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ABSTRACT

High-throughput sequencing is becoming a popular
research tool but carries with it considerable costs
in terms of computation time, data storage and
bandwidth. Meanwhile, some research applications
focusing on individual genes or pathways do not ne-
cessitate processing of a full sequencing dataset.
Thus, it is desirable to partition a large dataset
into smaller, manageable, but relevant pieces. We
present a toolkit for partitioning raw sequencing
data that includes a method for extracting reads
that are likely to map onto pre-defined regions of
interest. We show the method can be used to
extract information about genes of interest from
DNA or RNA sequencing samples in a fraction of
the time and disk space required to process and
store a full dataset. We report speedup factors
between 2.6 and 96, depending on settings and
samples used. The software is available at http://
www.sourceforge.net/projects/triagetools/.

INTRODUCTION

High-throughput sequencing (HTS) technology is
designed to measure the composition of large and
diverse pools of genetic material. The associated data
lend itself well to exploratory studies addressing universal
issues, such as genetic variation within populations (1,2)
or somatic mutation landscapes (3). Despite the important
insights gained from such holistic approaches, a significant
portion of biology research consists of in-depth analysis of
individual genes or pathways. It is therefore relevant to
devise effective methods to exploit existing HTS data in
these small-scale and in-depth projects without necessitat-
ing use of overly specialized computer platforms.

In practice, the raw input to an HTS workflow—regard-
less of whether it is obtained from an in-house sequencer,
service provider or public data repository (4)—typically

consists of set of reads in FASTA or FASTQ format.
Many workflows begin by mapping the reads onto a refer-
ence genome using a fast aligner [e.g. Bowtie (5), GSNAP
(6), SOAP (7), SNAP (8), mr(s)Fast (9), RazerS (10,11) and
others] and later perform project-specific computations,
such as variant detection on the aligned data [SAMtools
(12), GATK (13) and others]. Other workflows, for
example for detection of fusion genes [deFuse (14) and
others], begin their work directly on the raw reads. Due
to the large scale associated with HTS, each of the steps
can consume many hours of computation time and several
gigabytes of storage space for each studied sample.
As the spectrum of data types deposited in HTS

repositories is increasing, a researcher studying a small
region of a genome (e.g. a gene) may wish to leverage
some of this data for her own in-depth investigations. At
the same time, she may not be interested, or indeed may
not have the infrastructure, to process the entirety of data
in the repository. Currently, the researcher can optimize
the post-processing steps of the workflows to her needs by
extracting relevant data from alignment files using tools,
such as SAMtools (12). To do this, however, she must first
incur the costs associated with aligning the entire dataset.
It would seem more efficient to perform the extraction
prior to alignment instead—we call this the problem of
targeted extraction. Its implementation would allow the
researcher to focus resources onto the intended purpose
from the start.
The plausibility of efficient targeted extraction from

raw, unaligned data (FASTQ files) can be motivated by
recalling how a traditional aligner works. A common
strategy utilized in many modern aligners is to split the
alignment problem into two parts. In the first, the aligner
considers an input read and produces a shortlist of candi-
date regions of origin. In the second stage, it calculates
optimal placement for the read near each candidate site,
computes a score for each solution and reports the
solution with the best score [some aligners report all solu-
tions up to a specified penalty (15,9,10)]. The second stage,
local alignment and scoring, is actually the most
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time-consuming part of the process, but is not necessary
for the purpose of targeted extraction. It is therefore
possible to adapt, simplify and optimize the first stage of
the alignment process for targeted extraction.
We designed a tool, which we call triage by sequence,

specifically to carry out targeted extraction. The tool first
scans a file containing a target sequence, for example that
of an oncogene. It then scans input file or files with raw
FASTQ data. For each read/read pair in the input, the
tool determines whether the read can potentially be
aligned to the target sequence (the oncogene). The tool
does not optimize local alignment of the read against a
reference sequence. Instead, it only performs a heuristic
test and copies the read to one output file if it is potentially
mappable to the target sequence and (optionally) to
another output file otherwise. The output files are thus
in the same format as the input, but are nonetheless indi-
cative of the region of provenance of the reads within
them. The output files can be treated using any existing
HTS pipeline and the reduced data load implies that total
execution times can be much shorter than in a traditional
approach.
Empirically, pre-selection of data with the triage tool

followed by alignment can be several times faster than
alignment of a full dataset followed by target extraction
using SAMtools. For example, starting with an RNA-seq
sample with 75 million paired reads, our method makes it
possible to extract reads relevant for a gene, align this data
and genotype it in less than an hour using a personal
workstation or laptop. The traditional approach, in
contrast, requires more than 40 h using the same
hardware. The ratio of running times for the traditional
to the targeted approach, or speedup, is thus above 40.
We incorporated the targeted extraction program into a

larger toolkit, TriageTools. The other programs in the kit
provide transparent functionality for partitioning raw
reads by length, base quality or for identification of
(near) duplicate sequences. Together, these programs
form a coherent toolkit offering a wide functionality for
processing raw data from HTS experiments.
The remainder of this article is structured as follows. In

the ‘Materials and Methods’ section, we describe the al-
gorithmic details of our method and explain the factors
that determine its performance. In the ‘Results’ section,
we describe calibration tests on real RNA-seq data. The
‘Discussion’ section provides a summary of the results,
considerations of alternative approaches and perspectives
on applications.

MATERIALS AND METHODS

Algorithm

Our method requires three important inputs in addition to
a collection of FASTQ reads. The first input is a file(s)
with target sequences in FASTA format. The second is an
integer, s, which we call the seedlength. The third is
another integer, H, which we call the hits threshold. We
explain the role of each below.
The algorithm begins by creating an array of 4s bits in

memory, where s is the user-specified seedlength. All the

bits in the array are initially set to zero. The algorithm
then reads the target sequence, extracts all possible subse-
quences of length s and calculates a hash code for each
one. (Such subsequences are sometimes also referred to in
the literature as words, k-grams or n-mers.) In our imple-
mentation, the hash code is a two-bit representation of the
subsequence, which means that it is a natural index in the
boolean array. The bits in the array corresponding to
words in the target are set to true. Words in the target
sequence that contain non-(ATCG) characters, such as N
are given a negative hash code and ignored.

The bit array can be compared with a hash-table/index
used in some aligners, such as BLAT (15), GSNAP (6) or
SNAP (8), so we will also refer to it as an index. An im-
portant difference is that whereas the hash tables in those
aligners record the genomic coordinate(s) of each subse-
quence, this detailed information is missing in the bit
array. The bit array is thus more limited but at the same
time more light weight. A similar technique of index sim-
plification is behind fast algorithms for clustering of
protein sequences, such as Cd-hit (16).

Processing of the input FASTQ files proceeds on a read
by read basis. Single-end reads are treated as-is. For
paired-end reads, the algorithm first reverse-complements
the sequence of the second mate and concatenates it to the
first mate with an N character in the middle. The resulting
longer sequence is then treated identically as a single-end
read.

The algorithm splits a read sequence into all possible
words of length s and computes their hash codes. It then
looks up the hash codes in the boolean array and counts
the number of character hits, h, in the read sequence that
are present in the target sequence. For example, consider a
read that originates from the target sequences. Initially,
the number of hits is set at h=0. The first word of
length s (positions ½0, s� 1� in the sequence) has a hash
code that is present in the boolean array, so the hits
counter is updated to h= s. The next word of length s
(positions ½1, s� in the sequence) leads to another hit in
the boolean array, the character hit counter is incremented
from h= s to h ¼ s+1, and so on. The count increment
becomes more complex when mismatches arise, but this
example conveys the spirit of the calculation.

A read is classified as potentially originating from a
target sequence if the character hit count h reaches or
surpasses the user specified threshold H. To speed up the
classification, the algorithm looks up seeds starting from
both ends of the read and moves inward. This allows the
character hit count h to grow quickly initially if the read is
indeed from the target region. It also allows the algorithm
to abandon the search part way through if too few hits are
found to allow h to eventually pass the threshold. If a read
fails to pass the threshold, the procedure is repeated using
the reverse complement of the read sequence.

We mention that the ratio T=4s, where T is the length of
the target sequence and 4s is the size of the boolean array,
plays an important role in determining classification per-
formance. This topic is discussed in more detail below, but
we note here that if the ratio is close to one, almost any read
sequence can accumulate sufficiently many character hits
to pass the threshold and thus be classified as ‘potentially
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mapping to the target sequence’. For this reason, our im-
plementation of targeted extraction is only suitable for
relatively short target sequences. Nonetheless, to allow
users to target medium-sized regions and maintain good
performance, we implemented the possibility of using
multiple independent arrays, each specified via a separate
target sequence FASTA file. Thus, if a user prepares several
files with target sequences, the algorithm creates a distinct
bit array for each file and repeats the hits counting and
classification calculation using each array. It declares a
read as potentially mappable to the target if any one of
these calculations gives a positive result.

The complexity of the algorithm is O(NLI), where N is
the number of reads in the full sample, L is the typical read
length and I is the number of target files/indexes. Typically,
we have I=1 or I=2. The algorithm is thus asymptotic-
ally optimal and classification is carried out in time directly
proportional to the time needed to read the input data.

Classification performance

By construction, reads that match the target sequence are
classified as such. However, the approach can also reach
some false-negative and false-positive classification
decisions.

False negatives can arise as a result of multiple
sequencing errors and/or variants in the reads. Consider
a read of length L (for paired reads, consider L to be the
combined length of the pair). If the read matches the target
sequence exactly, the maximum number of hits that it can
accumulate is L. If the read contains one single-nucleotide
error or variant, the number of hits that it can achieve is
smaller than L. The degree of the drop depends on the
location of the error/variant in relation to the read
sequence. The drop can be a single count if the error is
either exactly on one of the edges or far away from the
edges. If the error is within a seedlength from one of the
edges, the drop can be up to L� s. For n errors, possible
values for the drop are in the range ½n, ns�, capped by L. The
entire range is possible in principle, but the individual
values occur with different probabilities that depend on
the properties of error-causing processes. Under a reason-
able assumption of uniform error distribution, for
example, the probability of the extreme values would be
quite small. Irrespective of the details, one can see that
the hits threshold H should be set below the read length
L to allow for some error tolerance in the classification.

A false positive arises when a read does not actually ori-
ginate from the target region, but accumulates sufficiently
many hits to pass the threshold H. The rate of false
positives will again depend on the parameters H and s.
Consider a target region of length T and a seedlength s.
If T is on the order of 4s, the boolean array upon which the
classification is based will be almost completely full (all bits
set to one). In the extreme case of complete filling, all subse-
quences in all reads, will contribute to the hit count and
lead to positive classification. Even if the fill ratio of the
boolean array is low, a read may still contain subsequences
that correspond to parts of the target purely by chance. As
the boolean array does not contain sufficient information
to compare the proximity of the various subsequences in

the read and in the target region, such cases cannot be
eliminated by the classifier. The main conclusion to draw
is that low false-positive rates (FPRs) can be achieved by
keeping T low, splitting the target into several indexes,
setting larger values of H and s or a combination of these.
It becomes clear that the parameters H and s play im-

portant roles in determining the specificity and sensitivity
of the targeted extraction classification and must be
chosen as to achieve a good compromise. We study this
issue in detail in the next section.

False-positive rates

We derive a formula for the expected FPR in the targeted
extraction algorithm. The derivation assumes true ran-
domness of sequences and equal representation of nucleo-
tides, which are unrealistic in actual biological genomes or
transcriptomes. Nonetheless, the calculation provides
some insight into how various factors affect classification
performance.
With the usual four-base genetic alphabet, there are 4s

distinct words for a given seedlength s. A target region of
length T can contain at most T� s+1 of them; this can be
approximated by T as we are typically interested in the
case T� s. The fill density of the boolean array, i.e the
number of bits set to true divided by the total number of
bits, is thus � � 4�sT.
A read of length R has at most R� s+1 distinct words

of lengths s. Even if a read does not originate from the
target, some of its words may match to the target by
chance. The probability for any word giving a seed hit
in the boolean array is equal to the fill density, r.
In order for the read to pass the character hit threshold,
approximately H/s independent (non-overlapping) words
must lead to array hits. We estimate that there are R/s
independent words in the read. The probability of obtain-
ing a false positive can thus be written as:

p / 2
R=s

H=s

� �
�H=s

¼ 2
ððR=sÞ!

ðH=sÞ!ððR�HÞ=sÞ!

� �
4�HTH=s,

where the factor in the parenthesis is a binomial coefficient
estimating the number of ways to choose a set of H/s
independent words from the read with R/s independent
words, and the overall factor of two is due to matching
both forward and reverse strand representations. The
formula is not exact but we are here only aiming at a
rough estimate.
Numerically, this estimate gives the following results.

For a one megabase target region T ¼ 106, single-end
reads with R=100, seedlength s=12 and hits threshold
H=36, we have a fill density � �0:06 and estimated FPR
p �0:03. We would thus expect more than 1% of reads to
pass the heuristic test. Changing the required hit count to
H=50, we have p �0:002, a more satisfying result. With
s=14 and H=50, we have � �0:004 and p �2 � 10�7,
which is better still.
In practice, FPRs on truly random data are slightly

higher than the above estimates (data not shown). More
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importantly, observed FPR on real data (‘Results’ section)
can be considerably higher. This is due to the fact that
actual genomic sequences and reads in HTS samples are
not random and contain pronounced similarities/patterns
that have been selected during evolution. If a target
sequence contains a motif longer than the seedlength
that is present in multiple regions of the genome, reads
from those alternative regions are picked up by the clas-
sification scheme. The estimates, therefore, should be
regarded as optimistic and their accuracy can vary
greatly depending on the properties and uniqueness of
the target sequence in relation to the ensemble of reads.
Nonetheless, the formula is indicative of how each param-
eter affects the classification performance.

RESULTS

To demonstrate and quantify the classification perform-
ance of our target extraction method, we performed a
number of experiments on publicly available RNA-seq
samples from healthy human breast tissue sequenced on
an Illumina platform (17). We report details on the experi-
ments on a sample with �75 million paired-end reads of
50 bp each.
As a first step, we produced an alignment of the full

RNA-seq sample using Tophat (18) (v2.0.3), which intern-
ally employs the fast aligner Bowtie (5) (v2.0.0). We used
Tophat’s unsupervised mode, aligned onto the UCSC
hg19 reference genome, and left all but one of the param-
eters at their default values. The exception was that we
provided the aligner access to four processor cores. The
running time for this procedure was 42 h (2.5GHz proces-
sor; all subsequent experiments were carried out on the
same machine). Below, we will refer to the result of this
procedure as the ‘full’ alignment.

Single gene selection

For the first set of experiments, we considered a target
consisting of a single gene: gene NOTCH1 on chromo-
some 9. This gene codes for a membrane protein, which
is involved in signaling pathways determining cell fate.
Mutations in the gene have been linked with human
diseases including leukemias [e.g. (19,20)]. Studying the
gene using HTS may therefore be of practical use for
research and clinical practice.
We began by looking in the full alignment and extracting

the ids of the reads that are aligned to the exons of this
gene. This yielded 4522 unique id codes. By complemen-
tarity, the number of read ids in other regions was�75 mil-
lion. Then, we prepared a FASTA file with the exonic
sequence of the gene together with 20 bp adjacent
regions. We considered this as the target sequence and
ran our triage method to extract those reads from the full
sample FASTQ files that potentially originate from this
region. We tried all parameters combinations
s 2 f11,12,13,14,15g and H 2 f30,34,38,42,46,50g. Post-
selection, we applied Tophat using the same settings as
for the full sample.
To measure classification performance, we used

SAMtools view to extract the names of reads aligning

on NOTCH1 exons in the post-triage alignments. We
then compared these lists with the one obtained from
the full alignment. The results (Figure 1) show several
expected trends and trade-offs. Lower seedlengths and
hits thresholds give better true-positive rate (TPR) but
increase the FPR. For the majority of the combinations
we tested, the TPR was above 99%, and the FPR was
below 0.1%; in all cases, the respective numbers were 98
and 0.5%. The targeted extraction method is thus
validated on data that includes real variants, splicing pat-
terns and sequencing errors.

Since the TPR was sometimes lower than 100%, we
investigated the individual reads that were captured by
the full alignment but not by the triage procedure.
Several of these turned out to be aligned mainly on
intronic sequence and which overlapped exons only by a
few bases. Their mates were either also aligned on intronic
sequence or not aligned at all. We thus conclude that the
actual coverage on exons lost by misclassification is
minimal. Indeed, running variant calling on the full and
post-triage alignments gave equivalent results on the
targeted region. In any case, it would be possible to
restore much of the lost coverage by extending the
flanking regions around exons from 20 to 50 bp.

The total running times (time for targeted extraction
using triage plus time for alignment using Tophat/
Bowtie) for all parameter combinations were under 1 h
(Figure 1d). The times depended only weakly on the hits
parameter H or the seedlength s. The fall in times with
H can be attributed to the possibility of abandoning
scoring off-target reads earlier with higher H. Longer
running times for higher s are likely due to the increased
size of the index with s, which increases the chance of
cache misses during hash code lookups.

Overall, we see that the targeted extraction approach
provides data and alignments that are suitable for down-
stream analysis, such as variant detection. At the same
time, the results are obtained with speedups above 40.
Disk storage requirements during and after Tophat execu-
tion are also significantly reduced, in these cases by factors
�4000 (data not shown).

Multi-gene selection

In a second case study, we considered a much larger target
region to establish versatility for the extraction tool. We
again reasoned that a practical application for targeted
extraction may be the fast identification of variants or
expression levels in genes associated with disease. We
thus used a list of 464 cancer-related genes (21) as the
target. This list includes the gene NOTCH1 from the
previous case study and other well-studied genes, such as
TP53, PIK3CA, NRAS, etc.

As the 464-gene region was much larger than before, the
classification should be expected to yield many more
false positives. Therefore, we split the sequence into two
files (see ‘Materials and Methods’ section). We also
concentrated on tests with large seedlengths, s 2 f14,15g.
All measurements of classification performance and
running times were carried out like in the previous
example.
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The results (Figure 2) are consistent with the previous
observations. Of note is that despite the large seedlengths,
the TPRs were above 99% in all cases. This implies that
the NOTCH1 example was actually a difficult gene to
classify and that one can expect better results on
average. The number of false positive reads was expectedly
much higher than before, which made the total running
times longer than before. Nonetheless, the speedups were
still between 3 and 6. Disk usage during and after Tophat
execution is reduced by similar factors.

DISCUSSION

We comment on a number of issues related to classifica-
tion performance.

Optimal choice of parameters

Figures 1 and 2 show that classification performance
varies with the seedlength s, the hits threshold H and the
size of the target region. It will also vary with the length of
the input reads. Therefore, there is no single optimal
choice for any of the parameters. Nonetheless, the
results above are indicative as to what performance can
be expected. As the tool is primarily designed to work with
small target regions, we used Figure 1 to set s=12 and
H=38 as default values to obtain 99.9% TPR on small
targets. For other read lengths or for variable-length
reads, it is also possible to specify H as a number less
than two, in which case the threshold would be determined
at run time as a fraction of each processed read.

Generalization to small target regions

The calculation involving 464 cancer genes shows that the
classification procedure works well even on a large target
region. It also implies that the classification would work
effectively were it performed on any subset of the 464
studied genes. It is also reasonable to expect similar per-
formance on genes not part of the cancer set. On such
intermediate size targets, the true-positive, false-positive
and false-negative rates should be expected to be as
good as or better than in Figure 2.

Generalization to large target regions

It is tempting to consider larger target regions as well.
While it would be possible in principle to achieve good
classification performance on larger regions, we note
that this would require splitting the target sequence into
several pieces, effectively slowing down the algorithm and
increasing its memory footprint. Furthermore, as the ex-
traction would output a larger portion of the input read
set, the speedup benefit over traditional alignment would
be less pronounced. We therefore do not recommend
applying the extraction method on target sequences
much larger than the multi-gene set above.

Repetitive regions

Some regions in a genome have high sequence similarity as
a result of joint evolutionary history. If such a region is
selected as the target (an example is explored in the
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Figure 1. Single-gene classification performance. (a) TPR of classifica-
tion decreases with the hits parameter. (b) Proportion of reads that are
actually off-target but pass through the classification procedure. As
expected, this FPR decreases with s and H. (c) A ROC-style represen-
tation of the panels (a) and (b). To make the points distinguishable, the
vertical scale only shows a small fraction of the full TPR range and the
horizontal scale is logarithmic. The series of points in each seedlength
group represent different hits thresholds. (d) Running time of classifi-
cation and mapping. For reference, the running for the full alignment
was 42 h.
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Supplementary Material), the classification procedure will
extract a large number of reads from the similar regions in
addition to the ones from the actual locus of interest,
effectively increasing the FPR. This is an unavoidable

property of our algorithm, which does not keep track of
genomic coordinates of the target.

Tolerance to known variants

As explained in the ‘Materials and methods’ section, our
algorithm can in rare cases mistakenly discard reads
actually originating from the target region if they are
short and if they contain several features that distinguish
them from the target sequence. Although the achieved
TPRs are already consistently above 98% in realistic
cases, it is possible to obtain even better results by
reducing the negative impact of known variants (SNPs,
indels or splice junctions in RNA-seq data). This can be
achieved by providing appropriately constructed target
sequence files. For SNPs and indels, this would be concep-
tually similar to SNP-tolerance introduced in
SNP-o-matic (22) and used by GSNAP (6) and others
(23). For splice junctions, it would mimic the practice of
using gene annotations in RNA-seq mapping software,
such as Tophat (18) or GSNAP (6).

Stochastic effects

In the single-gene experiments, we observed some
reads were placed outside the target region in the full
alignment, but inside the target region when running on
the collection of reads subset by our triage tool, giving rise
to some TPRs above 100%. This can be attributed to
a stochastic element in Tophat/Bowtie for handling
ambiguous reads. It can lead both to an apparent
increase or decrease in the coverage on the target region.
We mention this as a curiosity; the effect would not
have arisen had we mapped all reads with a fully deter-
ministic aligner.

Other types of HTS data

The detailed experiments above were performed using
paired-end RNA-seq data. We also performed some
tests on real single-end RNA-seq data (17), as well as syn-
thetic exome (depth 40�) and whole genome (WG) data
(depth 8�). For the DNA samples, we compared running
times using Bowtie rather than Tophat. The results
(Table 1) are not meant to be exhaustive; they can
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Figure 2. Multiple-gene classification performance. Analogous to
Figure 1, but showing results for a target region consisting of
464 cancer genes. In contrast to the case study in Figure 1, the total
running is here dominated by alignment rather than extraction. Thus,
it is the larger seedlengths that provide higher speedup [panel (d)].

Table 1. Speedup due to targeted alignment

NOTCH1 Cancer genes

Sample 1 core 4 cores 1 core 4 cores

RNA-seq (2� 50 bp) 96 53 6.8 6.7
RNA-seq (1� 75 bp) 92 25 4.5 4.0
Exome-seq (2� 100 bp) 43 16 3.0 3.1
WG-seq (2� 100 bp) 66 19 2.8 2.6

Speedups computed by comparing the time required to perform the full
alignment and the combined time of triage classification plus mapping
of the selected reads. For RNA-seq samples, target regions consisted of
exons and 20 bp flanking sequences, s=14 and H=46. For exome and
WG samples, which have longer reads, target regions consisted of exons
and 85 bp flanking regions, s=14 and H=85. (Speedups are approxi-
mate with �5% error; results may also vary depending on options
used, background load, etc.)
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change depending on sample size, aligner, number of pro-
cessors, etc. Nonetheless, they demonstrate the qualitative
performance gains are generalizable to other HTS plat-
forms, read lengths and mapping methods. The speedup
values are defined, like before, as time for alignment of full
sample divided by the sum of the extraction time plus
alignment of the extracted data.

Multiple cores

High-throughput pipelines are sometimes run using mul-
tiple cores and sometimes using a single core, the latter
option being attractive when treating multiple samples
with a series of tools wherein not all are suited for
parallel processing. Table 1 shows speedups obtained in
both cases. The values for DNA-seq samples are generally
lower than for RNA-seq because Bowtie, the aligner used
in the former case, makes very efficient use of multiple
cores, while Tophat, the program used for mapping
spliced reads, spends much time in single-processor
mode even when multiple cores are available. The
speedups for the small target examples show a marked
difference between single- and multi-core settings
because the running time of the targeted approach is
dominated by the extraction procedure. The speedups
for the larger target examples are practically the same
for single- and multi-core runs because those running
times are dominated by the alignments.

Alternate implementations

Our implementation of targeted extraction is based on a
simple index structure and associated algorithm, but
it is conceivable to consider alternative approaches. In
the Supplementary Material, we explore the following
multi-step procedure: create a temporary ‘genome’ with
the target sequence and flanking areas, create an index
for a traditional aligner using this custom reference,
align reads using the custom index and identify relevant
reads as those that are mapped successfully. We show that
this custom-index approach can be very performant when
extracting for large target regions and when processing
DNA-based samples. However, our dedicated approach
is typically faster on small target regions. Furthermore,
it delivers better selection quality in RNA-seq samples as
it is capable of properly selecting spliced reads without
requiring explicit exon-junction annotations.

CONCLUSION

We presented a method, triage by sequence, designed to
extract a subset of reads from raw data from HTS based
on sequence similarity with a target region. Its algorithm is
closely related to one of the stages performed within a
traditional aligner, but we simplified and optimized it for
the specific task at hand. We showed that it can handle
DNA and RNA sequences with realistic errors, variants
and splice patterns. It can achieve very high TPRs, often
reaching 99.9%, with FPRs varying with the size of the
target region.

Using the triage method, a researcher interested in per-
forming in-depth analysis of a small genomic region can

optimize HTS pipelines and achieve significant speedups
over the traditional ‘align-then-analyze’ approach. In our
practical examples with RNA-seq data, we achieved
speedups up to � 50 when targeting a single gene and
more modest � 6 when working with a large collection
of genes linked with cancer. We obtained these results
running aligners with four processor cores; speedup
factors can be greater (we recorded up to � 90) for pipe-
lines using fewer cores. In all cases, the targeted selection
preserved information relevant for use in variant detection
and transcript analysis. These technical improvements
should allow researchers to utilize computational re-
sources to efficiently exploit HTS data for their targeted
research projects.
Beside the practical reasoning that motivated this work

(‘Introduction’), the targeted extraction procedure has
other applications as well. For example, Bhaduri et al.
(24) reported an interesting work on detection of viral
sequences in human HTS samples. In that work, reads
potentially originating from virus species were extracted
from a human sample using a multi-stage procedure
involving cutting input reads into parts and aligning the
pieces onto viral genomes. We note that a similar calcula-
tion could be carried out in fewer steps using the
sequence-based triage approach.
We also mention that because the quantity of data

output by the triage algorithm is much smaller than a
full HTS sample, it is conceivable to process this subset
using slower but more precise pipelines than those cur-
rently in use for HTS data. This should enable researchers
interested in small genomic regions to exploit HTS data in
ways not currently feasible for genome-wide exploratory
studies, even those with access to powerful computer in-
frastructure. This topic is currently under investigation.
We incorporated the targeted extraction approach into

a kit called TriageTools. Apart from the described func-
tionality, the toolkit also provides other means to manipu-
late, partition and prioritize the analysis of raw HTS data.
For example, it includes tools to partition FASTQ data by
base quality, or to identify (near) duplicate reads in an
alternative way to Picard (12), which can be useful in pipe-
lines acting directly on raw data. Together, these tools
should help streamline existing workflows. Details on all
the tools, including usage examples, appear in the online
software documentation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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