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Rechargeable Zn-based batteries (RZBs) have garnered a great interest and are

thought to be among the most promising options for next-generation energy

storage technologies due to their low price, high levels of safety, adequate

energy density and environmental friendliness. However, dendrite formation

during stripping/plating prevents rechargeable zinc-based batteries from being

used in real-world applications. Dendrite formation is still a concern, despite the

fact that inhibitory strategies have been put up recently to eliminate the harmful

effects of zinc dendrites. Thus, in order to direct the strategies for inhibiting zinc

dendrite growth, it is vital to understand the formation mechanism of zinc

dendrites. Hence, for the practical application of zinc-based batteries, is

essential to use techniques that effectively prevent the creation and growth

of zinc dendrites. The development and growth principles of zinc dendrites are

first made clear in this review. The recent advances of solutions to the zinc

dendrite problem are then discussed, including strategies to prevent dendrite

growth and subsequent creation as much as possible, reduce the negative

impacts of dendrites, and create dendrite-free deposition processes. Finally, the

challenges and perspective for the development of zinc-based batteries are

discussed.
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1 Introduction

Numerous significant advancements have been made in the development of

electrochemical energy storage systems over the past several years (Goh et al., 2013).

Batteries are an example of an electrochemical energy storage technology that can store

electric energy as chemical energy and convert the chemical energy to electric energy as

needed (Worku et al, 2021a; Khamsanga et al., 2019). Thus, battery technologies can

increase the use of renewable energy sources while reducing the use of limited fossil fuels

(Li et al., 2016). Battery technology has so far been applied to stationary energy storage

and power batteries. As an illustration, lithium-based batteries are typically used as the

power source for electric vehicles, mobile phones, laptops, and other mobile devices

(Worku et al., 2022). The use of lithium-ion batteries to store renewable energy is

currently receiving a lot of interest despite the fact that these batteries pose safety risks, are
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expensive, and have a low energy density. As a result, numerous

high-safety battery types have been suggested and thoroughly

studied. Due to their high levels of safety and affordability, green

and sustainable energy storage systems made of aluminum, zinc,

potassium and sodium have recently gained a lot of attention

(Zhong et al., 2021). Due to their plentiful resources,

environmental friendliness, and high energy density, zinc-

based rechargeable batteries, such as, Zn-Ni batteries, Zn-

MnO2 batteries (Sumboja et al., 2015), zinc-ion batteries and

zinc-based flow zinc-air batteries, are thought to be the most

promising energy storage devices to replace lithium batteries

(HabtuGabbiye et al., 2022).

Additionally, zinc has high capacity (5,854 Ah·L−1 and

820 Ah·kg−1), good electrochemical reversibility [0.762 V

relative to the standard hydrogen electrode (SHE)], and does

not readily corrode even in alkaline conditions (Abbasi et al.,

2019). Zinc has a number of other advantages when used as an

electrode material, including a high specific energy, a high power

density, a low redox potential, nontoxicity, recyclability, and low

cost. Zinc is currently one of the most widely utilized electrode

materials because zinc-based batteries often have high energy

density, low cost, high discharge voltage, and good

environmental benignity. Zinc-based batteries are promise for

the next wave of energy storage technologies because of these

characteristics (Worku et al., 2021b). Notably, zinc oxides and

their combinations can also function in addition to pure zinc.

However, the issues of dendritic growth, self-corrosion, and

morphological change are still unresolved, which has a

significant impact on the efficiency of zinc plating and

striping and the service life of zinc electrode (Worku et al.,

2021c).

The ability to suppress dendrite growth in particular is

crucial for improving the Coulombic efficiency (CE) and

stability of zinc-based batteries (Hosseini et al., 2018). Due to

unequal zinc deposition during the charging process of

secondary zinc-based batteries, zinc dendrites are formed. The

performance and lifespan of zinc-based batteries are significantly

impacted by the presence of zinc dendrites (Fu et al., 2016).

In addition, zinc dendrites readily detach from electrodes in

alkaline media, resulting in a decline in battery capacity and

efficiency. Additionally, when zinc dendrites continue to grow,

they eventually come into direct contact with the anode and

cathode, creating a short circuit and the eventual collapse of the

battery (Lee et al., 2016). Additionally, the dendritic shape might

increase the zinc electrode’s specific surface area, which promotes

zinc corrosion and lowers the zinc consumption rate. In addition,

zinc dendrites would easily separate from the electrode surface to

generate “dead” zinc as a result of the weak adhesion, reducing

the battery’s capacity. In recent years, numerous strategies have

been proposed to reduce uneven zinc deposition and enhance the

cycling performance of zinc-based batteries (Ayele et al., 2021b).

Rechargeable zinc-air batteries are still far from becoming

commercially available for a number of reasons, one of which

is the fact that the zinc anode has a poor CE as a result of the

development of zinc dendrites (Zuo et al., 2021). Moreover, for a

very long time, Li metal batteries have been plagued by dendrite

formation and the dead Li that results from it. Recent research

has suggested a novel redox mediator-based approach to lithium

restoration. However, using some redox mediators frequently

results in the unwanted side effect of significant self-discharge.

Chen et al. (2022), reported a selection principle of redox

mediators for reactivating dead Li in lithium metal batteries.

This approach may both successfully reactivate the dead Li and

decrease self-discharge. These strategies include adding additives

to the electrolyte or anode metal, optimizing operating

parameters, and removing the detrimental effects of dendrite

growth. The main concepts behind these techniques can be

broken down into three groups (I) approaches to prevent zinc

dendrites from forming and growing further as much as possible;

(II) approaches to reduce the negative effects caused by zinc

dendrites; and (III) approaches to get rid of zinc dendrites and

ultimately create a deposition process without them (Chu et al.,

2022). The first approach, while currently the most popular way

to address the dendritic problem, also has significant downsides,

like greater electrode polarization. Although the second and third

approaches are more difficult to implement, their effectiveness is

thought to be sufficient, and certain concepts and real-world

applications have been suggested (K. Wang Anran et al, 2020a).

Despite the fact that these techniques have made significant

strides in slowing zinc dendrite formation, it is still unknown

FIGURE 1
Schematic representation of the materials used in RZIBs to
stabilize Zn anodes. Reproduced under the terms of the CC-BY
Creative Commons Attribution 4.0 International license (Q. Li et al.,
2020). Copyright (2022), Energy Materials.
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what causes homogeneous zinc deposition. In order to provide

workable inhibitory strategies for morphological control of

electrodeposited zinc, additional research and knowledge of

the process underlying zinc dendrite formation are therefore

required (Worku et al., 2021d). In order to stabilize the Zn

anodes, various techniques have been used. These include surface

modification, structural design, and electrolyte control (Figure 1).

These methods serve to improve the electrochemical

performance of RZIBs by successfully suppressing Zn dendrite

development and/or side reactions. This review outlines the

theories and approaches for addressing zinc dendrite problems

and reducing their negative effects (Lu et al., 2018). As a result, it

can serve as a thorough reference to guide the advancement and

practical use of zinc-based batteries in the future.

2 Overview of Zn anode

Despite the development of alternate substitutes, Zn

anodes remain the most optimal anodes for RZBs due to

their incomparable benefits. The issues with Zn anodes may

be found in numerous laboratory investigations that often

include high anode sources, low current densities, and

restricted loading mass in the cathode (Wang et al., 2015).

Due to its “hostless” nature and uniform stripping and plating,

Zn anodes inevitably experience dendritic difficulties, much

like many other metal anodes. Metal anodes based on

stripping and plating mechanism witnessed unlimited

volume change as opposed to standard graphite anodes

based on insertion mechanism since this “hostless” nature

can lead to uncontrollable dendrites growth. In addition, there

are other problems with the Zn anode aqueous system, such as

corrosion, passivation, and hydrogen evolution, which are

worse in alkaline electrolytes. Typically, Zn metal is used

directly as the anode of RZIBs. Due to their security and

affordability, RZIBs with Zn metal anodes have a lot of

potential for large-scale energy storage. The anode-

electrolyte interface problems are the main reason why

their practical performances are still below expectations.

The following sections discuss these problems, which

mostly concern dendritic formation and side reactions on

the surface of zinc anodes (Li et al. 2020a).

3 Dendrite formation and side
reactions

3.1 Formation of dendrite

The reaction mechanism of a Zn anode in the mild aqueous

electrolyte can be summed up as follows (Wang et al., 2021):

Zn2 + (aq) + 2e- ↔ Zn(s)

FIGURE 2
Dendrite growth of depositing zinc. (A) Dendrite growth causing short circuit of the batteries, (B) dendrite growth puncturing a separator, (C)
partially conductive separator guiding dendrite growth, and (D) insulator encapsulating anode-reversing dendrite growth. Reproduced under the
terms of the CC-BY Creative Commons Attribution 4.0 International license (Zhang et al., 2022). Copyright (2022), Energy Materials.
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Diffusion, adsorption, growth and nucleation are the usual

four phases that Zn2+ goes through during electrodeposition.

The Zn anode surface microenvironment can affect these

activities. Particularly, Zn anodes’ surfaces are not atomically

smooth, which may lead to irregular electric field distribution,

heterogeneous ion flux distribution, and various nucleation

barrier sites (Guo et al., 2020). Therefore, under the

unconstrained 2D Zn2+ diffusion, Zn2+ is more likely to

adsorb and accumulate on the higher active sites

(Figure 2A). Zn atomic clusters would then develop as a

result of the Zn2+ nucleating on these locations. The

distribution of the produced Zn atomic clusters on the

surface of Zn is heterogeneous, which exacerbates the

unequal field distribution (Zeng et al., 2019). Due to the tip

effect, these clusters can also act as small protrusions with

greater curvature and stimulate Zn dendrite formation (Figures

2B–D). A number of risks would be brought by the expanding

Zn dendrites (Zuo et al., 2021). Due to the Zn dendrites’ porous

and flimsy 3D shape, fresher Zn could come into contact with

aqueous electrolytes, increasing the potential for side reactions

(Xie et al., 2020). Additionally, because of the poor connection

between the dendrites and anodes, the dendrites are vulnerable

to rupturing away from the Zn substrate and turning into “dead

Zn.” The insulating byproduct layer and inactive “dead Zn”

increase the battery’s internal resistance and polarization

(Figures 3A–C). Along with “dead Zn,” certain dendrites

may develop continuously until they pierce the separator,

which will result in a short circuit (Li et al. 2020b).

3.2 Rechargeable Zn-based batteries side
reactions

Other negative issues with Zn anodes include side reactions,

such as passivation, corrosion, and HER, in addition to dendritic

formation (Liu et al., 2019b). One of these is the Zn anode’s

thermodynamic instability in an aqueous solution, which is the

main contributor to the development of hydrogen (Li et al.,

FIGURE 3
Schematic representation of the creation of Zn atomic clusters during unconstrained 2D Zn2+ diffusion. (A) Schematic representation of the tip
effect in (B). Dendrite formation is option (C). Pourbaix diagramof the 10–4 M Zn2+ system in Zn/H2O. (D) The gas evolution of a Zn symmetric cell in a
3 M ZnSO4 electrolyte at various resting times. (E) The Zn anode’s surface morphology after 30 days of immersion in 3 M ZnSO4 electrolyte. (F)
Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International license (Zhang et al., 2022). Copyright (2022),
Energy Materials.
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2022). The reaction of hydrogen evolution can be demonstrated

as follows:
2H2O + 2e- → 2OH- + H2↑

Surface corrosion from hydrogen evolution can result

from chemical or electrochemical reactions. Normally,

electrochemical cells are destroyed by hydrogen evolution

because it raises internal pressure and causes the sealing to

fail (Han et al., 2020). The Pourbaix diagram (Figure 3D)

shows that in the whole pH range, Zn2+/Zn has a lower

equilibrium potential than H2O/H2 does. Because of the

thermodynamic activity of Zn in an aqueous solution, HER

tends to develop on the surface of Zn metal anodes via

chemical or electrochemical processes (Figure 3E). As a

result, when RZIBs are charged, HER competes with the Zn

plating and there would be an associated Zn corrosion process.

HER raises the battery’s internal pressure, which may further

increase polarization, cause the battery to swell and even

rupture. Due to the accumulating OH−, HER also causes a

rise in pH at the anode surface. In order to generate

byproducts with limited solubility, such as Zn(OH)2,

Zn4SO4(OH)6xH2O (ZHS), etc., the continuously rising

OH− would further react with Zn2+ and the anion of Zn

salts (Figure 3F). These byproducts, which act as electrical

insulators and passivate the Zn surface to prevent additional

Zn plating or peeling, block the sites. In an alkaline

environment, the Zn anode’s passivation usually occurs by

generating insulating ZnO on the anode’s surface, which

prevents the anode from engaging in further

electrochemical action. They can’t stop the additional HER

and Zn corrosion on the Zn anodes because they are currently

free in the framework (Tian et al., 2021). Zn and electrolytes

around anodes are thus continuously consumed, which results

in a lower CE. Additionally, the corrosion- and passivation-

induced rough and uneven surface may hasten the formation

of Zn dendrites (Mo et al., 2022).

3.3 Reducing side reactions

The Zn anode’s surface area grows when Zn dendrites

develop. Surface-dependent processes that consume active

Zn continuously and significantly lower battery capacity

include corrosion reactions and the hydrogen evolution

reaction. The gas will result in volume expansion of the

batteries when the side reaction of hydrogen evolution takes

place in a nearby high-energy location. In addition, insoluble

FIGURE 4
The passivation, HER and corrosion, on bare Zn. (A) A schematic illustration of coated Zn’s morphological development. (B) Schematic
representation of the Zn ion deposition morphology after electrolyte additions. (C) CC-BY Creative Commons Attribution 4.0 International license
was used to permit this reproduction (Li et al., 2022). Copyright (2022), Springer Nature.
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Zn(OH)2 is created and attaches to the metal Zn surface,

inducing surface passivation of the fresh Zn, as the local

OH− concentration rises. This leads to a poor plating/

stripping CE by decreasing the anode’s conductivity, raising

the interface impedance, and decreasing the active Zn

nucleation sites. The performance and longevity of batteries

are put at risk by these irreversible hydrogen evolution,

corrosion, and passivation side processes, which

fundamentally deplete limited electrolyte and Zn ions (Wang

et al, 2020a). A schematic representation representing Zn

corrosion, passivation, and hydrogen development can be

seen in Figure 4A.

3.3.1 Reducing active water
In aqueous electrolytes, Zn2+ and six water molecules

combine to generate hydrated Zn2+([Zn(H2O)6]2+), which is

the principal cause of side reactions. Before being reduced on

the surface of the Zn anode, [Zn(H2O)6]
2+ must go through a

desolvation process, which inexorably results in direct contact

between the Zn anode and water molecules and sets off side

reactions. In order to increase the hydrogen evolution potential

of metal Zn and lessen the corrosion response, it was discovered

that adding atomic groups or solid electrolyte interface layers to

the anode surface is advantageous. Additionally, the interfacial

layer either directly blocks contact between the electrolyte and

the Zn anode or lowers the amount of water molecules that are

allowed to desolvate onto the Zn surface (Li et al., 2013).

Following the protective layer, the Zn deposition is extremely

uniform, as illustrated in Figure 4B.

3.3.2 Modulating coordination status
The parasitic water reduction during Zn deposition is sped up by

the high overpotential created by the robust Coulomb contacts

between the solvated Zn2+ and its surrounding H2O shell. As a

result, a passivation layer and the evolution of H are encouraged.

The strength of the connection between the Zn2+ ions and solvated

H2O needs to be reduced in order to prevent water reduction and Zn

dendrites. A quick and convenient method for improving the

electrolyte composition is to add particular chemicals (Figure 4C).

Some additions can solvatewith Zn ions preferentially, substituteH2O

in the Zn2+ solvated sheath, or removeH2O entirely (Liu et al., 2019b).

4 Engineering approaches of Zn
metal anodes surface modification

TheZnmetal electrode surface’s structure has a significant impact

on the electrochemical performance of RZIBs. The surface of Znmetal

electrodes has therefore been modified using a variety of techniques.

The dominant crystallographic orientation and initial anode surface

texture will have a significant impact on the following electrochemical

behavior. The mass transfer process, which is primarily driven by the

electric field and concertation gradient throughout the battery cycling

process, commands the dendrite’s creation. From a mechanical

standpoint, the strength of the interaction with physical shielding

will have an impact on the dendrite growth. These techniques can be

divided into four basic categories: Mechanical shielding, ion flow

regulation, electric field control, and manipulation of crystallographic

orientation (Tian et al., 2021). These techniques can be divided into

FIGURE 5
Techniques for modifying Zn metal anodes to improve their electrochemical performance. Reproduced with permission (Huy, Hieu, and Hur
2021). Copyright (2021), MDPI.
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several key categories, such as shielding the Zn metal to avoid side

reactions, controlling the Zn deposition behavior, and producing a

consistent electric field as shown in Figure 5. For future reference, the

unexplored mechanical viewpoint that mechanical shielding inhibits

dendrite formation is listed below. This section discusses a variety of

techniques within each area.

4.1 Electric field control

The electrochemical reaction is started by the movement of

ions in an electric field. The identification of problems with

electric field management resulting either from the simple design

of electrode structures or from in-situ control of dendrite growth.

The local areal current density will be significantly reduced by a

well-designed anode structure or a 3D porous nanostructured

anode, which will also result in less polarization and uniform

deposition. The complex construction of the current collector

will change the electric field’s uniform distribution, which will

cause lateral growth rather of the vertical accumulation that has

been observed in Li metal anodes. The nature of the electric field

is also utilized for controlling advance charge/discharge protocols

for removing dendrites with the intricate design (Yang et al.,

2020).

FIGURE 6
(A) Schematic representation of the behavior of zinc plating on pure zinc and zinc coated with MXene, together with the associated models of
electric field distributions. Diagrams of the HsGDY and its sub-angstrom ion tunnel are shown in (B) dual-field simulations of pure Zn and Zn@
HsGDY, (C) Zn@HsGDY cross-section, and (D,E). CC-BY Creative Commons Attribution 4.0 International license was used to permit this
reproduction (Chu et al., 2022). Copyright (2022), Elsevier.
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Another efficient strategy for facilitating highly uniform

Zn2- distribution is to encourage uniform electric field

distribution. Thus, conductive carbon materials have

frequently been added to Zn anodes to increase the electro-

active surface area, further homogenize the electric field

distribution, and reduce Zn dendritic growth. These

materials include porous carbon film, carbon nanotube

(CNT) scaffolds, reduced graphene oxide (rGO), carbon

black, and graphite. In addition, layer-by-layer self-

assembled MXene layers were created on Zn anodes in order

to create ultrathin and uniform MXene layers and efficiently

homogenize the electric field distribution as shown in

Figures 6A,B). In order to shift the Zn2−concentration field

and completely eradicate Zn dendrites, Zhi et al. demonstrated

that hydrogen-substituted graphene (HsGDY) may be

connected with a Zn electrode (Figures 6C–E).

4.1.1 3D current collector/electrodes
Batteries, which focus on a 2D confusion and nucleation,

typically use a planar current collector. In comparison to a planar

structure, all 3D architectures should pay special attention to

their bigger electroactive regions (Cao et al., 2020).

4.1.2 Charge/discharge protocols
Charge/discharge techniques, which are significantly more

measurable and cost-effective, introduce specific in situ charge/

discharge processes tomodify dendrite formation. A recent paper

described an electro-healing technique that combined cycling at

high current density with a low current density stripping/plating

process. Without giving the batteries any extra care, those

techniques have a significant impact on applications and will

pave the way for battery maintenance. To support the proposal, it

is important to investigate the anode’s future long-term cycling

impact and its viability with the available infrastructure (Huy,

Hieu, and Hur 2021).

4.2 Ion flux regulation

The ion flux in the electrolyte can be influenced by numerous

complex parameters, in contrast to the simple electric field

control (Yu et al., 2020). The electrolyte, interfacial layer, and

separator, along with other mass transfer processes occurring

close to the interface while deposition takes place, have a

significant impact on the ion movement caused by the electric

field.We can get a consistent ionmigration behavior and reduced

polarization at the dendrite suppression by changing the

electrolyte’s constituents and concentration (Wang et al.,

2022). Aqueous and nonaqueous electrolytes can be used to

classify the electrolyte (including ion liquid electrolytes and

organic liquid electrolytes) (Zhang et al., 2022). According to

PH, the majority of the electrolytes in RZBs are aqueous-based

(including hydrogel and water-in-salt) and are classified as

alkaline, neutral, or mildly acid. We concentrate on the

aqueous-based electrolytes for RZB in this section. Meanwhile,

interfacial modification can work as an ion filter for uniform

movement and deposition as well as directly shield the anode

from parasitic reaction. For a homogeneous plating, the

functionalized separator will also promote uniform ion

dispersion (Pan et al., 2018).

4.2.1 Salts and additives
The primary salts and additions are included in the

electrolyte components. Two common salts, ZnSO4 and Zn

(CF3SO3)2, have variable electrochemical properties depending

on their stability, conductivity, and compatibility. To be more

precise, Zn(CF3SO3)2 makes a difference in the potential

hysteresis between plating and stripping. This is due to the

large CF3SO3 anions, which will reduce the solvated sheath

surrounding Zn2+ and aid Zn2+ migration. Even though

Zn(CF3SO3)2 has a stronger electrochemical performance,

ZnSO4 is the salt that offers the greatest potential for cost

savings and environmental benefits (Zhu et al., 2021).

4.2.2 Water in salts electrolyte
Better electrolyte concentrations typically result in higher

conductivity and lessened polarization in addition to the

components. Another benefit of concentration is the

destruction of the Zn2+solvation-sheath structure, which is

linked to high Zn reversibility and is known as high

concentration Zn ion electrolyte (HCZE) or water in salts

(WIS) (Pan et al., 2016).

4.2.3 The hydrogel electrolyte
The most promising electrolyte for wearable technology is

called a hydrogel electrolyte, which is a network of polymer

chains with embedded electrolyte. It can provide improved

mechanical strength, ion confinement, and ion dispersion by

adding functional groups to the polymer chain. The

functionalization can also cause an even deposition at the

contact and control ion flux. Hydrogel electrolytes must

carefully balance their ion conductivity and mechanical

strength in order to withstand large current densities. On the

other hand, water retention and stability will also be taken into

account when commercialization is being considered (Zhang

et al., 2016). Ling et al. (2021), reported Self-healable hydrogel

electrolyte for dendrite-free and self-healable zinc-based aqueous

batteries, which delivered a high capacity of 304 mAh·g−1 at

0.5 A·g−1 and good cycling stability with a capacity retention

of 83.1% (vs. 62.5% with polyacrylamide) after 1,500 charge/

discharge cycles at 5.0 A·g−1.

4.2.4 Surface coating
The most effective defense against dendritic problems for

metal anodes is surface coating, which is often created through

doctor blading, spin coating, and atomic layered deposition
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(Wang et al., 2018). There are two types of coatings: organic and

inorganic. The formal one often serves as a barrier against

adverse effects and offers a consistent ion route. Canpeng Li

et al., developed a “all-in-one” (AIO) strategy by combining

structural design, interface modification, and electrolyte

optimization, inheriting the benefits of the 3D zinc anode and

gel electrolyte with nearly no hydrogen evolution (Figure 7).

4.2.5 Separator modification
A separator is a crucial component in the prevention of short

circuits. The ion flux will also be redistributed as a result.

Currently, there are two main types of separators: nonwoven

paper and glass fiber (Jia et al., 2020). Due to its great thickness

and lack of economics, glass fiber has a high degree of resilience

and chemical inducing to prevent dendrites. The

commercialization of RZBs is economically aided by the

nonwoven paper, however this paper’s worst property is that

it is easily pierceable. A good mechanical property, low operating

expenses, and improved ion flux guiding are desirable

characteristics in a separator that inhibits dendrite formation

(Zhang et al., 2017).

4.3 Mechanical shield

The mechanical elements will surely have an impact on the

dendritic formation and short circuit process. There has not been

any systematic research or simulation too far for RZBs to

FIGURE 7
(A) Shelving-recovery performance of Cu foam@Zn/Cu foam@Zn symmetric cell (AIO electrode/Cu foam@Zn in AIO system) under 2 mA·cm−2.
(B) First cyclic voltammetry curve, (C) float charge current, (D) open circuit potential decays of AIO electrode/α-MnO2 and Cu foam@Zn/α-MnO2 full
cell. (E) XRD patterns of the anodes in different full cell systems after 100 cycles at 500 mA·g−1, and the corresponding SEM images of (F) AIO
electrode and (G) Cu foam@Zn in 2 M ZnSO4 + 0.1 MMnSO4. Reproduced with permission (Li et al., 2022). Copyright (2022), Oxford University
Press.
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estimate this threshold (Li et al., 2020a). The crucial function of

physical shielding can be seen in the apparent morphological

difference between the deposition in the electric tank and a cell

with a separator. The anhydrous property and increased

mechanical strength should stabilize the Zn anodes. The

problems to be solved in further research will be the low ionic

conductivity and poor interfacial contact that are accompanied

by high polarization. The operation of mechanical shielding is

frequently coordinated with other surface coating, gel and solid-

state electrolyte, and enhanced separator methods. The balance

between mechanical property and electrochemical property, such

as ion conductivity, and other factors, should be taken into

consideration while creating robust physical shielding (Wang

et al., 2019).

4.4 Crystallographic orientation
manipulation

Zn is a crystalline substance, and the preferred

crystallographic orientations can be changed throughout the

electrodeposition process to control the surface texture. A

FIGURE 8
(A)Diagrams illustrating the stripping/plating behaviors of Zn anodes stabilized by CNT scaffolds and bare ZF anodes. (B) Rate performance over
a 1-h period at varying current densities of 0.1–5 mA·cm−2. (C) Symmetrical Zn||Zn cells’ Zn electrodes as seen in a SEM picture. (D) SEM picture of
symmetrical Zn@CNTs cells with Zn electrodes. (E) SEM picture of symmetrical Zn@CNT cells with CNT scaffolds (after cycling tests). SEM pictures of
a ZF anode and a ZF@CB-NFC anode are shown in (F,G), respectively. (H) Cycling accomplishments at 0.2 A·g−1. (I) The relationship between
Coulombic efficiency and cycle number. (J) Galvanostatic charge/discharge (GCD) curves for Zn symmetrical cells with ZF and ZF@CB-NFC
electrodes, 200 cycles at 0.5 mA·cm−2. (K) Zn symmetrical cells with ZF and ZF@CB-NFC electrodes: voltage profiles of the 1st–10th cycles at 0.5 mA
cm−2. Creative Commons Attribution 4.0 International license was used to permit this reproduction (Li et al., 2022). Copyright (2021), Springer.
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dense and parallel orientation is what a properly produced Zn

anode should have, and this can be accomplished by adjusting the

substrate used and the electrodeposition electrolyte additive.

While the substrate is modified via epitaxial electrodeposition,

the electrolyte additive modifies the crystallographic by chemical

contact (Zhang et al., 2020). The following Zn deposition tends to

be oriented similarly during the battery cycling process as a result

of the lattice match, which contributes to better electrochemical

performance. The initial Zn anode can be controlled using

straightforward techniques, making it feasible to produce

stable Zn anodes in large quantities. However, the efficiency

after prolonged cycling needs to be further assessed (Shin et al.,

2020).

4.5 Engineering of substrate

4.5.1 Engineered materials and substrate
selection

For dendritic suppression, it is crucial to select the right

substrate or modified materials. In order to achieve efficient

electron transport, the substrate for zinc deposition must be

insoluble in aqueous electrolyte. Currently, porous carbon

materials, copper foam, nickel foam, and foil are the most

often utilized substrates. On the other hand, a crucial aspect

of substrates’ characteristics is their zinc nucleation overpotential

(Yang et al.). Low nucleation overpotential will result in a smaller

potential barrier to overcome, allowing for uniform zinc

deposition and improved zinc plating/stripping reversibility.

Cu foam has been proven in prior research to have a number

of inherent advantages as a substrate, and various modification

techniques can further optimize zinc nucleation overpotential.

The excellent adsorption ability of zinc atoms is advantageous for

the uniform deposition when choosing modified materials.

Stronger interactions between zinc and surface particles with

strong electron interactions and polarization can both prevent

zinc from aggregating on the substrate surface and from flaking

off once it has been deposited (Mainar, Blazquez, and

Urdampilleta 2017).

4.5.2 Substrate surface engineering
Metal affinity functional groups frequently control the

surface of the optimal substrate, resulting in uniform locations

for corresponding metal deposition (Qin et al., 2021). Zinc will be

deposited uniformly as a result of the improved coatings’ capacity

to optimize the electron transport channel, the electric field

distribution, the wettability of the interface, and other factors

(Cui, Han, and Hu 2021). Moreover, by controlling Zn2+

deposition, a surface coating is designed to provide uniform

Zn nucleation and a flat Zn deposition layer, which significantly

enhances the Zn anode’s interface stability and cycle lifetime (A.

Wang et al., 2020). Previous reported results state that a variety of

materials, including carbon-based materials, metal materials,

inorganic non-metals, polymers, and composite materials,

have been employed as interfacial layers to produce high-

performance Zn anodes (Li et al., 2018). As a widely used

one-dimensional material, CNTs are lightweight and have

excellent chemical properties. Yang et al. (Dong et al., 2020)

developed self-supporting, extremely flexible, and conductive

CNT/paper scaffolds to stabilize Zn metal anodes because

unaltered Zn forms dendrites that lead to unfavorable

interactions at the Zn anode/electrolyte interface, ultimately

resulting in the failure of RAZIBs (Figure 8A). The porous

scaffold’s skeleton mechanically controlled where Zn2+ would

deposit on the Zn electrode’s surface, while the conductive CNT

network kept the electric field uniform (Zuo et al., 2021). A more

stable charge/discharge behavior was also shown by the built

Zn@CNT symmetrical cells (Figure 8B). After cycling, the

modified ZF didn’t exhibit any notable modifications (Figures

8C,D). Zn anodes were modified by Chen et al. (A. Wang et al.,

2020) with nanofibrillar cellulose adhesives and C black coatings.

The dendrite formation and side reactions on the anode are

TABLE 1 An overview of recently reported dendrites free engineering strategies of zinc-based anode materials.

Engineering strategies
of anode
materials

Limit capacity
[mAh cm−2]

Current density
[mA cm−2]

Lifespan [h] Voltage hysteresis
[mV]

Ref

Nano-TiO2 coating on zinc anode - 0.4 500 50 Li et al. (2021a)

Al2O3-coated zinc plate 1 1 500 36.5 He et al. (2020)

HfO2-coated zinc anode 1 1 500 63 Li et al. (2021b)

CaCO3-coated zinc foil 0.05 0.25 836 80 (Kang et al., 2018)

ZrO2-coated zinc foil 1 5 2,100 32 Zhao et al. (2020)

3D zinc anode@carbon fibers 1 1 350 30 (Dong et al., 2018)

3D flexible carbon nanotubes 2 2 200 27 Shi et al. (2020)

3D porous copper skeleton 0.5 0.5 40 350 (Kang et al., 2019)

Zn88Al12 alloys 0.5 0.5 2000 ≈20 Wang. (2020)
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minimized by altering zinc foil with a C black coating and a

nanofibrillating cellulose (NFC) binder, resulting in excellent

interfacial stability between the anode and electrolyte. After

100 cycles, the ZF’s surface was covered in many dendrites

(Figure 8F). Before and after cycling, the anode made of ZF

modified with a C black coating and NFC binder (ZF@CB-NFC)

maintained a consistent surface (Figure 8G). The redesigned

anode-based cell exhibited improved cycle stability and CE

(Figures 8H,I). The redesigned Zn anode-based symmetrical

cell demonstrated improved cycle performance and a lower

polarization voltage (Figures 8J,K). After circulation, metrical

cells had the same appearance (Figure 8E).

4.5.3 3D porous substrate
High current density, as was already established, is detrimental

to zinc’s uniformdeposition. The substrate’s specific surface area can

be effectively increased by the 3D porous structure, which lowers the

local current density (Zhang et al., 2021). As a result, the anode and

electrolyte have a larger surface area in contact with each other and

the current density is distributed uniformly. Additionally, it is crucial

for controlling ion transfer, preventing dendritic development, and

preserving the battery’s dimensional stability. As a result, there is less

chance that dendrites will form (Bayaguud, Fu, and Zhu 2022). The

inhibition of zinc dendrite and the homogeneous distribution of zinc

are both made possible by the aforementioned benefits. Therefore,

structural modification is a useful strategy for reducing dendritic

development (Higashi et al., 2016). These recently discovered

methods for preventing zinc dendrites are demonstrated, together

with the accompanying electrochemical performance (Table 1).

5 Summary and perspective

In conclusion, it is critical to recognize that the RZBs are the

most viable candidate to construct a low-cost, secure system with

adequate capacity, particularly for wearable devices. The main

issues with the Zn anode, including as dendritic growth,

hydrogen evolution, and passivation, are succinctly

summarized in this paper. The most serious issue that might

cause battery failure and safety problems is the dendrite problem.

As a result of the previous discussion, there are four categories for

dendritic suppression strategies: Electric field control involves

designing 3D electrodes for low local current density and

removing dendrite tips according to predetermined protocols;

ion flux regulation involves introducing electrostatic interaction,

adsorption, and changing the solvent shear structure; mechanical

shield involves creating a strong interface by the use of designed

protocols for the initial Zn anode. While each of those

approaches can be used independently to improve

performance, many approaches can be used simultaneously.

An illustration of this is how a metal oxide surface coating

will result in a consistent ion flux distribution and act as a

physical barrier to stop dendrite formation. The increased

electrochemical performance and extended anode lifespan are

wonderful developments. Theoretical research and fundamental

understanding, however, are still in the early stages and require

more study. As a result, difficulties persist and a number of issues

need to be taken into account.

Moreover, the problem of zinc dendrites to the ground is

typically not resolved by using additions for electrolytes and

electrodes, especially in alkaline mediums. In this situation, it is

important to use efficient techniques to reduce or even

eliminate zinc dendrites’ negative impacts, specifically by

eliminating battery shorts as much as possible. Separators

need to have a high level of mechanical stability to prevent

impalement, as well as a high level of chemical stability to

prevent degradation.

These elements will need to be taken into account in the

future effort, and the following guidelines are strongly advised:

• A combination of theoretical direction and real-world

requirements should be used to design the test

conditions and standards. There is enough information

to conclude that the current density is influenced by

application situations and manufacturing capability,

which both determine the mass loading range. The test

environment should make an effort to mimic commercial

requirements and machine capabilities.

• Future optimization should address several issues

simultaneously using a variety of methodologies. For mass

manufacturing to be feasible under the conditions of

acceptable cost, the strategies should be properly

integrated. For instance, the long-term stability is ensured

by using affordable electrolyte additives to moderate the ion

flux and a thin surface layer for physical shielding and

corrosion prevention. The additives are placed in a

hydrogel electrolyte with great mechanical strength and

homogenous ion channels for dendrite suppression.

• Cutting-edge technologies, such as in-situ XRD for

detecting the prevailing crystallographic orientation and

in-situ optical/X-ray microscopy for morphological

variation, enable the fundamental theory to monitor the

interfacial process of the Zn anode in situ.

• Theoretical investigation showed that, different methods

and strategies are used to stop uneven deposition. The

creation of a stable Zn anode will be substantially

accelerated by having a holistic awareness of how to

recognize the crucial elements under various conditions.

• The most widely used techniques to completely and

permanently inhibit the formation of zinc dendrites up

until now have included designing a 3D porous structure

with high zinc-based electrode surface areas, using acidic or

neutral mediums, ionic liquids along with other novel

mediums as electrolytes, and a combination of these

techniques. The successful development of a dendrite-free

zinc deposition procedure when using these techniques in
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zinc-based batteries would improve their performance and

advance their business model.
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