zlhuxi@163.com

Received: 12 August 2020;
Accepted: 3 October 2020.

doi: 10.1111/1759-7714.13711

Thoracic Cancer 12 (2021) 66–78

Abstract
Background: The gut microbiome is important in the development and immunother-
apy efficacy of lung cancer. However, the relationship between the intestinal flora and
chemotherapy outcomes remains unclear and was investigated in this study.
Methods: We analyzed baseline stool samples from patients with locally advanced and
advanced lung cancer before chemotherapy treatment, through metagenomics of the gut
microbiota. The composition, diversity, function, and metabolic pathway analysis were
compared among patients with different clinical outcomes.
Results: From 64 patients, 33 responded to treatment (responders) and 31 did
not (nonresponders). Streptococcus mutans and Enterococcus casseliflavus were
enriched in responders (P < 0.05), while 11 bacteria including Leuconostoc lactis
and Eubacterium siraeum were enriched in nonresponders (P < 0.05) by variance
analysis. Responders were associated with significantly higher Acidobacteria and
Granulicella, while Streptococcus oligofermentans, Megasphaera micronuciformis,
and Eubacterium siraeum were more abundant in nonresponders by Lefse analy-
sis. Streptococcus mutans and Enterococcus casseliflavus were further identified as
bacterial markers relevant to responders using unsupervised clustering, and
Leuconostoc lactis and Eubacterium siraeum were related to nonresponders. The
L-glutamate degradation VIII pathway was enriched in responders (P = 0.014),
and the C4 photosynthetic carbon assimilation cycle, reductive TCA cycle I, and
hexitol fermentation to lactate, formate, ethanol, and acetate were enriched in
nonresponders (P < 0.05). Additionally, significant associations of bacterial spe-
cies with clinical phenotypes were observed by Spearman correlation analysis.
Conclusions: The specific gut microbiome of patients with lung cancer might be
connected to the clinical outcomes of chemotherapy.

Key points

Significant findings of the study
• Lung cancer patients with different gut microbiome compositions and micro-

biome metabolic pathways have different responses to chemotherapy. Micro-
biome species are also associated with different lung cancer clinical
phenotypes.

What this study adds
• We have identified specific gut microbiome species that can be used as rele-

vant biomarkers for chemotherapy outcomes. This can potentially be used to
guide clinical treatment decisions.
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Introduction

Lung cancer is one of the most commonly diagnosed can-
cers worldwide.1 More than half of patients are diagnosed
at locally advanced and advanced stages, with a five-year
survival rate of less than 15%.2 Developing ways to effec-
tively treat lung cancer is the top priority of cancer clinical
research work. Revolutionary progress of immune check-
point inhibitors has ushered in a new era of lung cancer
treatment.3, 4 However, immunotherapy only has been
reported to elicit durable responses in 20%–30% of
patients,5 and platinum-based chemotherapy is still the
cornerstone treatment.6 Despite continuous progress, the
clinical outcomes of chemotherapy are still uneven and
lack predictors. Early identification of patients who are
sensitive or resistant to chemotherapy is very important to
guide treatment and improve survival. It is therefore clini-
cally significant to develop convenient and noninvasive
biomarkers for the prediction of chemotherapy outcomes.
The human gut microbiome contains nearly 100 trillion

interdependent microorganisms, which include bacteria,
viruses, fungi, and protozoa, which participate in the matu-
ration and maintenance of the immunological system,
metabolism, and other processes to ensure homeostasis,7

while dysbiosis of the gut microbiome is related to the
occurrence and development of multiple diseases.8 Previ-
ous studies have focused on the correlation between the
gut microbiota and chronic intestinal diseases or the differ-
entiation of the immune system.9, 10 Gut microbiome can
also regulate the development and treatment outcomes of
cancers,11–14 and certain metabolites, such as short chain
fatty acids and bile acids, are proposed to be critical
mediators.15

The gut microbiota can modulate responses to immuno-
therapy in lung cancer and might serve as a biomarker for
immunotherapy outcome prediction.16 In a study enrolling
42 advanced lung cancer patients undergoing programmed
death 1 blockade therapy, patients with higher baseline
diversity of the gut microbiome and enrichment of
Alistipes putredinis, Bifidobacterium longum, and Prevotella
copri had better responses, whereas Ruminococcus was
overrepresented in nonresponding patients.17 Another
cohort study showed that the abundance of Akkermansia
muciniphila, via the recruitment of CCR9+, CXCR3+, and
CD4+ T lymphocytes, was positively correlated with
immune efficacy in lung cancer.18

The efficacy and toxicity of chemotherapy drugs can be
regulated by the gut microbiome in multiple ways, includ-
ing microbiota-mediated biochemical transformation.19 For
example, gemcitabine might be degraded by bacterial cyti-
dine deaminase, resulting in poor treatment outcomes,20

and irinotecan could be converted to toxic metabolites by
bacterial beta-glucuronidase.21 A lung cancer mouse model

showed that normal intestinal flora, such as Lactobacillus,
may enhance the antitumor effect of cisplatin by increasing
serum levels of interferon gamma (IFN-γ).22 However, the
relationship between the metabolism of most chemothera-
peutic drugs and intestinal microorganisms and the exact
role of the gut microbiome in systemic chemotherapy
schemes for patients with locally advanced and advanced
lung cancer are not clear. Moreover, the correlations
between gut bacteria and certain chemotherapy prognostic
indices have not been observed.
Therefore, we conducted a metagenome sequencing

analysis of microbiota in stool samples to analyze the cor-
relation between clinical outcomes and the gut microbiome
and explore whether specific flora can predict chemother-
apy outcomes in patients with lung cancer.

Methods

Research patients and subjects

We conducted a single-site, correlative study on the rela-
tionship between the gut microbiome and first-line system-
atic chemotherapy outcomes in locally advanced and
advanced lung cancer patients. This study was approved by
the Research Ethics Board of the Cancer Hospital of the
Chinese Academy of Medical Sciences (Beijing, China)
(Ethics Approval Number: 20/226-2422), was conducted in
accordance with the principles of the Helsinki Declaration,
and informed consent was obtained from all subjects.
Patients treated with first-line chemotherapy were

enrolled in the study between 1 September 2018 and
30 September 2019. The following exclusion criteria were
strictly followed: (i) the clinical diagnosis of mental disor-
ders; (ii) a history of gastrointestinal surgery; (iii) a previ-
ous diagnosis of a gastrointestinal disease, any
autoimmune or metabolic disease; (iv) combined with
treatments for other cancers; (v) the occurrence of acute or
chronic infections in the past six months; and (vi) use of
antibiotics, probiotics, or steroids within the past six
months. All patients had a first time definite histological
pathological diagnosis of lung cancer according to the
diagnostic criteria proposed by the eighth edition of the
American Joint Committee on Cancer in 2018,23 and had
been prescribed systemic first-line chemotherapy. No
patients received radiotherapy, targeted therapy, surgery,
or immunotherapy for lung cancer before sample collec-
tion. Patients had to have measurable lesions according to
the response evaluation criteria in solid tumors version 1.1
(RECIST v1.1).24 Tumor size was assessed by computerized
tomography and/or magnetic resonance imaging within
four weeks before the start of treatment. The treatment
strategies for patients enrolled included: (i) pemetrexed
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combined with cisplatin or carboplatin � bevacizumab for
patients with lung adenocarcinoma; (ii) paclitaxel or
gemcitabine in combination with cisplatin or carboplatin
for lung squamous cell carcinoma; (iii) etoposide in combi-
nation with cisplatin or carboplatin for small cell lung can-
cer; (iv) paclitaxel combined with cisplatin or carboplatin
for lung adenosquamous carcinoma. Repeat examinations
and scans were taken after every two cycles of chemother-
apy. Clinical effects were evaluated using the RECIST v1.1
criteria,24 and patients were divided into responders
(R) and nonresponders (NR) according to treatment effi-
cacy. Progression-free survival (PFS) was defined as the
interval (in months) from the date of chemotherapy to the
date of progression. Moreover, chemotherapy-related
myelosuppression and gastrointestinal reactions were
recorded for each patient according to the National Cancer
Institute’s common terminology criteria for adverse events
version 3.0.25

Sample collection and storage

Stool samples were collected after diagnosis and before any
treatment. All participants had a bland diet and did not
smoke or consume alcohol the day prior to sample collec-
tion. Fecal samples were taken at a fresh feces center using
a sterile cotton swab, placed in a sterile plastic vial mixed
with phosphate-buffered saline, immediately transferred to
−80�C, and stored until further processing.

DNA extraction and sequencing

Fecal bacterial DNA was extracted using the QIAamp
PowerFecal Pro DNA Kit (QiaGen, Venlo, Netherlands).
Sodium dodecyl sulfate–Tris solution, glass beads (diame-
ter 0.1 mm) (BioSpec), and EDTA-Tris-saturated phenol
were added to the suspension, and the mixture was
vortexed vigorously by a FastPrep-24 (MP Biomedicals) for
30 seconds, with a collection of the supernatant after cen-
trifugation at 20 000 g for five minutes. A phenol-
chloroform extraction was performed followed by iso-
propanol precipitation, and the DNA was stored at −20�C.
The concentration and purity of the DNA was tested on
2% agarose gels. The amplified DNA was subjected to
library preparation (KAPA HyperPlus PCR-free) and
sequenced on the Illumina MiSeq platform as per the man-
ufacturer’s instructions (Illumina technologies, USA).

Data quality control

Raw data passed quality control by MOCAT2 and low-
quality reads were discarded.26 Cutadapt software (version
v1.14, -m30) was used to remove the sequencing adapter.
Clean reads were obtained by filtering out low quality reads

<20 or short reads <30 base pairs (bp) with the SolexaQA
package.27 SOAPaligner (version v2.21, -M 4 -l 30 -v 10)
was applied to get high-quality clean reads for analysis,
which were aligned to the human genome (H. sapiens,
UCSC hg19) without contaminated host reads.28

De novo assembly

The clean data were assembled by the SOAPdenovo soft-
ware (version v2.04, an iterative De-Bruijn Graph De Novo
Assembler), with parameters as follows: -D 1, -M 3, -L500,
for constituting scaftigs of at least 500 bp.

Nonredundant metagenomic gene catalog
construction

Genetic structure predictions were carried out with
MetaGeneMark.29 A nonredundant gene catalog of predic-
tion genes was constructed with CD-HIT.30 High quality
reads were mapped onto the gene catalog using the
Burrows-Wheeler Alignment tool for calculation of gene
abundance.

Statistical analysis

MetaPhlAn2 was used to determine the microbial compo-
nents, including the relative abundance of each level, that
is kingdom, phylum, class, order, family, genus, and spe-
cies.31 Statistical analyses, such as the composition, diver-
sity, difference, function, and metabolic pathway analyses,
were performed using R (version 3.4.3) statistical program-
ming language. Spearman correlation analyses between
microbiome and clinical phenotypes were performed with
R. Variation analysis between different chemotherapy effi-
cacy groups was identified using Wilcoxon rank-sum per-
mutation test and P-values with adjustments according to
Benjamini-Hochberg. Nonlinear unsupervised clustering
analysis was used for further verification. Heatmap show-
ing the unsupervised clustering of the microbiota relative
abundance data was performed by ComplexHeatmap in R,
in which the cluster_rows and cluster_columns were clus-
tered by Euclidean.32 After classifying into clusters, we
determined the microbiome biomarkers at the species level
that showed chemotherapy combined with clinical out-
comes. Subsequently, we validated the efficacy of the bio-
markers in non-small cell lung cancer (NSCLC) and small
cell lung cancer (SCLC) subgroups using the chi-squared
test. Finally, we performed gene set enrichment analysis
(GSEA) using R, and the genes annotated by the
HUMAnN2 gene database were ranked. The gene sets were
defined according to the HUMAnN2 pathway for func-
tional analysis of the metabolic pathways. The metabolite
potential was estimated using the relative abundance of its
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corresponding species, by simply adding or subtracting if
the species produced or consumed the metabolite. Com-
parisons between different efficacy groups were con-
ducted by R.

Results

Patient characteristics

A total of 64 patients with locally advanced and advanced
lung cancer undergoing definitive chemotherapy were
enrolled in the study, provided pretreatment fecal samples,
and had follow-up examinations and scans. Clinical char-
acteristics, including age, gender, smoking and drinking
history, pathological tumor type, clinical stage, and chemo-
therapy regimen, efficacy, and adverse events, were
recorded (Table 1). A total of 33 patients showed RECIST
response to chemotherapy (R) and 31 did not (NR). The
median progression-free survival was seven months (range,
1.5–14.5).

No apparent discrepancy in fecal
bacterium diversity

We constructed a nonredundant gene set, and the number
of genes in R and NR groups were 1 930 858 and
1 984 255, respectively, of which 1 683 584 were part of
the universal gene set (Fig 1a,b). Species richness indicated
that the reads obtained from both groups represented most
of the microbiome present in the samples (Fig 1c). Alpha
diversity was determined by Shannon index to analyze the
complexity of species diversity in each sample, and no dif-
ferences were found (Fig 2a). Additionally, there was no
significant difference in beta diversity, as constructed by
the principal co-ordinates analysis (PCoA) based on the
Bray-curtis distance of the top several flora species
(Fig 2b), indicating that the primary differences may lie in
the less abundant microbiota. The TOP20 microbiome spe-
cies correlated with the difference between the groups are
shown in Table 2 (more detail in Supplementary Material
S1), which were obtained using the similarities percentage
method (SIMPER).

Correlation between gut microbiome and
clinical phenotypes

Spearman correlation analyses between microbiome and
clinical phenotypes showed that different kinds of clinical
manifestations were associated with specific flora. Spear-
man rank correlation coefficients are represented by a
heatmap (Fig 3). Age was inversely related to Prevotella
disiens (P < 0.01) and Enterococcus gallinarum (P < 0.05);
BMI was inversely related to Clostridium hylemonae

(P < 0.01) and had positive correlation with Streptococcus
thermophilus and Coprococcus comes (P < 0.05). Patients
who reported long-term smoking, were associated with
higher abundance of Campylobacter concisus (P < 0.05)
and lower abundance of Streptococcus thermophilus
(P < 0.01) and Dorea longicatena (P < 0.05). Five species,
such as Dorea longicatena and Streptococcus parasanguinis
(P < 0.001), were reduced in patients with a long history of
drinking. Collinsella intestinalis was inversely related to
lung adenocarcinoma (P < 0.05), while it presented at a
higher abundance in patients with small cell lung cancer
(P < 0.05). Mitsuokella multacida (P < 0.05) and
Alloscardovia omnicolens (P < 0.01) were enriched in
patients with squamous cell lung carcinoma. Baseline met-
astatic sites had obvious correlation with different flora. A
total of 11 species, including Rothia dentocariosa
(P < 0.001) and Solobacterium moorei (P < 0.01), were
more abundant in lung cancer patients with pleural metas-
tasis at baseline. Porphyromonas uenonis (P < 0.01) and
three other flora were enriched in patients with pulmonary
metastasis, while patients with hepatic metastases had
higher abundance of Pseudomonas mandelii (P < 0.001),
Campylobacter hominis (P < 0.001), and six other species.
Moreover, both clinical efficacy and adverse events after
chemotherapy were associated with certain bacteria. The
enrichment of Bacteroides nordii and Ruminococcus
sp_5_1_39BFAA were associated with severe adverse events
after chemotherapy (P < 0.01). However, Gardnerella
vaginalis was inversely related to adverse events (P < 0.01).
For treatment, Eubacterium siraeum (P < 0.01), Leuconostoc lactis
(P < 0.01), Rothia dentocariosa (P < 0.05), and two other flora
had negative correlations with efficacy. In addition, Rothia
dentocariosa showed significant correlations with poorer efficacy
and shorter PFS (P < 0.05).

Differences in bacterial communities
among between different efficacy groups

The differences in the relative abundance of flora are
shown in Table 3 (more detail in Supplementary Material
S2). The relative abundances of 13 species were signifi-
cantly different. Streptococcus mutans (P = 0.026) and
Enterococcus casseliflavus (P = 0.049) were enriched in the
R group, while 11 bacteria, including Leuconostoc lactis
(P = 0.002) and Eubacterium siraeum (P = 0.006), were
enriched in the NR group. Significantly different predomi-
nant taxa (TOP10) are shown in a box comparison plot
(Fig 4a). The metagenomic biomarker discovery approach
was used to identify the phylotypes responsible for the
greatest differences in gut bacteria at the operational taxo-
nomic unit level by Lefse analysis, showing that the
responders to chemotherapy were associated with signifi-
cantly higher levels of Acidobacteria and Granulicella.
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Streptococcus oligofermentans, Megasphaera micro-
nuciformis, and Eubacterium siraeum were more abundant
in nonresponders (Fig 4b,c).

Identification of significant taxa clusters
at the species level as bacterial markers
relevant to chemotherapy outcomes using
unsupervised clustering

The discrepancies at the species level were comprehen-
sively assessed by the deconvolution of the metagenome

data. Unsupervised clustering classified the species into five
clusters (Supplementary Material S3 and S4), and a
heatmap displays species differences between individuals
(Fig 5). Comparing the clustering data with the treatment
efficacy for each patient allowed for the identification of
significant taxa clusters at the species level as bacterial
markers relevant to chemotherapy outcomes. Streptococcus
mutans and Enterococcus casseliflavus were significantly
enriched in the R group, consistent with the result of vari-
ance analysis, and can be used as biological biomarkers for
chemotherapy responses. On the other hand, Leuconostoc

Table 1 Clinical characteristics of lung cancer patients who underwent first-line chemotherapy

Characteristics No. of patients (N = 64) %

Median age at diagnosis (range), year 60 (33–78)
Median BMI (range), kg/m2 24.5 (18.7–33.2)
Gender 64
Male 48 75%
Female 16 25%

Smoking history 40 62.5%
Drinking history 27 42.19%
Pathology 64
Adenocarcinoma 34 53.125%
Squamous carcinoma 10 15.625%
Adenosquamous carcinoma 2 3.125%
Small cell carcinoma 18 28.125%

Clinical stage 64
III 19 29.69%
IV 45 70.31%

Metastasis location 45
Bone 14 31.11%
Brain 8 17.78%
Pulmonary 19 42.22%
Pleura 16 35.56%
Liver 4 8.89%

Chemotherapy (first-line) 64
Pemetrexed + platinum � bevacizumab 34 53.125%
Paclitaxel/gemcitabine + platinum 12 18.75%
Etoposide + platinum 18 28.125%

Effect 64
R 33 51.56%
NR 31 48.44%

Median PFS (range), m 7 (1.5–14.5)
Myelosuppression 64
0 4 6.25%
I 21 32.81%
II 18 28.125%
III 14 21.875%
IV 7 10.94%

Gastrointestinal reaction 64
0 6 9.375%
I 40 62.5%
II 14 21.875%
III 4 6.25%
IV 0 0

NR, nonresponders to chemotherapy; R, responders to chemotherapy.
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lactis and Eubacterium siraeum were markers for the NR
group, whose P-values also consistently showed statistical
significance.

Validation of the efficacy of the selected
biological biomarkers in NSCLC and SCLC
subgroups

In the 46 cases of NSCLC, comparing the objective
response rate (ORR) of 23 patients with higher abundance
of Leuconostoc lactis and Eubacterium siraeum with the
other 23 patients with lower abundance, we found that the
ORR of patients with lower abundance of Leuconostoc

lactis was 69.57% (16/23), while the ORR of patients in the
higher abundance group was 17.39% (4/19) (χ 2 = 12.738;
P < 0.001); and the ORR of patients with lower and higher
abundance of Eubacterium siraeum was 65.22% (15/23)
and 21.74% (5/23), respectively (χ 2 = 8.846; P = 0.003). No
statistical test analysis was performed because only two
NSCLC patients had an enrichment in Enterococcus cas-
seliflavus. However, these two patients were both
responders, which also supports that the bacteria may be
related to chemotherapy responses. Similarly, all three
NSCLC patients with an enrichment in Streptococcus
mutans were responders, which revealed the same trend in
the whole population.

Figure 1 The number of sequenced genes and species accumulation curve in responders and nonresponders. The Wayne diagram shows the nonredundant
metagenomic gene catalogues constructed by high quality reads in the responder and nonresponder groups, presented in (a) a pie chart and (b) a box com-

parison chart , NR; , R. (c) Species accumulation curve, with a tendency to gradually flatten out, was projected using vegan in R programming language

, R; , NR.

Figure 2 Alpha and beta diversity between responders and nonresponders. Boxplots showing the alpha diversity were evaluated by (a) Shannon
index using vegan in R programming language , NR; , R. (b) Principal coordinates analysis (PCoA) revealing the beta diversity for responders and
nonresponders were exhibited with Bray–Curtis distance , NR; , R. The first two principal coordinates (PCs) were labeled with the percentage of
variance explained (12.7% and 9%).
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In the subgroup of the 18 SCLC patients, no patients
had an enrichment in Leuconostoc lactis, suggesting that
this bacterium may not have a significant role in the che-
motherapy of SCLC. The ORR of SCLC patients with lower
abundance of Eubacterium siraeum was 88.89% (8/9),
while the ORR of patients in the higher abundance group
was 55.56% (5/9). In addition, 2 SCLC patients with an
enrichment in Enterococcus casseliflavus and the other
2 SCLC patients with an enrichment in Streptococcus
mutans were all responders.

Differences in metabolic pathway analysis
for functional analysis

Results from the metabolic pathway enrichment analysis
are shown in Supplementary Material S5. Three metabolic
pathways were enriched in the NR group, including “C4
photosynthetic carbon assimilation cycle” (P < 0.001),
“Reductive TCA cycle I" (P = 0.007), and “Hexitol fermen-
tation to lactate, formate, ethanol, and acetate” (P = 0.025).
The metabolic pathway “L-glutamate degradation VIII
(to propanoate)” was abundant in the R group (P = 0.014).
We calculated the metabolite potential based on the rela-
tive abundance of the metabolic microflora producing or
digesting metabolites and conducted a variation analysis.
The heatmap of significantly different metabolites is shown
in Fig 6, and the aliphatic acid or carbohydrate pathways
may be used to distinguish between the two groups.

Discussion

The gut microbiome may be a modifiable factor that affects
cancer treatment efficacy and toxicity.33 We characterized
the composition and differences in the gut bacteria associ-
ated with different chemotherapeutic outcomes from
64 lung cancer patients. This is the first detailed report of
human gut microbiome metagenomic profiling in lung
cancer patients treated with first-line chemotherapy. We
demonstrated the correlation of gut microbiota with clini-
cal phenotypes and identified specific candidates that
might contribute to predicting chemotherapy outcomes.
These findings provided a broader understanding of the
effect of the gut microbiome on chemotherapy efficacy in
lung cancer patients, paving the way for further
investigation.
The abundance of Prevotella disiens and Enterococcus

gallinarum declined with age. The translocation of gut
microflora, such as Enterococcus gallinarum, to systemic
tissues triggers intense autoimmune responses.34 However,
the correlation between the abundance of these species and
age was first proposed here and deserves further investiga-
tion. Smoking is a recognized risk factor for lung cancer,
whose pathogenic mechanism has previously been exten-
sively studied.35 The abundance of Streptococcus
thermophilus was obviously reduced in patients with a his-
tory of long-term smoking. Streptococcus thermophilus pos-
sess in vitro probiotic properties along with anticancer

Table 2 The TOP20 microbiome correlated with the difference between responders and nonresponders

Species Average Sd Ratio NR (av) R (av) Cumsum

Prevotella copri 0.058 0.088 0.663 9.735 3.708 0.072
Eubacterium rectale 0.049 0.059 0.821 6.040 7.006 0.132
Bacteroides stercoris 0.024 0.037 0.644 2.440 3.553 0.161
Biftdobacterium longum 0.022 0.031 0.695 3.922 1.521 0.188
Faecalibacterium prausnitzii 0.021 0.019 1.132 4.148 4.252 0.215
Bacteroides uniformis 0.021 0.040 0.522 1.725 3.823 0.241
Bacteroides coprocola 0.021 0.035 0.604 2.190 2.695 0.266
Alistipes putredinis 0.020 0.018 1.129 2.841 3.329 0.291
Ruminococcus bromii 0.019 0.026 0.742 2.883 2.043 0.315
Escherichia coli 0.016 0.020 0.778 2.358 1.763 0.335
Bacteroides plebeius 0.015 0.025 0.599 1.429 2.122 0.354
Ruminococcus gnavus 0.015 0.026 0.570 2.215 1.340 0.372
N/A 0.014 0.015 0.943 2.581 1.707 0.388
Pseudomonas aeruginosa 0.014 0.054 0.254 0.006 2.725 0.405
Bacteroides thetaiotaomicron 0.013 0.027 0.503 1.762 1.632 0.422
Bacteroides vulgatus 0.013 0.017 0.772 1.773 2.208 0.438
Biftdobacterium adolescentis 0.013 0.031 0.407 1.731 0.986 0.454
Ruminococcus torques 0.012 0.016 0.789 2.232 1.412 0.469
Roseburia intestinalis 0.012 0.024 0.517 1.558 1.222 0.484
Bacteroides fragilis 0.012 0.020 0.617 2.002 0.960 0.499

Average, species contribution to average between-group dissimilarity; Cumsum, ordered cumulative contribution, based on item average and sum
up to a total of 1; N/A, not applicable; NR (av), average abundances in nonresponders; Ratio, average to standard deviation ratio; R (av), average
abundances in responders; Sd, standard deviation.
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activity.36 Therefore, it is worth investigating whether
smoking causes an imbalance of the intestinal flora, thereby
affecting the health of whole body. Different pathological types
of cancer appear to have their own unique gut microbial char-
acteristics.37 Here, lung cancer patients with different types of
pathology also showed distinct microbial signatures. For exam-
ple, Collinsella intestinalis was reduced in lung adenocarci-
noma, while enriched in small cell lung cancer, and
Mitsuokella multacida and Alloscardovia omnicolens were
enriched in squamous cell lung carcinoma. The flora differ-
ences between pathological types are worthy of further explora-
tion, in order to provide another possible diagnostic approach
for patients who do not have adequate conditions for puncture
biopsy. Several microbes such as Blautia obeum and
Akkermansia muciniphila are increased only in metastatic lung
cancer patients.37 Our study further reveals the differences in
the flora associated with different metastatic sites (Fig 3), which
may lay the foundation for the individual management of
patients.

The treatment outcomes, including for chemotherapy or
a combination of chemotherapy with immunotherapy, in
cancer patients are positively correlated with some specific
types of gut microbiota, such as Bacteroides ovatus and
Bacteroides xylanisolvens.38 However, the correlation
between chemotherapy outcomes in lung cancer patients
and specific flora is still unclear. Here, we proposed micro-
bial biomarkers that correlated with chemotherapy out-
comes in patients with locally advanced and advanced lung
cancer for the first time. We showed that Streptococcus
mutans and Enterococcus casseliflavus were linked to better
chemotherapy outcomes. Streptococcus mutans is an organ-
ism from carious lesions, whose natural habitat is the oral
cavity, with possible translocation to other tissues.39 The
production of glycan, a hydrolytic proteoglycan, by this
microbe gives it the ability to adhere to epithelial cells,
which can affect the cell-cell adhesions of the host, by
influencing the level of functional E-cadherin at the cell-
cell border, and enhance the process of tumor cell

Figure 3 Heatmap of associations between bacterial species and clinical phenotypes. Heatmap shows the correlation between the abundance of
bacterial species and different clinical parameters, in which the columns represent various clinical phenotypes and the rows represent species. Spear-
man rank correlation coefficients are represented by the heatmap, with red, blue, and white indicating perfect positive, negative, and no correlation,
respectively. Color of boxes indicates correlation coefficient (r) values, with darker colors indicating greater relevance. Spearman’s correlations were
employed in agreement with data distribution, verified by Shapiro-Wilk test. Asterisks (*) in the heat map cells indicate the P-value for that correla-
tion. Significant correlations with * (P < 0.05), ** (P < 0.01), *** (P < 0.001).
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Table 3 Difference in relative abundance of microbiome species between responders and nonresponders (TOP 20)

Species NR (av) R (av) W P-value P.adj

Leuconostoc lactis 0.012 0 643.500 0.002 0.715
Eubacterium siraeum 0.454 0.115 693.500 0.006 0.715
Butyrivibriocrossotus 0.603 0 610.500 0.009 0.715
Candidate division_TM7_single_cell_isolate_TM7b 0.002 0 594 0.018 0.715
Megasphaera micronuciformis 0.064 0.004 632 0.022 0.715
Solobacterium moorei 0.006 0.001 648 0.026 0.715
Streptococcus mutans 0 0.006 434 0.026 0.715
Rothia dentocariosa 0.004 0.0003 621 0.032 0.715
Erysipelotrichaceae bacterium 0.013 0.001 633 0.033 0.715
Granulicatella elegans 0.003 0.0001 598 0.033 0.715
Turicibacter sanguinis 0.005 0 577.500 0.036 0.715
Streptococcus oligofermentans 0.001 0 577.500 0.036 0.715
Enterococcus casseliflavus 0 0.003 449.500 0.049 0.715
Roseburia inulinivorans 0.347 1.727 366 0.051 0.715
Citrobacter koseri 0.0001 0.002 434 0.056 0.715
Lactobacillus johnsonii 0.003 0.001 604 0.060 0.715
Clostridium hylemonae 0.009 0 561 0.072 0.715
Bacteroides intestinalis 0.138 0.140 637 0.078 0.715
Streptococcus cristatus 0.004 0.001 609 0.079 0.715
Biftdobacterium longum 3.922 1.521 642.500 0.080 0.715

NR (av), average abundances in nonresponders; P.adj, P-values adjusted using the Benjamini-Hochberg method; R (av), average abundances in
responders; W, Wilcoxon test statistic.

Figure 4 Differences in the microbiomes of patients with different chemotherapy efficacy outcomes. (a) Significant differences in relative abundance

of the predominant taxa among gut microbiota species between responders and nonresponders are shown as box comparison charts , NR; ,

R. (b, c) Differential taxonomic abundance between responders and nonresponders were analyzed by linear discriminate analysis coupled with effect
size measurements (Lefse) as a histogram (c) and a cladogram (b) , NR; , R; , NR; , R. The listed bacterial floras were significantly (P < 0.05,
Kruskal-Wallis test) gathered for their respective groups.
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dissociation and invasion.40 Interestingly, in our study,
Streptococcus mutans was enriched at baseline in patients
with better outcomes, indicating that it may contribute to
chemotherapy efficacy in lung cancer. Gut Enterococcus is
significantly higher in cancer patients, especially those with
colorectal cancer, than in healthy people, demonstrating
the relevance of this flora to cancer.41 Moreover, Enterococ-
cus is more abundant in metastatic melanoma patients that
responded to immunotherapy, which may lead to
improved tumor control and greater efficacy of immuno-
therapy by augmented T cell responses.42 Here, Enterococ-
cus casseliflavus was related to better chemotherapy
efficacy in lung cancer. Therefore, the enrichment of Strep-
tococcus mutans and Enterococcus casseliflavus seemed to
be linked to better chemotherapy responses. Conversely,
Leuconostoc lactis and Eubacterium siraeum were associ-
ated with poor chemotherapy outcomes. Leuconostoc bac-
teria were initially considered for a wide range of uses in
the food industry due to their fermentation properties and
odor-producing compounds.43 Leuconostoc mesenteroides

isolated from traditional dairy products promoted apopto-
sis in colon cancer by regulation of MAPK1, AKT, NF-kB,
and some key oncomicroRNAs.44 Interestingly, we found
another species, Leuconostoc lactis, that had a negative
effect on lung cancer chemotherapy, which contradicts the
probiotic characteristics of this genus and is worth being
explored in depth. Eubacterium rectalie seemed to be more
abundant in healthy persons than in patients with prostate
cancer.45 Eubacterium siraeum was negatively corelated
with chemotherapy outcomes for lung cancer patients in
our study, which poses a new challenge for the role of this
flora in anti-tumor therapy. Overall, we proposed that
enrichment of Leuconostoc lactis and Eubacterium siraeum
was linked to poorer chemotherapy outcomes in lung can-
cer. And the correlations between clinical outcomes and
Leuconostoc lactis and Eubacterium siraeum in NSCLC
subgroup were verified to show the significative perfor-
mance, while the role of intestinal flora in SCLC needs to
be further confirmed in larger samples. Finally, the detailed
molecular mechanism for enhancement of chemotherapy

Figure 5 Heatmap of species differences between individuals based on unsupervised hierarchical clustering. Unsupervised hierarchical clustering was
applied to draw the heatmap, with red, blue, and white indicating enrichment, reduction, and no correlation, respectively, which showed the micro-
bial species abundance was different between the responders (Effect = 1, red dot) and nonresponders (Effect = 0, green dot). Color of boxes indi-
cates relative abundance, and darker colors indicate greater abundance , 1(red): R; , 0(green): NR.
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efficacy by any of the bacteria discussed in this study
remains unknown, which needs exploring with in-depth
experiments in a mouse model.
Taking the challenges of the lability of mRNA and diffi-

culty in standardized sample collection for
metatranscriptomics into consideration, we have attempted
a metagenomic functional pathway analysis to gain func-
tional insight into changes in the gut microbiome.
Anacardic acid had an antitumor effect, mediated by
enhanced T cell recruitment, in several preclinical

models.46 In our study, the metabolic pathway of L-
glutamate degradation VIII to propanoate was enriched in
the R group. Similarly, propanol, which can be broken
down into propionic acid, was also abundant in the R
group. Whether propanol, propionic acid, or other related
metabolic pathways are factors that affect chemotherapy
outcomes, deserves in-depth exploration. Preliminarily,
based on the analysis of metabolic pathways and metabo-
lites in our study, hexitol fermentation and the aliphatic
acid or carbohydrate pathways may be targets for

Figure 6 Heatmap of significantly
different metabolites between
responders and nonresponders.
Heatmap shows differentially
abundant metabolites between
responders and nonresponders, in
which columns represent samples
(green = responders, purple = non-
responders) and rows metabolites.
The heatmap visualization is used
to encode individual abundance of
the metabolites for each sample as
colors (red, relative enrichment;
blue, relative reduction; white, no
correlation). Designation of metab-
olites are indicated on the right
hand-side of the figure ,
NR; , R.
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combined metabolic intervention. However, the enriched
or reduced abundance of genes in a certain microbiome is
difficult to explain, which needs further research.
Our study had some limitations. First, the sample size

was relatively small. Therefore, we could not comprehen-
sively and systematically profile the microbial biomarkers
for chemotherapy outcomes in lung cancer patients. It is
necessary to carry out further validation in larger samples
and to construct a predictive model. Second, although we
have verified the effectiveness of the selected microbial
markers in the NSCLC and SCLC groups, further accurate
subgroup analysis is needed. Third, we did not monitor the
dynamic bacterial community structure of patients during
chemotherapy, which might lead to a better understanding
of the alterations in gut bacteria associated with chemo-
therapy. Therefore, further research on this subject is
required, and studies with a longitudinal design using the
lung cancer animal model treated with chemotherapy
drugs to investigate the underlying mechanisms of the rela-
tionship between gut bacteria and chemotherapy efficacy
in lung cancer are preferable.
In conclusion, we present a description of the gut micro-

biota in patients with different chemotherapy outcomes,
providing a significant first step in understanding the rela-
tionship between the gut microbiome and chemotherapy
efficacy in lung cancer. Our work extends this observation
to monitoring the therapeutic responses in lung cancer
patients treated with chemotherapy, and may facilitate
clinical therapeutic strategies from a microbial perspective.
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